

Future proofing plantation forests from pests

Michael Watt, Rebecca Ganley, Darren Kriticos, Karina Potter, Lucy Manning, Graeme Bourdot, Nita Tallent-Halsell

Plantation forests within New Zealand

- New Zealand has 1.8 million ha in plantations (6.7% land area)
- Comprise ~90% Pinus radiata
- Pinus radiata susceptible to many insects, pathogens
- Lack of species diversification high risk to NZ economy

Pest impact to the forest industry

- Several important forest pests already established in NZ
- Losses to industry high
- Large potential for greater losses under climate change
- Sub-tropical pests often very invasive

Objectives

- Determine climatic suitability for three key plantation pests under current and future climate
 - Fusarium circinatum (pitch canker), devastating disease
 - Pine processionary moth defoliating insect
 - Buddleja davidii highly invasive weed
- Determine potential impact of pine processionary moth on plantation forests

The model

- CLIMEX, a process based distribution model
- Projecting potential distribution of invasive pests
- Global meteorological database
 - ~50 km² grid resolution,
 - Generated from 1961 to 1990 climate normals

The model

- Climate linked to distribution through processbased algorithms
- Integrates a population's response to climate via:
 - Growth index and eight stress indices
- Indices parameterised from presence data or laboratory measurements
- Model outputs Ecoclimatic Index, that indicates the suitability of climate for the pest.

Climate change scenarios

- Six scenarios (to 2080's) covering a range of climate sensitivity
 - Three Global Climate Models
 - CSIRO Mark 3.0 (2.11 °C)
 - NCAR-CCSM (2.47 °C)
 - MIROC-H (4.13 °C)
 - Two standard IPCC scenarios
 - Medium emissions (A1B)
 - High emissions (A2)

Pitch canker

- Not currently in NZ, but problematic in USA, Spain
- Devastating disease of pines can suppress growth or kill the tree
- Pinus radiata considered the most susceptible pine species
- Most unwanted disease in many countries with plantation pines

Pine plantations

Current climate El

Future climate scenarios

Future climate

Current climate

Buddleja davidii (butterfly bush)

- Current weed in New Zealand
- Very popular, attractive garden plant
- Also, high impact weed, fast growth, prolific seed production
- Rated most problematic weed in central North Island
- Competes strongly with trees, particularly during juvenile period

Current and potential B. davidii distribution

B. davidii distribution Current climate El

Future climatic suitability

B. davidii distribution

Current climate EI

MIROC

Climate matching

- UK has been extensively invaded
- Matches climate in Southland, Otago, Canterbury to UK
- Match in terms of min., max., temp, rainfall quantity and pattern
- CMI > 0.7 biologically relevant,
 >0.8 close match

Control measures

- Include on RPMS Canterbury, Otago, Southland, Marlborough
- Remove horticultural threats
- Prevent spread into strategic exclusion zone
- Biological control
 - Preliminary success with Cleopus japonicus

Pine processionary moth

- Not currently in New Zealand
- Pine processionary moth significant defoliator of pines in Europe
- Of interest as radiata pine is a preferred host

Projected potential distribution

Current climate

Projected potential distribution

Current climate

Future climate

Linking climate suitability to plantation growth losses

Plantation productivity under current and future climate

- Simple empirical model used
- Mean national projected merchantable volume
 - 566 m³ ha⁻¹ under current climate
 - Range 512 to 531 m³ ha⁻¹ under climate change
- Model only accounts for effects of climate change on air temperature and water balance

Effect of pine processionary moth on volume production under current and future climate

- Assuming PPM dispersed throughout NZ
 - Under current climate projected mean volume reductions of 16%
 - Under climate change mean volume reductions of 31%
 - Range of 29% to 33% between scenarios

Further work

- Three year MAF SLMACC project 2009 -2012
- Develop DSS that accounts for both direct (environment) and indirect effects (biotic, abiotic factors) of climate change on growth and rate of return
- DSS will possibly provide impetus to diversify the plantation estate

Acknowledgements

MAF for funding the 1 year "Future proofing plantation forests from pests project"

Papers, popular articles from project

- Watt, M.S., Kriticos, D.J., Potter, K.J.B., Manning, L.K., Tallent-Halsell, N., Bourdot, G.W. (in press) Using species niche models to inform strategic management of weeds in a changing climate. Biological Invasions.
- Watt, M.S., Kriticos, D.J., Bourdôt, G.W. 2010 Nothing pretty about *Buddleia*.
 MAF Biosecurity 97, 30-31
- Watt, M.S., Ganley, B.J., Kriticos, D.J., Manning, L.K. Dothistroma needle blight and pitch canker: the current and future potential distribution of two devastating diseases of *Pinus* species. Submitted Canadian Journal of Forest Research February 2010.
- Kriticos, D.J., Watt, M.S., Potter, K.J.B., Manning, L.K., Alexander, N.S., Tallent-Halsell, N. Managing invasive weeds under climate change: Considering the current and potential future distribution of *Buddleja davidii*. Submitted to Weed Research December 2009.

