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Enhancing Survival Surveys: Multispectral vs. RGB UAV 
Imaging.

1. Introduction

The successful establishment of seedlings following 
planting is a critical factor in the overall outcome of 
forestation efforts (Grossnickle, 2012). This early 
phase of growth involves significant expenses and 
often lacks immediate economic returns, making it a 
pivotal stage in forest development (Montagnini, et al., 
1995). Accurate assessment of tree health and 
stocking during this period is essential for informed 
forest management decisions and provides nurseries 
with valuable insights into seedling performance 
(Neumann, et al., 1995). 

Recent years have witnessed a growing adoption of 
geospatial technologies in the forestry industry, with 
Unmanned Aerial Vehicles (UAVs) gaining traction, 
especially in New Zealand’s plantation forest 

management (De Gouw, et al., 2020). UAVs offer a 
cost-effective and efficient alternative to traditional 
ground-based surveying methods (Feduck, et al., 
2018). Additionally, they provide a potentially safer 
and more accurate means of assessment compared 
to traditional approaches. UAVs also enable more 
comprehensive coverage of forest stands. A previous 
study demonstrated that high resolution full-colour 
(red/green/blue, RGB) imagery and deep learning 
algorithms could be used for detecting seedlings with 
a high level of accuracy (Pearse, et al., 2020). 

This study aims to evaluate the accuracy of utilising 
multispectral UAV imagery for seedling detection. It 
also seeks to conduct a proof of concept looking at the 
additional benefits of multispectral imagery, i.e. health 
assessments. Recognising the lack of standard 
operating procedures (SOPs) for seedling health 
assessment and the need for more robust techniques, 
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this research endeavours to contribute to improved 
practices in the field. 
 
This research aligns with current trends in forest 
management, emphasising the potential for enhanced 
precision and efficiency in the use of multispectral 
UAV imagery in modern forest management practices.  

2. Objective 

The primary objective of this study was to evaluate the 
potential advantages of using multispectral imagery in 
contrast to high-resolution RGB imagery obtained 
through UAVs for seedling detection. This entailed a 
comprehensive exploration of the benefits and 
potential limitations of multispectral imagery in the 
context of precise seedling detection. 
 

The secondary objective of study was to conduct a 
proof of concept investigating the feasibility of 
employing the random forest (RF) (Breiman, 2001) 
machine learning (ML) technique for the multi-class 
classification of seedling health status. 

3. Methods 

3.1. Study sites 
 

This study was conducted at two locations within the 
North Island of New Zealand, as depicted in Figure 1. 
These sites were managed by Manulife Forest 
Management (NZ) Ltd (MFMNZ), and their selection 
was deliberate to demonstrate efficacy of these 
technologies across a range of environmental 
conditions and terrain classes. 
 
The first study site was situated in Pipiwai Forest in 
Northland. The ~24 ha stand was planted in May 2022 
and was characterised by its diverse topography 
ranging from steep slopes to rolling terrain, providing 
a valuable setting for examining the impact of varying 
topography on seedling detection and health 
assessment. The second study site, a ~24 ha stand 
located on Topaz Road in Kinleith Forest, Waikato, 
was established in September 2022 and features 
terrain that ranges from flat to rolling. This site was 
chosen as its distinct topographic characteristics 
complemented those found in the Pipiwai Forest site. 
 

 

 
Figure 1. Map showing the high resolution UAV orthomosaics of the two study sites Pipiwai Forest (upper right) and Kinleith 

Forest (lower right) and their location within the North Island of NZ (left). Ground plot locations for the study are also indicated in 

green. 
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3.2. Field data capture methods 
Seven 0.02 ha ground truth plots were measured at 
the Pipiwai site while six 0.06 ha ground truth plots 
were measured at the Kinleith site. Whilst the plots 
were erroneously measured to different sizes, this had 
little bearing on the results. 
 
Each plot consisted of a survival count of the trees 
within the bounds of the plot. Each tree was assigned 
a code from the following five-point scale: ‘gone’, 
‘dead’, ‘dying’, ‘alive’, or ‘vigorous’. Tree assessments 
were taken starting at the western end of the row that 
was due north of the plot centre as shown in Figure 1. 

 

 
Figure 2. Plot assessment diagram for ground truth data 
capture, showing the start and end points for measuring 
plots relative to the plot centre. 

When rows did not run east to west, as per Figure 2, 
the corrected bearing was recorded to assist the co-
registration of the UAV data with ground truth data. 
Except for marking the plot centres with paint or high 
contrast targets, no paint or other markings were 
applied within or surrounding ground truth plots to 
avoid bias in subsequent analyses. 
 
A total of 148 and 267 tree crowns (or absence 
thereof) were delineated within the Pipiwai and 
Kinleith sites, respectively. Table 1 displays a 
breakdown of the health status at each site. 
 
 

Table 1. Delineated seedlings by health status and site 

Site Gone Dying Dead Alive Vigorous Total 

Pipiwai 26 24 2 90 6 148 

Kinleith 3 1 3 5 255 267 

 
Due to the high level of class imbalance at the Kinleith 
site, only the Pipiwai dataset was used in the machine 
learning classification of health status was unable to 
be applied to the Kinleith dataset.  
 

3.3. Remote sensing capture methods 
 
Multispectral datasets were collected using a 
MicaSense RedEdge MX dual-camera system 
(Micasense, Inc., Seattle, WA, USA) mounted on a DJI 
M300 RTK UAV (DJI Ltd., Shenzhen, China). The 
system was programmed to capture data at an altitude 
of 25 m above ground level (AGL), creating imagery 
with a Ground Sample Distance (GSD) of 1.5 cm. This 
altitude was chosen as it provided the smallest GSD 
that was practical to obtain with this sensor. Data was 
captured at Kinleith on 2nd June 2023, and Pipiwai on 
26th April 2023. 
 
Additionally, “wall-to-wall” high resolution RGB 
imagery datasets, capturing the entirety of each stand, 
were collected using a DJI P1 45 MP camera (DJI Ltd., 
Shenzhen, China) mounted on a DJI Matrice 300 pro. 
The system was configured to capture data at an 
altitude of 85 m AGL, capturing data with a GSD of 
0.07 cm. Data was captured at Kinleith on 15th August 
2023, and Pipiwai on 25th May 2023.  
 
Flight routes were planned and controlled using the 
UGCS (SPH Engineering, Riga, Latvia) software to 
include a buffer zone around the ground truth plots. 
Flights were planned with a forward and side overlap 
between images of 80%. The key flight specifications 
and sensor systems used at each site are displayed in 
Table 2. 
 

Table 2. UAV Flight specifications for each site. 

Site Craft sensor 
Altitude 
(AGL; m) 

GSD (cm) 
Flight 
speed 
(m/s) 

Overlap 
% 

(fw:side) 

Planned 
flight time 
(hh:mm) 

Pipiwai 

DJI 
Matrice 

210 

MicaSense 
RedEdge MX 

Dual 
25 1.5 3 80:80 00:09 

DJI 
Matrice 

300 
DJI P1 85 0.7 5 80:80 01:15 

Kinleith 

DJI 
Matrice 

300 

MicaSense 
RedEdge MX 

Dual 
25 1.5 3 80:80 00:09 

DJI 
Matrice 

300 
DJI P1 85 0.7 5 80:80 01:15 
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The MicaSense system comprises ten spectral bands, 
enabling the discrimination of different surface 
characteristics and the calculation of various 
vegetation indices. The DJI P1 sensor captured only 3 
bands in the visible light range (red, green and blue - 
RGB). The spectral resolution and associated 
wavelengths of each of the sensors is shown in Table 
3. 

Table 3. Spectral resolution specifications for the cameras 
utilised in this study. 

Sensor 
Band 
Name 

Central 
Wavelength 

(nm) 

Band 
Width 
(nm) 

MicaSense 
RedEdge 
MX Dual 

Coastal 
Blue 

444 28 

Blue 475 32 
Green 531 14 
Green 560 27 
Red 650 16 
Red 668 14 

Red Edge 705 10 
Red Edge 717 12 
Red Edge 740 18 

NIR 842 57 

DJI P1 
Red 660 NA 
Blue 550 NA 

Green 470 NA 

 
Prior to each flight a calibration panel was imaged with 
the MicaSense sensor to ensure correct radiometric 
measurements were used in post processing. This 
was achieved by holding the UAV above the 
calibration panel and manually triggering a photo for 
each array.  
 

3.4. Data processing 
 
Individual images were radiometrically calibrated and 
combined to generate orthomosaics using 
Pix4Dmapper software using the default processing 
settings. No ground control points (GCPs) were used 
for the high-resolution data. These were not required 
as the UAV system comprised a real time kinematic 
(RTK) global navigational satellite system (GNSS), 
enabling higher positional accuracy. To keep the 
assessment of the data capture as realistic as 
possible, no GCPs were used in the multispectral data 
capture either.  
 
To ensure accurate alignment and integration of these 
orthomosaics, we applied a ‘spline’ transformation. 
This transformation was executed using the ‘spline’ 
transformation tool within the ArcGIS Pro v3.2.0 
toolset (ESRI Inc., Redlands, CA). 
 

3.5. Data analysis: Individual tree detection 
and delineation 

 
Both multispectral and High-Resolution RGB UAV 
imagery raster layers were imported into a geographic 
information system (GIS). The centre points of the 
plots were annotated in the GIS identified by the 

markers placed in the field. Plot boundaries were 
determined by creating a buffer around the plot 
centres with the appropriate radius. Individual tree 

crowns were manually delineated within the GIS. This 
process integrated information derived from 
multispectral and high-resolution RGB UAV imagery, 
with data from ground truth plots. This combined 
approach was necessary, as a single spatial layer 
often did not provide sufficient information for the 
definitive delineation of individual trees. The 
delineation focused specifically on pixels containing 
tree crowns. This ensured pixels belonged to tree 
crowns and not background objects and textures as 
illustrated in Figure 3. 
 

 
 
Figure 3. Example of good tree crown delineation, omitting 
background pixels (a), and poor tree crown delineation 
generated by adding a buffer to the tree detection location, 
including background pixels (b). 
 

For each multispectral dataset two false colour 
composite datasets were analysed by Indufor Asia 
Pacific Ltd, Auckland, who provide a commercial 
service for seedling detection utilising deep learning 
techniques to analyse aerial imagery. Additionally, 
high resolution RGB imagery was also analysed to 
provide a benchmark for detection rates. The 
multispectral composite images consisted of the near 
infrared (NIR), blue and green bands (MS1), and the 
NIR, green and costal blue bands (MS2; Table 2). The 
high-resolution composite image (HR) consisted of 
bands: red, green and blue.  
 
All three detection layers were imported into a GIS and 
aligned with ground truth data. In cases where the 
detection layers provided multiple detection boxes for 
the same tree, a unique tree ID was assigned to avoid 
over-classification. This process involved matching 
each delineated seedling crown from the reference 
imagery to its corresponding polygon within the 
detection layers. The assignment of the unique tree ID 
to individual polygons within the different detection 
layers established a direct linkage to the ground truth 
data. 
 
By linking each delineated seedling to its respective 
polygon in the detection layers a number of 
classification metrics were produced. Cross validation 
identified true positives, false positives and false 
negatives, which were then used to calculate 
classification metrics; accuracy, precision and recall 
(see section 3.8). Additionally, detection rates relative 
to ground truth data were obtained through recording 
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the number of detected boxes present in a given plot 
boundary. 
 

3.6. Spectral Vegetation Indices 
 
The delineated tree crown polygons were used to 
derive the mean, median, minimum (min), maximum 
(max), minority, count, unique, majority, standard 
deviation (std) and sum values for the pixels found 
within each tree crown per band or index raster. The 
‘gone’ class was not included in the health analysis, as 
this class represented a missing tree. Additionally, 
classes of ‘dead’ and ‘vigorous’ were excluded from 
subsequent analysis due to limited observations 
resulting in model imbalance. 140 statistical variables, 
derived from various bands and indices, were 
categorised into seven groups to prevent model over-
fitting. These groups and their contents are outlined in 
Table 4. 
 
Several standard vegetation and soil indices were 
calculated. All indices were calculated utilising the red, 
green, blue, red edge and NIR bands (Table 3). The 
standard formulae used for these calculations are 
shown in Table 5. 

Table 4. Variable groups and their associated measures, 

forming input for the machine ML models. 

Variable 
Group 

Measures Included 

Mean 
Mean values of all 14 bands and 

indices 

Median 
Median values of all 14 bands and 

indices 

Max 
Maximum values of all 14 bands and 

indices 

NDRE 
Statistical measures derived from the 

NDRE index (mean, median, min, max, 
minority, majority, std, and sum) 

NDVI 
Statistical measures derived from the 
NDVI index (mean, median, min, max, 

minority, majority, std, and sum) 

Red 
Statistical measures derived from the 
Red band (mean, median, min, max, 

minority, majority, std, and sum) 

SR 
Statistical measures derived from the 
SR index (mean, median, min, max, 

minority, majority, std, and sum) 

 
 

Table 5. Vegetation Indices used for health assessment. 
 

Full name Formula Reference 

Normalised difference vegetation 
index 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 –  𝑅𝑒𝑑

𝑁𝐼𝑅 +  𝑅𝑒𝑑
 

(Tucker, 1979) 

Normalised difference red edge 
𝑁𝐷𝑅𝐸 =

𝑁𝐼𝑅 –  𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 +  𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
 

(Gitelson, et al., 1996) 

Enhanced vegetation index 
 𝐸𝑉𝐼 = 2.5 ×

𝑁𝐼𝑅 –  𝑅𝑒𝑑

𝑁𝐼𝑅 +  6 ×  𝑅𝑒𝑑 –  7.5 ×  𝐵𝑙𝑢𝑒 +  1
 

(Huete, et al., 2002) 

Green normalised difference 
vegetation index 

𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 –  𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 +  𝐺𝑟𝑒𝑒𝑛
 

(Pettorelli, 2013) 

Soil adjusted vegetation index 
𝑆𝐴𝑉𝐼 = (1 + 𝐿) ×

𝑁𝐼𝑅 –  𝑅𝑒𝑑

𝑁𝐼𝑅 +  𝑅𝑒𝑑
 

𝐿 =  0.5 

(Huete, 1988) 

Simple ratio 
𝑆𝑅 =

𝑁𝐼𝑅

𝑅𝑒𝑑
 

(Chen, 1996) 

Red-green ratio index 
𝑅𝐺𝑅𝐼 =

𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 

(Peñuelas, et al., 1995) 

Modified normalised difference 
vegetation index 𝑀𝑁𝐷𝑉𝐼 =  

2 ⋅ NIR + 1 − √(2 ⋅ NIR + 1)2 − 8 ⋅ (NIR − Red)

2
 

 

(Qi, et al., 1994) 

 

3.7. Machine learning for health assessment  
 
For the health analysis, only the data from the Pipiwai 
site was included in the health assessment due to a 
large class imbalance in the Kinleith data (Table 1). 
The dataset of 140 variables from the 114 
observations from Pipiwai were stratified by class 
prevalence into training and testing sets at a ratio of 
90:10. A random forest classifier (Liaw, et al., 2002) 
was trained with a grid search to find optimal values 

for model hyperparameters ‘number of trees’ and 
‘mtry’, or the number of features to consider at each 
split when growing the trees. The best model was 
evaluated on the test set to compute the performance 
metrics per class and overall. This whole process was 
repeated for 10 unique iterations (folds) to reduce the 
variance in the test set predictions to account for the 
small dataset. Results were average across the 10 
iterations and tabulated.  
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3.8. Statistical Methods 
 
Simply taking the sum of detected seedlings and 
dividing it by the sum of the seedlings present in the 
ground truth plots is not an accurate way of assessing 
detection accuracy. This is because these amounts 
could be equal if some other objects were erroneously 
detected as seedlings (false positives), and actual 
seedlings were not detected (false negatives). For this 
reason, accuracy (I), precision (II), and recall (III) are 
commonly used to for detection accuracy. Accuracy 
quantifies the percentage of the total seedling 
detections that were correct. Precision is the 
proportion of the seedlings that were detected that 
were actually seedlings. Recall is the proportion of the 
total number of seedlings in the ground truth data set 
that were correctly identified by seedling detections. 
These metrics were calculated as follows:  

 

I. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

 

II. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
 

III. 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

 

where:  
 
𝑇𝑃 (True positives): Are the cases where the detection 
model correctly identified healthy trees (a positive 
case) 
 
𝐹𝑃 (False positives): Are cases where the model 
incorrectly identified a tree (a positive case) when 
there was no tree present. This might represent 
situations where the model wrongly detected a tree 
that does not exist. 
 
𝐹𝑁 (False Negatives): Are cases where the model 
failed to identify a tree (a positive case) when a tree 

actually existed in the ground truth data. I.e., the model 
missed detecting a tree. 
 
𝑇𝑁 (True Negatives; not applicable): Are the cases 
where the model correctly identified the absence of 
healthy trees. I.e., the model correctly identified that 
there was no tree (a negative case) when indeed 
there was no tree. Therefore, these were not 
included in the analysis. 
 
In evaluating the health assessment of trees, the 
additional statistical measures of Cohen’s Kappa 
(Kappa), was calculated through standard confusion 
matrix calculations. Kappa is a statistical measure 
that assesses the agreement between the model's 
classifications and the ground truth data while taking 
into account the agreement that might occur by 
chance. The Kappa statistic was calculated as 
follows: 

𝐾𝑎𝑝𝑝𝑎 (𝐶𝑜ℎ𝑒𝑛’𝑠 𝐾𝑎𝑝𝑝𝑎) =  
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒
 

Where:  

 
𝑃𝑜 represents the observed agreement between the 
model and the ground truth data and 𝑃𝑒 represents 
the expected agreement by chance. 

4. Results 

4.1. Detection Performance 
 
When comparing the detection accuracy between the 
three data types (MS1, MS2 and RGB), the overall 
results for the RGB were the strongest at both sites 
(Table 6). There was no significant difference between 
the two multispectral datasets at Pipiwai, however, 
MS1 performed better than MS2 at Kinleith. MS2 also 
produced a significantly larger number of FPs (772) 
than MS1 (595) at Kinleith. Both MS dataset produced 
significantly more FPs at both sites than the RGB data 
(Table 6). 
 

Table 6. number of TP, FP and FN observed across all plots at each site, for the three data types, along with levels of accuracy, 

precision and recall, coloured in 0.2 point increments. 

Site Data TP FP FN Accuracy Precision Recall 

Kinleith 
  

MS1 231 595 39 0.27 0.28 0.86 

MS2 243 772 29 0.23 0.24 0.89 

RGB 215 28 51 0.73 0.88 0.81 

Pipiwai 
  

MS1 102 489 48 0.16 0.17 0.68 

MS2 105 482 46 0.17 0.18 0.70 

RGB 57 19 90 0.34 0.75 0.39 

 

The results were notably site specific for all data 
streams. The best results, from the RGB data were 
notably stronger at Kinleith (0.73, 0.88 and 0.81 for 
accuracy, precision and recall, respectively), than at 
Pipiwai (0.34, 0.75 and 0.39, for accuracy, precision 
and recall, respectively).  
 

When a deep learning algorithm detects an object, it 
assigns a value to each detection conferring the level 
of confidence the model had in making that prediction. 
These detection confidence levels were utilised to 
attempt to increase the accuracy of the results. 
 
There was a significant increase in the precision and 
accuracy of both multispectral models at Kinleith when 
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detections were filtered from the datasets based on 
confidence level (Figure 4). The best results were 
observed with the MS1 data set, where levels of 
precision and accuracy for MS1 increased from 0.27 
to 0.41 and from 0.28 to 0.44, respectively at Kinleith 
when filtering for only detections with >99% 

confidence (Figure 4). Improvements to accuracy and 
precision for multispectral data were not as significant 
at Pipiwai (Figure 4). Notably, accuracy and recall 
dropped for the RGB data at each site with increased 
filtering of detections based on confidence. 

 
Figure 4. Impact of refining the number of detections on accuracy and precision. Facets are split into three rows for data types, 

and two columns for site. Bars are coloured according to the metric they represent. 

 
Figure 5. Impact of refining the number of detections on the numbers of TP, FP, and FN. Facets are split into three rows for data 

types, and two columns for site. Bars are coloured according to the metric they represent. 
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The number of FP detections for both multispectral 
data sets was significantly reduced at each site 
through increased filtering of detection confidence 
levels (Figure 5). The largest impact was 
demonstrated by filtering the MS2 detections at 
Kinleith to include only detections with >99% 
confidence (FP count reduced by 465). It is notable, 
however, that there was a reduction in the number of 
TP observed in the RGB dataset for each site with an 
increase in confidence filtering (Figure 5).  
 

4.2. Health assessment 
 
The results of the proof of concept with machine 
learning indicate that it is possible to assess the health 
status of seedlings utilising multispectral imagery with 
a high level of accuracy, precision and recall (Table 8): 
The top model produced by the RF classifier included 
only SR variables (accuracy = 0.86, Kappa = 0.61),  

and the best model including all indices used the Max 
statistical values (accuracy = 0.85, Kappa = 0.54; 
Table 7). A model fit using all 140 variables gave 
similar results (accuracy = 0.86, Kappa = 0.56; Table 
7). 
 
Table 7. Average accuracy and Kappa values of the top 
three RF models for predicting health, ranked by Kappa 
score. 

Model composition 
Average 

Accuracy 
Average 
Kappa 

SR Index (all statistics 
mean, max, majority, count 

etc) 
0.86 0.61 

All 140 variables (features) 0.86 0.56 

Max (statistic) 0.85 0.54 

 
 

 
Table 8. Precision and recall values for the top three models for predicting alive and dying seedling health classes, ranked by 
precision scores for ‘alive’ class. 

Model composition Class Precision Recall 

 SR Index (all statistics mean, 
max, majority, count etc): 

Alive 0.94 0.89 

Dying 0.71 0.77 

All 140 variables (features) 
Alive 0.91 0.92 

Dying 0.74 0.63 

Max (statistic)  
Alive 0.91 0.91 

Dying 0.77 0.62 

 
 
When looking at individual classes, the models were 
able to predict ‘alive’ seedlings with a high level of 
precision (0.91-0.94) and recall (0.89-0.92; Table 8). 
The difference between the SR model and the model 
using all variables was not significant, with a gain in 
precision and a loss in recall for ‘alive’ seedlings of 
0.03 and 0.03 respectively, and a loss in precision and 
a gain in recall for ‘dying’ seedlings of 0.03 and 0.14 
(Table 8). All models demonstrated higher confidence 
in predicting the ‘alive’ seedling class. 

5. Discussion 

5.1. Detection Performance 
 
The analysis of detection performance revealed that 
the multispectral datasets allowed the detection of 
more TPs than the high resolution RGB dataset (Table 
6). However, the multispectral data delivered 
significantly poorer performance overall. This appears 
to be caused by the inflated number of FPs for the 
multispectral data (Table 6). Utilising different 
combinations of near infrared wavelength bands had 
a minimal impact on the resulting detections, with 
slightly improved results being noted when using the 
NIR and green bands with blue (MS1) as opposed to 
coastal blue (MS2). It was notable that the MS2 
dataset performed worse than the MS1 data at 
Kinleith, where it resulted in a higher number of false 
positives. This perhaps infers that the coastal blue 

band is less sensitive to the difference between the 
spectral signature of radiata pine seedlings and the 
signatures of other vegetation. Future research should 
assess whether using alternative NIR or red edge 
wavelengths from this camera would improve the 
detections. 
 
Detections were found to be highly influenced by site, 
with a significant decrease in precision, accuracy and 
recall observed for all datasets at each site. As 
observed previously, there were significantly 
increased rates of FPs at Kinleith, however, this site 
was characterised as having lower overall weed cover. 
Deep learning models are noted for being highly site 
specific and it is probable that the model had not been 
exposed to sites of this nature before.  
 
The high recall, and lower accuracy and precision 
indicate that the high levels of FPs were having the 
greatest impact on the data. To address this, the 
confidence level for each detection was filtered. This 
had a positive impact on the multispectral data, 
reducing the number of FPs without altering the 
number of TPs and FNs. This had the opposite effect 
on the RGB data, where two- to three-fold reductions 
in FPs at Pipiwai and Kinleith respectively, coincided 
with reductions of ~25% and ~50% in TPs at Kinleith 
and Pipiwai respectively.  
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FPs, or erroneous detections, can be improved 
through an alternate process of “hard negative 
mining”, in which the model is retrained with examples 
of FP detections. This trains the model to recognise 
the difference between TP and FPs. Alternately, to 
increase the number of TPs, additional training data 
can be added for similar sites and data types to 
improve overall accuracy. As the detections in this 
project were made using a commercial service, these 
improvements could not be made and would need to 
be discussed with the service provider in an 
operational scenario. 
 
The results imply that, although multispectral data is 
capable of detecting more seedlings than RGB data, 
the number of erroneous detections that it makes 
highly hinder the utility of this technology. Further 
research is required to assess methods of refining this 
type of data to derive more accurate results. 
Multispectral cameras are also more sensitive to 
lighting conditions than RGB cameras, requiring 
spectral calibration and more careful planning of 
weather conditions. The processing and analysis of 
multispectral data can also be more complex due to 
the additional wavelengths and spatial layers that they 
produce. To truly harness the benefits of these 
cameras, deriving health status alongside stocking will 
be essential.  
 

5.2. Health assessment 
 
Within this project, an attempt was made to classify 
health utilising machine learning. The random forest 
classifier (RF) provided results that were encouraging, 
demonstrating that seedling health status could be 
classified with a strong level of accuracy (0.85-0.86) 
and moderate level of agreement between the model’s 
predictions and the ground truth health assessments 
(Kappa = 0.54-0.61).  
 
Although two of the four health classes had to be 
discounted from the analysis owing to class 
imbalance, individual health classes were able to be 
discerned by the model with high levels of accuracy, 
precision and recall (Table 8). The three top models all 
performed best at predicting the ‘alive’ health class, 
with high levels of precision and recall (0.91-0.94 and 
0.89-0.92 respectively; Table 8). This is likely due to 
the class imbalance, in which there were more than 
threefold the number of seedlings in the alive class 
than the dying class (Table 1). Future research should 
ensure that there is a more even distribution of classes 
within the sample or collect a large enough dataset to 
ensure there are enough samples per class. 
 
It was notable that the simple ratio (SR) index 
performed better, compared to models composed of 
multiple bands and indices. This result indicates that a 
relatively affordable multispectral camera solution, 
such as the DJI Mavic 3 Multispectral UAV (DJI, 
Shenzhen, China) that has a less complex sensor with 
fewer spectral bands, could be utilised to similar effect. 
It also underscores the value of employing 

multispectral sensors capable of capturing the near 
infrared (NIR) wavelength. 
 
The machine learning process, however, is relatively 
complex and requires a sufficiently large and balanced 
dataset to achieve good results. Due to the limited size 
and imbalanced distribution of health classes within 
the dataset, along with varying levels of experience in 
the field crews and time constraints, little more than a 
proof of concept could be achieved within this study. 
The results were, however, strong enough to warrant 
further investigation, and so future research should be 
focused on exploring the use of machine learning 
techniques for health assessments in survival surveys 
using multispectral imagery. The methodology 
assessed is included in an appendix so that future 
studies can see what has been trialled to date. 
 
Data from such health assessments could provide 
valuable insights for forest management practices. 
The effectiveness of classification methods in 
determining seedling health status could significantly 
influence management decisions. Future research 
should focus on determining optimal indicators for 
seedling health assessment, including top performing 
wavelengths or indices for assessing health.  
  

5.1. Implications and Future Directions 
 
Moving forward, several avenues for further research 
and improvements on the assessed methodology 
could be explored to enhance the accuracy and 
reliability of seedling health assessment 
methodologies. 
 
Increasing dataset size: The drawbacks of the 
assessed dataset could be improved upon through the 
expansion of the sample size. A larger dataset could 
provide a more representative sample across health 
classes and mitigate the impact of smaller sample 
sizes on model performance. A larger dataset would 
increase the effectiveness of the classification model, 
potentially enhancing accuracy and precision. 
Furthermore, the introduction of more data can allow 
for the exploration of additional variables without the 
risk of overfitting, which may further enhance the 
discrimination power of the models. 
 
Different modelling techniques: A number of machine 
learning techniques exist, including RF, support vector 
machines (Vapnik, 1995), gradient boosting 
(Friedman, 2001) and partial least squares regression 
analysis (Wold, 1982; Wold, 1987). Future study could 
explore different models to see whether any of these 
would perform better at assessing seedling health 
status. 
 
Validation and generalisation: It is crucial to validate 
the performance of the models in different 
geographical regions and under varying 
environmental conditions. Generalising the findings to 
broader site conditions will ensure that the developed 
methodologies are robust and applicable to a wide 
range of forest management scenarios. Collaborations 
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with foresters and forestry companies could aid in the 
validation process and help develop robust 
methodologies for a range of conditions. 
 
Exploration of applications: This initial proof of concept 
on small seedlings highlights the potential of 
multispectral imagery to various other forest 
management scenarios, such as disease classification 
(Camarretta, et al., 2024). 

6. Conclusion 

The analysis of detection performance revealed that 
multispectral data enabled the detection of 
significantly more seedlings than high resolution RGB 
data. This, however, coincided with a markedly higher 
number of erroneous detections, making overall 
performance weaker than RGB data. Attempts to 
refine the detections using the detection confidence 
level notably reduced the number of erroneous 
detections and improved the detection results. These 
improvements, however, were not big enough to 
match the performance of the RGB data. 
 
Proof of concept work using machine learning 
methodologies demonstrated promise for utilising 
multispectral imagery for health assessments. With 
further research, multispectral sensors could prove to 
be useful tools for conducting stocking and health 
assessments during survival surveys, having valuable 
implications for automation of forest management 
practices.  
 
The capacity to capture a wider range of spectral 
information, including NIR, through advanced sensors 
emphasises the advantages of employing such 
technology. With the evolving landscape of data 
collection and the promise of larger datasets and 
greater resolution, higher levels of accuracy and 
reliability could be possible. Multispectral UAV 
imagery has potential to be a valuable tool for forest 
managers, offering more informed and efficient 
decision-making in the early stages of plantation 
forestry establishment. 
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