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UAV Survival Assessments: the value of wall-to-wall site 
capture

1. Introduction

“Wall-to-wall” mapping, also referred to as 100% site 
capture, has existed for many years, however, until 
recently, data was captured by larger piloted aircrafts 
and/or satellites at high costs and at much lower 
resolutions. As many unmanned aerial vehicles 
(UAVs) are now equipped with high resolution 
cameras, it is increasingly feasible to fly small to 
medium scale areas of up to ~1-200 ha in a single 
operation and collect high resolution data using 
relatively accessible tools. 

Forest mensuration is an area of forestry that heavily 
utilises the capabilities of remote sensing and 
increasingly UAVs for data capture. Wall-to-wall 
remote sensing in modern forest inventory is 
sometimes referred to as “enhanced” forest inventory 
as it can be utilised in many ways (Chirici et al., 2020, 
Stinson and White, 2018). 

Until recently, high resolution (sub 2 cm) imagery was 
difficult for forestry companies to capture over larger 
areas as the UAVs that were readily available had 

lower resolution cameras (20 MP or less). In order to 
attain data at this resolution, the craft would have to fly 
low, resulting in a small ground footprint of the 
imagery. This meant that the distance between flight 
lines to achieve the required overlap was very short, 
resulting in impractical flight times. Attaining sub-cm 
imagery also meant flying close to the ground which 
caused issues with maintaining line of site in steep 
terrain, and causing safety concerns where 
neighbouring stands contain taller trees. With the 
advent of commercial UAV platforms with high 
resolution lenses, such as the DJI P1 (DJI, Shenzhen, 
China) with its 45 MP lens, it became possible to 
achieve sub-cm imagery whilst still flying at a safe 
altitude (>50 m) and increasing the distance between 
flight lines. 

This study looks at the benefits of using high resolution 
UAV remote sensing to capture wall-to-wall imagery 
for conducting survival surveys. This method enables 
industry users to effectively capture and utilise data to 
assist with planning, decision making, and 
optimisation of resources. 

Implementing wall-to-wall site capture for survival 
assessments in forestry has the potential to reduce the 
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need for manual surveys, leading to considerable 
savings in costs and time (Feduck et al., 2018). 

 
2. Objective 

The aim of this study is to assess the value of wall-to-
wall site capture for conducting survival surveys by 
comparing the effectiveness of capturing high 
resolution UAV data with traditional field plots. To this 
end this study had three objectives: (i) to assess the 
accuracy of seedling detection from UAV imagery 
through both manual annotation and automated 
detection methods; (ii) to compare stand stocking 
calculations derived from plotting with those derived 
from the wall-to-wall data; and (iii) to conduct time and 
cost analyses of UAV-based seedling detection 
compared with field plotting to assess the efficiency of 
both methods.  

3. Methods 

Two trial sites of approximately 24 ha each were 
identified for this project. Data was captured at each 

site using two methods. The first method consisted of 
traditional field plotting, whilst the second method 
utilised a UAV to capture high resolution imagery of 
the entire stands at two different altitudes to test the 
impact of altitude/resolution on seedling detection. 
Due to technical difficulties with one site, and time 
constraints to write up this report, the decision was 
made to focus on one site in more detail. 
 

3.1. Study site 
 
The study site used for this project was located on 
Topaz Road in Kinleith Forest, Waikato (Figure 1). The 
Topaz Road site consisted of flat to rolling terrain and 
is managed by Manulife Forest Management (NZ) Ltd 
(MFMNZ). The site was planted in September 2022 
and was 11 months old at the time of the UAV data 
capture. 
 
 
 

 
Figure 1. Site map for the Topaz Road forest site in Kinleith Forest. Orthomosaic imagery for the site is shown overlaid on regional 
imagery. 

3.2. Field data capture methods 
 
The field data for Topaz Road was captured by 
students from Toi Ohomai Institute of Technology, 
Rotorua, using ArcGIS Survey123 (ESRI, Redlands, 
CA, USA) on a mobile device. The field data capture 
consisted of six pre-determined 0.06 ha circular plots. 
In each plot the students recorded plot location 

(georeferenced via mobile device), tree number and 
tree condition (vigorous, alive, dying, dead and gone). 
 

3.3. Remote sensing capture methods 

 
The UAV data was collected using a DJI Matrice 300 
RTK UAV (DJI, Shenzhen, China) equipped with a 45 
MP DJI Zenmuse P1 camera (DJI, Shenzhen, China). 
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To assess the impact of ground sample distance 
(GSD; resolution) and flight efficiency on the results, 
two datasets were captured at altitudes of 55 m and 
85 m above ground level (AGL). Flights were planned 
and flown by Scion using the DJI Pilot 2 app (DJI, 
Shenzhen, China) using the same parameters for 

speed, and overlap (Table 1). Ground control points 
were not utilised as the Matrice 300 comprises a high 
accuracy real time kinematic (RTK) global navigation 
satellite system (GNSS), which improves the spatial 
accuracy of imagery and resulting photogrammetric 
products. 

 
 

Table 1. Flight parameters for UAV data capture at Topaz Road site. 

Craft 
Altitude 
(AGL; 

m) 

Speed 
(m/s) 

Approx 
GSD (cm) 

Overlap 
(forward:side) 

Planned Flight 
Time (hh:mm) 

DJI 
Matrice 

300 
RTK 

55 

5 

0.7 

80:80 

01:15 

85 1 01:00 

 
3.4. Data processing 

 
Field plot survey results 
The field data collected through ArcGIS Survey123 
was uploaded to ArcGIS Online (ESRI, Redlands, CA, 
USA). Field data were output from Survey123 as 
georeferenced shapefiles containing seedling-level 
data as attributes were then uploaded to ArcGIS Pro 
v.3.2.2 (ESRI, Redlands, CA, USA). 
 
Orthomosaics 
The images from each data set were processed into 
orthomosaics using Pix4DMapper (Version 4.8.4; 
Pix4D, Lausanne, Switzerland). Default processing 
settings were utilised with the exception of 
geometrically verified matching being enabled. 
Resulting orthomosaics were exported as a single, 
merged GeoTIFF. 
 
Commercial seedling detection 
The resulting orthomosaics were sent to Indufor Asia 
Pacific Ltd, Auckland, who applied their proprietary 
deep learning detection algorithms to each dataset for 
seedling detection analysis. A point data set, 
representing the location of each seedling that was 
detected, was exported in shapefile format. 
 
 

3.5. Data analysis 
 
Analysis for all data, including field data shapefiles, 
orthomosaics, and seedling detection point data from 
Indufor, was conducted using ArcGIS Pro. 
 
Field data 
The field data was analysed through Survey 123 to 
determine the total number of trees recorded per plot 
and used as the “ground truth”. 
 
Manual seedling annotation plots 
To assess the efficacy and accuracy of commercial 
seedling detections, traditional field plotting methods 
were also conducted within a geographical information 
system (GIS). Six 0.06 ha plots were re-created in the 
same locations as the field plots by using ArcGIS Pro 
to digitise the plot centres that were visible in the 
orthomosaics. A circular buffer with a radius of 13.82 
m was added to each one to create a plot boundary. 
Each seedling visible within the plot boundary was 
then manually digitised within the GIS (Figure 2a) and 
exported as a point data set in shapefile format. The 
analysis was conducted on both the 0.7 cm and 1 cm 
datasets, however, the resolution was sufficient to 
identify all seedlings. The results therefore combine 
counts for both datasets. 
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Figure 2. Example plot (blue circle) showing (a) manual annotations of seedlings (green tree symbol) and (b) automatic detection 
overlaid on a 1 cm orthomosaic. In (b), detections from the 0.7 cm (yellow circles) and 1 cm imagery (red crosses) are shown, 
demonstrating a higher false positive rate (inaccurately detected as seedlings) for the higher resolution imagery.

Commercial seedling detection 
To provide an effective comparison, the spatial layers 
for the seedling detections were cropped to the same 
area using the 0.06 ha plots created for the field data 
and traditional plot method (Figure 2). Accuracy, 
precision and recall of the seedling detection algorithm 
were then calculated for both the 0.7 cm and 1 cm 
dataset. See section 3.6 for a description of the 
statistical analysis. 
 
Forest density grid 
A stocking grid was produced utilising the seedling 
detections layer from Indufor to enable visualisation of 
stand density across the site. The initial step was to 
create a grid with a resolution of 20 x 20 m (0.04 ha) 
using the Create Fishnet tool in the Geoprocessing 
Tools of ArcGIS Pro. This was then clipped to the 
stand boundary, and finally a spatial join was 
implemented between the seedling detections point 
data and the grid area, adding a seedling count to 
each compartment of the grid. This seedling count was 
then adjusted according to the size of the grid cell to 
account for cells that were not complete (edge cases). 
The resulting grid was then colour coded to classify 
areas according to their stocking. The stocking 
classifications were split from 0-200, 201-400, 401-
600, 601-800 and >801 to enable rapid identification 
of areas that were planted to specification, or areas 
that were under- or over-stocked, and to what degree.  
 
Time and cost comparisons 
To enable comparison of each method, the time taken 
to conduct each stage of the manual annotation 
process was recorded. In addition, an average 
estimate of time taken to conduct field plots and UAV 
plots in the field was derived through consultation with 

the Tools For Foresters committee, which includes 
foresters, silvicultural contractors and inventory 
contractors. When comparing the time taken to carry 
out a survival survey using these various methods, a 
few averages were input into the calculations. It was 
assumed an average travel time to and from the site 
of one hour, and an additional set up/pack down time 
of 30 minutes for field plotting, and one hour for UAV 
operations. 
 
For the cost comparisons, the Tools For Foresters 
committee were once again consulted to give an idea 
of the average costs of UAV operations and the 
average costs for plotting. Estimated costs per ha for 
commercial seedling detection were also provided by 
Indufor. 
 
Cost comparison between the three methods was 
complicated due to the different estimates for 
payment. UAV rates in industry are still generally 
calculated on a daily rate, whereas seedling detection 
is costed on a per ha rate, and field plotting is 
calculated on a per plot basis. In order to standardise 
this, the three methods were applied to a 24 ha site, 
representative of the size of stand used in this study. 
The daily rate for UAV operations was calculated by 
dividing the daily rate by the approximate number of 
sites of this size that could be covered in a single eight 
hour working day, which was deemed to be two to 
three, depending on altitude of the flight. This was 
worked out by including an hour of travel to and from 
the forest, an hour of set up time per site, and using 
the approximate flight times from this project for a  
55 m flight (~2 hours) and an 85 m flight (~1 hour). 
Additionally, a per ha rate was worked out for the UAV 
methodology by dividing the cost for the site by 24 
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(area in ha) and for field plotting by multiplying the rate 
for a single 0.06 ha plot by 16.7 (the approximate 
number of plots of that size in 1 ha). 
 

3.6. Statistical analysis 
 

To assess how well the different seedling counting 
methods worked, three standard metrics, commonly 
used for detection accuracy were employed: accuracy 
(I), precision (II), and recall (III). These three metrics 
are essential as they take into account discrepancies 
between datasets arising from false or missed 
detections, which can affect the accuracy of total 
counts when comparing ground truth with 
experimental datasets. For example, the total counts 
could be the same if some other objects were 
erroneously detected as seedlings (false positives), 
and actual seedlings were not detected (false 
negatives). 
 
Accuracy quantifies the percentage of the total 
seedling detections that were correct. Precision is the 
proportion of the seedlings that were detected that 
were actually seedlings. Recall is the proportion of the 
total number of seedlings in the ground truth data set 
that were correctly identified by seedling detections. 
These metrics were calculated using the following 
equations:  

 

I. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

 

II. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
 

 

III. 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

 

Where:  
 

𝑇𝑃 (true positive – correct detection) 
A correct detection, also known as a true positive, is 
defined as a seedling that was present in the ground 
truth and correctly detected in the UAV data. 
 
𝐹𝑃 (false positive – erroneous detection) 
An erroneous detection, also known as a false 
positive, is defined as any detection that is not a 
seedling, such as a weed or logging debris that was 
incorrectly identified as a seedling. 
 
𝐹𝑁 Missed (false negative):  
A missed detection also known as a false negative, is 
defined as a seedling that was present in the ground 
truth but not detected in the experimental dataset. 
 

𝑇𝑁 (True Negatives; not applicable): These are 
cases in which the absence of seedling is correctly 
identified, i.e. a missing seedling was correctly 
identified. These were not included in the analysis. 

4. Results 

4.1. Seedling stocking comparison 

 
Results from this study showed that, overall, both 
manual annotations and automatic detections 
provided very strong results for detection accuracy 
(Table 2).  
 
Manual annotations provided better results of 
accuracy, precision and recall (95%, 96% and 99% 
respectively) than the best performing automatic 
detections (79%, 88% and 88% respectively; Table 2). 
 
Between the two resolutions of imagery, both datasets 
provided the same results for the manual annotation, 
however, the automatic detections consistently 
performed better with the 1 cm GSD imagery at the 
plot level than the 0.7 cm imagery, and overall results 
being significantly higher for accuracy (79% compared 
with 63%), precision (88% compared with 76%), and 
recall (88% compared with 78%; Table 2). Conversely, 
detections from the 0.7 cm dataset were notably 
higher than those of the 1 cm dataset with 17,684 
compared to 15,710 points. 
 
At the plot level, manual annotation exhibited the 
narrowest range of accuracy, precision and recall (85-
100, 93-100% and 90-100% respectively; Table 2). 
Automatic detections displayed poorer performance 
with the 1 cm GSD data exhibiting greater variability in 
accuracy, precision and recall (64-91%, 74-95% and 
72-98% respectively; Table 2). Automatic detections 
on 0.7 cm GSD dataset demonstrated even greater 
levels of variability for accuracy, precision and recall 
(47-80%, 51-94% and 62-91% respectively; Table 2). 
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Table 2. Overall accuracy, precision and recall for all plots, ordered by results for accuracy). Results are combined for manual 

annotation of 0.7 cm and 1 cm GSD imagery as both performed equally in this task. 

Method  GSD (cm) Plot 
Accuracy 

(% ) 
Precision 

(%) 
Recall 

(%) 

Manual 
seedling 

annotation 
0.7,1  

1 100 100 100 

2 95 100 95 

3 100 100 100 

4 85 93 90 

5 92 100 92 

6 94 100 94 

Overall 95 99 96 

Commercial 
seedling 
detection 

(55m) 

1 

1 62 78 76 

2 80 87 91 

3 67 79 82 

4 47 51 87 

5 51 75 62 

6 69 94 72 

Overall 63 76 78 

Commercial 
seedling 
detection 

(85m) 

0.7 

1 91 93 98 

2 85 89 95 

3 90 92 98 

4 68 74 90 

5 64 85 72 

6 71 95 74 

Overall 79 88 88 

4.2. Stocking Density 

 
As the results from the 0.7 cm data set at the plot level, 
were found to be sub-optimal, stocking density was 
conducted on the 1 cm GSD data alone. 
 
The stocking grid created in ArcGIS Pro (Figure 3) 
revealed a wide range of stocking across the stand 
from 0-975 stems per ha (sph) per grid cell (Table 3). 
When this is compared to the results from the field 
plots, it can be observed that the range is a lot greater 
than that observed by the field plotting (517-783 sph) 
and for the automatic detections, using the same data 
as the stocking grids but constrained to the same 
sample plot areas (550-800 sph; Table 3). 
 
Averaging of the fishnet across the stand showed an 
overall stocking of 574 sph (Table 3), which is lower 
than the average derived from the  
 
 
 

 
 
field plots (831 sph) and the average from the 
automatic detections confined to the plots (681 sph; 
Table 3).  
 
Table 3. Stocking range per plot and averaged across the 
stand according to field plots, automatic detections from 
within the studies plots, and from a stoacking grid across the 
site. 

Method  
Stocking range 
for plots (sph) 

Average 
stocking for 
stand (sph) 

Field plots 517 – 783 683 

Automatic 
detections (plots) 

550 – 800 681 

Stocking grid  0 – 975 574 
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Figure 3. Stocking grid with 0.04 ha cells created from the detection for the 0.7 cm detections. Stocking per cell is indicated in 
sph, and cells are coloured by sph value in five classes from low (0-200; red) to high (>800; dark green). 

4.3. Time comparison 
 
Overall, the three methods had very similar times to 
carry out assessment of stocking for six plots. Capture 
of 1 cm GSD UAV data with commercial detection was 
the fastest (~38 min per plot), followed by UAV capture 
with manual annotations (~40 min per plot) and 
manual plotting being the slowest (~55 min per plot). 

These figures take into account the time taken to set 
up a photogrammetric dataset to run in the software, 
however, they don’t take into account the length of 
time that the processing takes. This is because the 
actual processing doesn’t take any manual input 
required from the operator. Table 4 lists the 
processing times for each UAV data set for reference. 
 

 
Table 4. Time comparison of methodologies trialled in this study, including UAV data capture and analysis for different image 

resolutions, manual annotation, automatic seedling detection and field ploting. Orthomosaic processing times, though provided 
to give an indication of time required for in-house processing, are ommitted from total time calculations in the final two columns 

due to their negligible manual input requirements. 

Dataset 
Travel 
time 

Set up 
time 

Flight 
time 

Time to 
complete 

6 plots 

Time to set 
up 

processing 

Processing 
time 

Total time 6 plots 
(excluding 

processing time) 

Approx 
time 

per plot 

0.7 cm UAV 
(manual) 

01h:00m
:00s 

01h:00m
:00s 

02h:23m
:00s 

00h:12m:
30s 

00h:30m: 
00s 

05h:39m: 
03s 

05h:05m:30s 
00h:50
m:55s 

1 cm UAV 
(manual) 

01h:18m
:00s 

00h:12m:
30s 

02h:09m:35
s 

04h:00m:30s 
00h:40
m:05s 

0.7 cm UAV 
(commercial) 

02h:23m
:00s 

NA 
05h:39m:03

s 
04h:53m:00s 

00h:48
m:50s 

1 cm UAV 
(commercial) 

01h:18m
:00s 

NA 
02h:09m:35

s 
03h:48m:30s 

00h:38
m:05s 

Field plotting 
00h:30m

:00s 
NA 

04h:00m:
00s 

NA NA 05h:30m:00s 
00h:55
m:00s 
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Table 5. Cost study comparing the costs of UAV data capture, commercial seedling detections and field plotting. 

Method 
Average day rate 

operations ($) 
Average 

per plot ($) 
Cost for a 24 

ha site ($) 
Average per ha 

($) 

UAV data capture 1600 NA 533-800 22.2-33.33 

Commercial 
seedling detection 

NA NA 36-52 6-9 

Field plotting NA 27-35 162-210 450.9-584.5 

 
4.4. Cost comparison 

 
For a 24 ha site, the results show that traditional field 
plotting was the cheapest option ($162-210; Table 5), 
followed by UAV data capture ($533-800; Table 5) 
representing approximately a three- to fourfold cost 
increase. Additional costs of $36-52 are incurred with 
using the commercial seedling detection services, 
however, this must be balanced against the time that 
would be spent by staff manually annotating plots in 
GIS if done in-house (~10-15 minutes; Table 5).  
 
The scale of the area covered must also be taken into 
account. Six 0.06 ha plots (UAV or field) at the site 
would cover an area of 0.36 ha, whereas the 
commercial detection services would cover the entire 
24 ha. When looking at a theoretical cost per ha, UAV 
plotting works out cheaper at ~$22-33 per ha plus an 
additional $6-9 per ha for annotation, compared to 
~$450-585 per ha for field plotting. Manual annotation 
of 1 ha would take ~2h47m to 4h10m (based on time 
taken to do a single 0.06 ha plot multiplied by 16.7), 
making this exercise unfeasible. 
 

5. Discussion  

5.1. Seedling stocking comparison 
 
The first objective of this study was to assess the 
accuracy of conducting stocking plotting through GIS 
with field plotting. Overall, the results of this study 
showed that both manual annotation and automatic 
detection methods performed very well, with 
measures of accuracy, precision and recall values of 
95%, 96% and 99%, and 79%, 88% and 88% 
respectively (Table 2). Although more precise, the 
manual annotations method would not be beneficial 
for a wall-to-wall assessment due to the amount of 
manual input required to detect the seedlings. The 
automatic detections would therefore be more 
practical, however, these results are a little lower than 
a previous study that used deep learning to conduct 
seedling detection on P. radiata seedlings, achieving 
high levels of precision and recall (99.4% and 97% 
respectively; Pearse et al. (2020)). 
 
Although manual annotation performed better than 
automatic detections, automatic detections were still 
capable of strong results. It was notable, however, that 
the detection model performed better on the 1 cm 
imagery than on the 0.7 cm data. This is likely due to 

the additional detail in the 0.7 cm imagery. Deep 
learning models can perform very well on data that 
they have been trained on, however, if they have not 
been exposed to much imagery of a specific resolution 
or in a specific lighting or with differing site conditions, 
then performance can drop. Training the model with 
additional 0.7 cm data could improve results in this 
regard, however, from an operational perspective, 
getting this higher resolution almost doubled the data 
capture time (Table 4), and increased the size of the 
data, therefore, there would be little benefit in doing 
this. 
 
The results of the automatic detections were also 
notably plot-specific. The plots in which the model 
performed worst were plots 4 and 5, which were 
notable for their high FP rate and high FN rate 
respectively. On assessment of the imagery, Plot 4 
had noticeably more small clusters of weeds, which 
could have triggered more erroneous detections 
(Figure 4). To reduce FPs, models can be re-trained 
using “hard negative mining” to teach the model where 
it is going wrong, for example, feeding it examples of 
erroneously detected gorse or logging debris. 
 

 
Figure 4. Examples of FPs (white boxes) in plot 4. 
Detections are represented by yellow circles (0.7 cm data) 
and red crosses (1 cm data). 

A number of the FNs, or missed detections, in Plot 5 
were of dead seedlings (Figure 5). This points to a lack 
of training data for these specific cases. Deep learning 
algorithms can be highly site-specific and results can 
be improved by providing additional training data. To 
help reduce FNs, feeding the model additional training 
data for things that it missed, for example dead 
seedlings, will reduce false negatives associated with 
dead trees. An alternate approach could be to train an 
additional class, i.e. for dead seedlings, so that the 
trees are detected and can easily be filtered to show 
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where mortality occurs across the site. As the deep 
learning models assessed in this study were 
commercial, these options would need to be 
discussed with the service provider who could inform 
on how best to improve results. 
 

 
Figure 5. Examples of FNs (purple boxes) in plot 4. 
Detections are represented by yellow circles (0.7 cm data) 
and red crosses (1 cm data). 

5.2. Stocking density  
 
When comparing the number of detections, the 0.7 cm 
dataset yielded significantly more detections than the 
1 cm dataset. At a glance, the most common 
difference was that there were more erroneous 
detections (FPs) with the 0.7 cm dataset, especially 
around the site boundaries and areas of heavy logging 
debris. Further analysis revealed that the 0.7 cm 
dataset contained more erroneously detected weeds 
as seedlings more often than the 1 cm. A factor could 
be that the lower the flight altitude, the higher the 
resolution, resulting in a much more sensitive 
detection algorithm. 

 
Figure 6. Location of plots (purple circles) and distribution of seedling detections (teal dots) across the site. 

No significant difference was observed between the 
results of the stocking density from field plots and the 
density derived from the automatic detections from the 
1 cm imagery within the same plot boundaries. This 
demonstrates that although the automatic detections 
were less accurate than field methods in detecting 
trees (Table 2), they gave a comparable result when 
predicting average stocking across the site. However, 
the field and UAV-based plotting methods both notably 
overestimated the average stocking across the site 
when compared with the stocking grid (Table 3). 
Looking at the range of stocking per plot/grid, it is 
apparent that the plot-based methods are missing 
areas of low stocking (Table 3 and Figure 6).  
Some of these grids may correspond to unplantable 
areas with heavy logging debris, such as old skid sites, 
highlighting the utility of this methodology for 

improving mapping of net stocked area. Other areas 
with low detections could be due to mortality or missed 
planting, in which case this information would be 
useful for the forester to plan early intervention 
operations. Equally, overstocked areas need attention 
and could be identified on a map for closer inspection. 
The creation of a colour coded stocking density grid 
acts as a useful visual aid for identifying areas that 
require attention (Figure 3), enabling foresters to 
target issues and note opportunities for intervention.  
 

5.3. Cost benefit analysis  
 
Typically, the quality of data is only measured through 
its precision and accuracy, however, a contemporary 
view is that the quality of data should also be 
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measured in terms of benefits obtainable from the data 
(Kangas et al., 2018). 
 
The time comparison study for plotting indicates that 
the quickest method was the UAV plotting with 
commercial seedling detections. Although being more 
than one third quicker per plot, this time study did not 
take into account that stocking could be assessed over 
the entire site for the same amount of time and cost as 
simply assessing the plots, representing a significant 
increase in the amount of information available to the 
forester. 
 
Regarding the cost, to carry out a standard survival 
assessment at a 24 ha site, putting in six field plots 
would be significantly cheaper than capturing UAV 
data ($162-210 compared to $288-$360). Although 
not practical to conduct a wall-to-wall assessment 
using field methods, when the two methods are 
compared on a per ha basis, the UAV data capture is 
considerably cheaper at ~$22-33 per ha, compared to 
~$451-$585 per ha. Since travel is a big cost factor, it 
is also notable that multiple 24 ha areas could be 
completed in a single day using UAV methods, 
however, the field plotting is time-consuming and so 
potentially only 10-12 plots per day could be 
assessed, incurring additional travel costs to cover the 
same number of sites over multiple days.  
 
Although the evaluated wall-to-wall method is quicker 
than field plotting, and can cover the entire site in less 
time, the method is still less accurate than field based 
plotting. As discussed previously, improvements to the 
deep learning model could help to bridge this gap, 
however, at this stage stocking is the only thing being 
assessed. With more work, additional aspects, such 
as health assessments, weed growth or mortality 
surveys, could be incorporated into the wall-to-wall 
methodology, increasing the advantages over current 
field plotting methods. 
 
The wall-to-wall site capture method and commercial 
seedling detections, as demonstrated in this study, are 
best suited for foresters working with medium to large 
stands. This approach enables rapid coverage of 
extensive areas and provides a comprehensive 
overview of the forest’s condition, including stocking 
and inferring survival.  
 

6. Conclusion 

This study has indicated that stocking detection from 
UAV data can be conducted with a high level of 
accuracy, precision and recall. Though not as 
accurate as field plotting at the individual tree level, the 
real advantage of the wall-to-wall method lies in the 
ability to assess stocking at the stand level, rather than 
at the plot level. This study has demonstrated that 
there can be such a thing as having too much 
resolution, finding that the lower resolution imagery (1 
cm GSD) provided the best detections, and also 
efficiencies in data capture and cost. In addition, some 

shortcomings of the deep learning approach were 
identified, and discussed along with possible 
mechanisms for improvement. It is anticipated that 
through these improvements, the accuracy of the 
detections would increase to be more in line with those 
observed in the literature. 
 
This study also demonstrated that the value of wall-to-
wall capture extends beyond just the accuracy and 
precision of the detections. Instead, the value is more 
evident through the supplementary benefits, 
capabilities, and possibilities it offers. The detailed 
information that the forester can aggregate from the 
wall-to-wall methodology could aid in decision making 
especially in the early stages of the stand, providing 
an opportunity to resolve issues promptly and reduce 
forest management costs at a later stage. By 
embracing the potential of UAV technology and 
thoughtful data analysis, foresters can improve their 
forest management practices and make more 
informed decisions for the sustainable future of our 
forests. 
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