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Disclaimer 
 
This report has been prepared by Contempo Holdings Ltd for Forest Growers Research Ltd (FGR) subject to 
the terms and conditions of a research fund agreement dated 1 April 2014.  
 
The opinions and information provided in this report have been provided in good faith and on the basis that 
every endeavour has been made to be accurate and not misleading and to exercise reasonable care, skill 
and judgement in providing such opinions and information.  
 
Under the terms of the Services Agreement, Contempo Holdings Ltd liability to FGR in relation to the 
services provided to produce this report is limited to the value of those services. Neither Scion nor any of its 
employees, contractors, agents or other persons acting on its behalf or under its control accept any 
responsibility to any person or organisation in respect of any information or opinion provided in this report in 
excess of that amount. 
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EXECUTIVE SUMMARY 

 
In productive forestry, seedlings, such as radiata pine, are grown for scaled forestry planting in 
nurseries using two planting methods: containerised and bare root. These seedlings are generally 
lifted and selected manually based on standard measurements. . Machine based harvesting and 
selection is in development in an effort to scale beyond available labour and improve data 
collection for research outcomes. The lifting ‘machinery’ can be viewed as a combination of 
mechanical and computational systems. The aim of the project is to investigate the feasibility of 
automating seedling selection using camera based computational approaches to accurately select 
seedlings in representative field environments such as variation in light, plant occlusion, 
background objects, and orientation. The work shows that a hybrid approach using artificial 
intelligence, AI, and heuristics could detect different tree species, across orientation, backgrounds, 
and lighting. The AI model detected individual trees in an image, which included loose dirt and 
leaves, identifying shoots, trunk, and root. Subcategories included tree species (pine and redwood) 
and root type (bare and container). Measurements included number of shoots, height of tree, 
brown leaves, root collar diameter, root metric, tree angle, pixel size. Heuristics used rules to make 
a pass or fail decision taking into account species and root type. The system output included a 
report for data collection and explanation of each decision. Total analysis time was 21 ms giving a 
tree detection rate of 47 per second exceeding the requirement of 10 trees per second. The results 
show it is possible to accurately detect, measure and select tree seedlings at a speed practical for 
field use. The feasibility prototype was developed based on an in-shed conveyor belt environment. 
However, as mechanization develops it is possible that camera based automated seedling 
detection would be embedded into a mechanized system. This would allow a pathway for total in-
field decisioning, which is the preference of many nursery operators today. 
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INTRODUCTION 

 

Background 
 
 
Seedling trees are grown in nurseries either as containerised or bare root stock. Mechanisation of 
seedling lifting is under development to enable scale beyond available labour and also enhance 
longitudinal data analysis for crop optimisation through data collection. Manual lift requires a 
person to pick the seedlings into bundles then box them ready for short term storage prior to 
planting in forested areas. The person must physically pull the plant and make an assessment of 
whether to keep the seedling based on grading rules [1] that can vary between nurseries, 
geographic location, season and market requirements.  
 
Computer vision, CV tasks manage images, perform analysis and 
communicate or report the output. One library commonly used for CV on plants 
is called PlantCV [2] shown in Figure 1. Example applications include 
phenotyping and watching plants grow [3]. The software used for this project 
was Python with libraries such as OpenCV supporting image manipulation, 
filtering and deep learning model support such as the open neural network 
exchange, ONNX [4].  Models written natively in Python machine learning 
libraries such as PyTorch.  CV has been used for pine tree analysis in laboratory 
settings as outlined in McGuinness’ paper [5], including work flow shown in. 
This paper used two cameras in a mechanical frame to calculate height, root 
collar diameter, RCD, and root analysis. CV approaches typically reduce the 
computational complexity by making the target in the image reproducibly 
unambiguous by using a clean white background and white light. When lighting 
is variable filtering is performed using HSV (hue, saturation, value) rather than 
RGB (red, green, blue). The CV vision approach can result in unreliable results 
when lighting or target colour changes as the range of HSV values need to be 
updated. Furthermore, occlusion of branches or presence of objects in the background can 
invalidate selection assumptions leading to errors. This makes this approach, at least as the 
standalone method, unsuitable for our requirements which include conveyor belts with dirt 
presence, occlusion from overlapping seedling and ultimately. In an ‘in-field’ embedded machine 
context with less control of environment. 
 

 
1 https://plantcv.readthedocs.io/en/stable/ 

 

Figure 1 Example 
image analysis using 

computer vision 1 
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Figure 2 Workflow for pine tree analysis described by McGuiness. 

 
 
Deep learning in computer vision applications are more 
generalisable to different environments and are used in 
various applications including medical imaging [6], 
pedestrian detection [7], plant phenotyping [8], plant disease 
detection [9]. Models have developed rapidly in recent years 
for both architecture and training methods such as such as 
faster-CNN (convolution neural network) and YOLOv52 (you 
only look once) [10]. YOLOv5 is a state of the art open 
source deep learning model designed for realtime object 
detection [7,9,11] which performs 10x faster than other 
models with near equivalent accuracy. Used for many 
realtime applications. An example in figure 3 (pictured right) 
shows multiple objects detected, the bus is occluded by 
pedestrians and pixels associated with objects are 
highlighted using semantic segmentation, where each pixel 
in the image is associated with a labelled object or the 
background 
 
There are trade-offs between CV and deep neural network, DNN, approaches. CV allows image 
manipulation, filtering and selection in a reductionist approach that naturally explains the algorithm, 
does not need large datasets and can be developed quickly and applied reliably once validated 
with a representative dataset. The disadvantage of CV is that it cannot solve complex problems 
such as detecting complicated shapes that vary between samples with different lighting conditions. 
DNN typically requires large datasets, labelling of those images but can perform in changeable 
conditions and generalise to various unstructured conditions such as changing back grounds. The 
need for large datasets for DNN can be problematic if data collection is expensive or seasonally 
limited to certain times in the year. A typically development approach is to start with CV and move 
to DNN if initial CV results do not meet requirements for deployment.  
 
This work researched the development of a software pipeline that could manually label images, 
train an AI model and perform inference on images followed by a decision model to grade the 
seedlings and suggest a pass or fail, with an explanation for the decision. The research was 
staged as shown below. 
 

 
2 www.ultralytics.com  

Figure 3 Object detection with YOLOv51  

http://www.ultralytics.com/
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• Investigate the best way to classify seedling, choose approach and review (computer 
platform, decision time, workflow description, use case development, performance 
specifications) 

• Image collection and labelling 

• Train computer vision model and test 

• Train decision model to make recommendations. 

• Demonstrate first prototype. 

• Report on performance 
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Requirements 
 
There are various requirements for the application deployment based a combination seedling 
selection rules and in-field practicalities, as shown in Table 1. 
 
Table 1 Requirements 

Requirement Description Value Unit 
Machinery operations Should work on different sorting 

machines 
>=2  

Camera amount Should use the minimum number of 
cameras, ideally 1.  

<=1  

    
Inference speed Should process a minimum number of 

trees per second 
10 per 

second 
Lighting Should work with different lighting Sunlight, 

fluorescent 
 

Dirt and objects Should work with dirt and random objects 
in camera view 

Conveyor belt, 
dirt, loose 
leaves 

 

Obstacles Should not have to correctly analyse tree 
if tree is obscured by a certain amount 

5<=%  

Calibration The system should be capable of 
calibrating the camera to make 
measurements 

  

Tree type Should detect at least one tree type, Pine pine  
    
Shoot Number Should be capable of counting number of 

shoot 
>=1  

Shoot Height Should be capable of measuring 
shoot height 

Shoot height mm 

Disease/health Assess brown needles in top ¼ of tree Brown/green % 
Root type Should detect two root types, 

containerised and bare. 
Bare, 
Container 

 

Root Collar Diameter Should measure RCD diameter   
Root analysis For containerised assess the percentage 

of root-with-soil relative to container 
shape. For bare root asses the quadrants 
ratio. 

  

Mycorrhiza Shall detect and count Mycorrhiza (note 
this is planned to be implemented at a 
later stage int eh project) 

  

 
 

METHODS 
 
The methods for this study we've broken into two phases firstly computer vision based on 
McGuiness’ paper we replicated in Python code and assist for accuracy and consistency of 
detection across the data set of radiata pine and Redwood seedlings. The second phase of the 
research investigated the use of a deep learning model followed by measurement analysis and 
finally the heuristics to make the selection rules resulting in a pass fail with explanation of the 
reasons why a pass or fail occurred. 
  



6 

 

 

 
PHASE 1. COMPUTER VISION 
 
Ben McGuiness from Waikato University published a paper [5] on seedling sorting. Multiple 
cameras were used on clean dirt-free seedlings using a seedling handling machine in the 
laboratory. The approach was elegant for the three measurements produced and the analysis of 
accuracy is well developed. Grey scale imaging was used which would reduce the possibility of 
differentiating leaves, trunk or roots and disease detection looking at brown leaves. Dilation 
operations with the binary black and white image may struggle to determine dirt vs root ball. i.e., 
this approach requires no dirt on the roots which differs from the example images in the Scion 
Seedling Selection documents. The approach used computer vision solely and no DL or AI. It was 
worth considering a deep learning approach in the first stage of this project to understand the 
tradeoffs between in-field generalizability and accuracy.  
 
Software was developed using the Jupyter Notebook environment to replicate the results in the 
McGuiness paper and extend the detection and measurement for all the rules needed for pass-fail 
selection.  
 
Figure 4 shows the HSV spectra for the shoot and root of redwood seedling, which would be used 
to mathematically subtract from other parts of the seedling or background. When multiple objects 
are detected in an image then assumptions can be made to further refine detection such is in 
Figure 5 where the shoot (a) root collar (b) are detected and measured. 

  
Figure 4 Hue, saturation and value spectra for (a) root collar and (b) root ball of a pinas radiata seedling 

 
 
 
 
 
(a) 
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(b) 

 
Figure 5 Background object rejection using contours for (a) redwood shoot and (b) redwood containerised root with 

number of detected pixels per column (green) and detection threshold for root-to-trunk (yellow) 

 
 

PHASE 2. DEEP LEARNING 
 
The software development for a deep learning system is called a pipeline. This pipeline starts with 
a data set information and the images are labelled and the AI model is trained with the output 
being the model architecture and the weights associated with the training. The production system 
loads the iron models weights and architecture and uses this for detection within each image. 
Following object detection measurements were taken and passed to the rules engine to determine 
passed or fail. The final step is to save the measurements pass fail criteria and performance such 
as frame rate for further analysis if needed. 

 
Figure 6 Software pipeline for AI training and deployment 

 
 
Labelling 
 
The image labelling was performed with a software application, RectLabel3, initially with object 
detection boxes and when this did not reliably show all object detection across the data set delay 
billing method moved to semantic segmentation of objects, as shown in Figure 7. Images where 
selected to have differences in orientation (horizontal, vertical), tree type (pine, redwood), 
background (white, black, obstacles, dirt, loose leaves, partial trees, reflections). Classes of objects 
to inform measurements needed for selection were 'leaf', 'root_bare', 'root_container', 'trunk', 
'tree_pine', 'tree_redwood', 'coin50c'. Figure 7 shows example labelling of a pine tree would be a 
rootball applying pine tree with containerised roots and see I Redwood tree with containerised 
roots and two trunks. A 50-cent coin was included in each image as this enables diameter to be 
measured horizontally regardless of angle and this measurement was used to calibrate pixel size 
for further measurements for the results and expressed in mm. It is not expected that the daily 
production system will need this image-by-image calibration as the camera will have a fixed 
distance from the convey belt. 
 
 

 
3 https://rectlabel.com 
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(a) (b) (c) 

Figure 7 Labelling of pine and redwood (a) pine with bare root, (b) pine with containerised roots, (c) redwood with two 
trunks, horizontal and black background. 

 

Training 
 
A deep learning model called YOLOv5 was selected based on reported results in real time object 
detection and accuracy, different model sizes are available trading off processing time and 
accuracy. Training was performed with computer using Ubuntu operating system with Intel i9 CPU 
3.6 GHz and NVIDIA GEOFORCE RTX 2070 Super 8GB GPU. Software was Python 3.10.6 and 
PyTorch 1.13 with model YOLOv5 v7.0.  
 
The model was trained with a custom dataset described above with 52 images of redwood trees 
with containerised roots on a black conveyor belt and 25 images of pine trees on a white table with 
a combination of containerised and bare roots.  
 
Hyper parameters included: Epoch 2048, Batch size 16, learning rate 0.01, with early stopping if 
performance plateaued. 
 

   
(a)                                 (b) 

Figure 8 (a) Training showing YOLOv5 image slicing approach and (b) validation results. 
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Training was stopped when accuracy reached a plateau, the reported epochsFigure 10 shows the 
learning of each size model and how many a pox were required to attain the same level of 
accuracy. The conclusion was that the nano model is of equal accuracy if trained longer so was 
chosen for further analysis, however some images did not have some objects detected with the 
nano model. Due to optical detection challenges with the new model the small model was selected 
for further development. 
 
 

 
Figure 9 Training performance by model size for Redwood trees 

 

 
Figure 10 Training results for model sizes 

Training and validation images are shown in Figure 8, showing how YOLOv5 has a robust image 
slicing approach to training to improve training rates with less images.  
 

Inference Accuracy of Tree Objects 
 
Object detection was performed using PyTorch Hub in Python, after initially using OpenCV’s DNN 
library which did not perform well in the image data set. Investigation found the OpenCV DNN 
library simplifies the YOLOv5 model architecture which loses sensitivity for some challenging 
objects. 
 
 
Dimensional accuracy is determined by the pixel size as this is calibrated against the known 
diameter of a New Zealand 50 cent coin. The average pixel size was 0.1454 mm per pixel or 7 
pixels per mm.  
 
 
 
 

Large, Medium, Small, Nano 

Training mAP accuracy by epoch 
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Analysis of Seedlings Post Inference i.e. Measurements 
 
The definition of measurements is shown in Figure 11. Further analysis was performed with 
computer. Figure 12 shows how the root object detection is used to select a sub image and filter 
pixels as “background” vs “root” which includes dirt and branch material. The root ball ratio is 
number of pixels in the object rectangle. Figure 13 shows a pine with bare root, where the root ratio 
uses the position of the trunk to determine the ratio of left to right roots relative to the root object. In 
both cases disease is detected as brown leaves / green leaves in the top quarter of the tree, taking 
into account the orientation of the tree. 
 

 
Figure 11 Definition off seedling measurements 

 
 
 

(a)

 

(b)

 
(c)

 

Figure 12 Pine containerised root (a) Inference results for objects (b) root pixel counting (c) stem colour comparison for 
top of plant. 
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(a)

 

(b)  

(c) 

 

Figure 13 Pine with bare root (a) Inference results for objects (b) root pixel counting showing left half of root ball (c) stem 
colour comparison for top of plant. 

 

Rules and Selection of Pass or Fail 
 
These measurements are compared against the allowable ranges for each rule as shown in Figure 
14. The final result for all images is output to a table, as shown in Figure 17, showing the image 
label, processing times, objects detected, measurements and pass fail for each rule. 
 

 
Figure 14 Rules engine for decision making process for seedling pass/fail. 

 
 

RESULTS 

Computer vision approach 
 
The results of the CV experiment showed this approach was unreliable for seedlings with colour 
and shape variation, background objects and background colour. Tree detection and root detection 
was achieved. However, RCD measurement was developed unsuccessfully as the approach did 
not perform reliably as trunk occlusion meant this method was not reliable for the data images in 
the dataset. The unreliable nature of detection resulted in no further development. If DL was 
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needed for reliable detection of some parts of the seedling, then its expected DL is needed for all 
parts eventually.  
 

Deep Learning 
 
YOLOv5 Object detection labelling resulted in unreliably detection of trunks. The second approach 
of YOLOv5 semantic segmentation labelling was successful. It was found that processing time and 
accuracy where key metrics for the deep learning and just as important was the detection of all 
objects for all images, such as numbers of trunks when occlusion occurred. 
 
Trunks and bare roots where difficult to accurately identify, resulting in not using the OpenCV DNN 
library with ONNX models and instead using PyTorch allowing YOLOv5 native model and weights. 
Furthermore, the nano version YOLOv5 did not perform or some images and the YOLOv5 small 
model was used.  
 
 

Accuracy 
 
The largest measurement errors exist due to object detection ambiguity for the definition of object 
boundaries, e.g., where does a branch start and finish when there are loose leaves, or where does 
the root-ball edge occur when there is loose first under roots. 
 

Processing time 
 
Table 2 shows processing times for three compute capabilities and 2 image resolutions. It can be 
seen that 640x480 is a faster for both inference and post processing. The small model was used 
here as the nano model missed a ‘trunk’ on one image. At present the post processing time is 
dominant so reducing inference times by going to a smaller model would not increase frame rate 
significantly. Image loading for large images is significant, however this would not be applicable for 
the end use of a live camera feed.  
 
Table 2 Image processing times for 24 images on local hard drive, YOLOv5 model = small 

YOLOv5 
Model 
Size 

Computer Image Size Image 
Load 
(ms) 

Inference 
Time 
(ms) 

Analysis 
Time 
(ms) 

Save 
Results 
To Hard 

Drive 

Total 
Process 

Time 
(ms) 

Frame 
Rate (4) 
(fps) 

small Intel I9 GPU(1) 3024 × 4032 132 9 22 4 167 28.5 
small Intel I9 GPU(1) 480 x 640 3 7 12 2 26 47.6 
small Intel I9(2) 3024 × 4032 130 38 22 4 194 15.6 
small Intel I9(2) 480 x 640 4 31 13 1 49 22.2 
small MacBook Pro(3) 3024 x 4032 192 334 52 7 585 2.5 
small MacBook Pro (3) 480 x 640 5.5 244 19 1.5 270 3.7 
nano Intel I9 GPU(1) 3024 × 4032 135 8.3 27 5 190 24.8 
nano Intel I9 GPU(1) 480 x 640 2.9 7 13 4 27 41.6 
nano Intel I9(2) 3024 × 4032 136 19 24 9 183 19.2 
nano Intel I9(2) 480 x 640 3 16 12 4 35 31.2 
nano MacBook Pro(3) 3024 x 4032 173 114 51 10 348 5.7 
nano MacBook Pro (3) 480 x 640 6 142 30 9 187 5.5 

 
Notes: 
(1) CPU = Intel i9 3.6GHz, GPU = NVIDIA GEOFORCE RTX 2070 Super 8GB  
(2) CPU = Intel i9 3.6GHz 
(3) MacBook Pro, Intel i5 3.1 GHz, 500Gb Flash Drive 
(4) Frame rate does not include hard drive load time as the system will be using live video, not static 
images from the hard drive. 
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Figure 15 Inference time and Analysis Times by image size, YOLOv5 model size and compute 
 

 
Figure 16 Frame Rate by image size, YOLOv5 model size and compute 
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Figure 17 Results including measurements, rules and inference times for Mac Book Pro. 

DISCUSSION 

Computer vision approaches did not perform well, due to pine needles obscuring other seedlings, 
branches and also being transparent to the background compared to solid leaves such as a 
cabbage leaf. Trunks are often obscured by needles and the start of a trunk and start of root ball or 
leaves is ambiguous even for a human labeller. 
  
 
DNN-semantic segmentation performed well after relabelling with trunk including some roots in the 
object definition and training for up to 2000 epochs. Training accuracy was similar for different size 
models with more epochs required for smaller models to achieve the same accuracy. Note smaller 
models perform inference faster, but risk missing difficult to detect objects. Nano missed on ‘trunk’ 
detection at 3024x4032 resolution.  Further software optimisation is possible to improve accuracy, 
sensitivity and processing time. 
 
Frame rate is dominated by post processing not inference, allowing larger deep learning models to 
be used for increased accuracy or detection of obscured objects such as trunks behind branches. 
GPU or Intel i9 processor is sufficient to achieve speed requirements for either 3024x4032 or 
640x480 images. Accuracy and sensitivity were not reduced by going to the lower resolution 
images. 
 
 

Future Work 
 
A larger dataset of images in representative situations is required to ensure a validated approach 
in the future.  
 
Root ratio for bare root could be simplified to left vs right based on position of trunk. Frame rate 
optimisation between inference and post processing. Machine needed to meet 10 fps is an Intel I9 
minimum. Note multi-processing and other code optimisation may assist here with more code 
development, particularly if each image is saved to hard drive. 
 
The code did not analyse multiple seedlings in the same frame, tracking individual seedlings, 
communicating with machine to affect the pass/fail mechanical selection mechanism. 
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CONCLUSION 

It has been shown that seedling identification and grading decisions can be automated using deep 
learning with variable back grounds. A single camera may be possible depending on bare root 
grading requirements.  
 
More data is required, and the software proof of concept will need to be made ready for 
deployment. Speed of operation needs to be confirmed with a camera verses images from the hard 
drive.  
 
A graphical user interface, GUI, for the operator and data collection to enable future research are 
recommended next stagers.   
 
The YOLOv5 DNN model performed accurately in different environments and could accurately 
differentiate tree types between pine and redwood and also root type between bare root and 
containerised. Camera calibration used a known object (50 cent New Zealand coin) that was 
circular to avoid camera to object angle differences. Small models that were trained for longer 
performed at similar accuracy to larger models and had a faster inference speed. 
 
An Intel I9 computer is needed to meet 10 fps minimum seedling per second speed requirement.  
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