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Discretised Growth Models for Eucalyptus fastigata:   
Building Blocks for Optimal Silvicultural Strategies   

Note:  
This report should NOT be read in isolation to DS023 - as it is only an update to the work in progress.  

Summary 

Optimising for silvicultural strategies through use of mathematical models is a complex task. Nonlinear 
functions are notoriously hard to optimise, although in some cases, where the optimisation algorithm does 
not require derivatives, they may still be used.  

The Chapman-Richards generalised von Bertalanffy s model, which is normally used to model growth 
(because of its flexibility to simulate both the first-order and second-order curves) has nonlinear 
parameters which are hard to identify and ultimately difficult to control in an optimisation framework. It is 
an empirical, continuous-time model with an allometric exponent that introduces nonlinearity to the 
estimated variables (Ratkowsky, 1983). These parameters then become difficult to estimate using 
conventional function optimisation algorithms such as the Quasi-Newton or Levenberg Marquard method. 
Even if it is possible to estimate the parameters using these conventional methods, it is difficult to 
determine a stable , closed-form function that would have a growth of zero at age zero.  

Using a different approach to the problem, discretised growth models for Eucalyptus fastigata were 
estimated as follows (Chikumbo and Stewart, 2007):  

(a) Pool the data from all the experimental plots; 
(b) Observe the general trend of the data from a graphical plot of stand basal area against time, and 

mean height against time; 
(c) Fit a statistically valid Chapman-Richards generalised von Bertalanffy s model, using genetic 

algorithms (which work much better in a nonlinear environment, identifying a closed form function 
at all times); 

(d) Estimate an equivalent discrete-time dynamical model (i.e., a difference equation with linear 
parameters) from a time-series dataset with a fixed time interval (t = {0, 1, 2, 3, ...}) generated from 
the continuous-time function in (c); and 

(e) Estimate parameters of the discrete-time dynamical model in (d) as a function of initial stand 
density, through on-line recursive identification (Ljung, 1997).  

The results obtained for the stand basal area and mean height models are promising as shown in the 
following diagrams, and will be cross-validated with independent data to demonstrate their suitability for 
simulation, before being used in an optimisation framework for determining silvicultural strategies.  
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