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Comparison of Multi-objective Optimisation Techniques:  
Land Use Modelling

 
Introduction 

Solving real-world land use problems is 
necessary for the informed management of our 
land resource.  The complexity of real-world 
problems makes this a difficult task. This 
technical note describes some land use 
problems and the assessment of heuristic 
algorithms to address them, provides a short 
overview of key heuristic techniques, and 
reviews progress on the comparison of two of 
them. 
 
 

 

Introducing Land Use Problems 

Landscape modelling problems are extremely 
variable. They are dealt with at different planning 
levels, namely; strategic, tactical and 
operational. The real world is also characterised 
by uncertainty and conflicting goals. Scarcity or 
gaps in the availability of data or in relevant 
variables, especially critical data and at any 
planning level, influences the type of analysis 
and subsequent techniques that can be used. 
 
Given the considerable variety for land use 
modelling, we confine our discussion to 
problems where outcomes are defined, and 
what we are searching for are the inputs needed 

Summary 

This note is technical in nature. It describes a number of problem-solving techniques that have been 
applied over the past 50 years to problems as wide ranging as aircraft design and land use decisions.  It is 
fair to say that the use of these techniques is still very much in its infancy in New Zealand forestry science 
and land management, but their potential application remains huge.   
 
Solving real-world land use problems is a complex task. Checking or enumerating all possible solutions 
may take thousands of years, even when using the fastest supercomputers. Having multiple objectives 
and spatial constraints exacerbates the problem by increasing model complexity and exponentially 
increasing computing requirements. The insight is to use intelligent algorithms (heuristics) that follow 
search paths that show potential for getting you nearer to your goal.  
 
Determining the most appropriate heuristic to use for a land use problem is influenced by the number of 
objectives, available data, problem size (number of variables), spatial constraints, and the skill and 
experience of the model developer. Different heuristics are based on different search philosophies, with 
the consequence that they may well find different solutions. The combination of the differences in the 
appropriateness of a heuristic with the potential differences in solutions uncovered difficulties when 
attempting to compare heuristics for land use modelling. 
 
This technical note briefly describes key heuristics for land use problems and touches on measures for 
comparing them. The research progress on the comparison of two heuristics, the Metropolis algorithm and 
the genetic algorithm. A specific land use problem using data from a large central North Island forestry, 
sheep, beef and dairy property was used for this comparison. For land use change driven by the need for 
environmental outputs without compromising return on investment, the Metropolis algorithm found a single 
solution that met these objectives. Further research, using genetic algorithms will enable us to find a set of 
efficient solutions from which the decision makers can choose based on their preferences and values.  
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to achieve those outcomes. More explicitly, the 
inputs need to be defined in terms of the timing 
of the application, the magnitude and frequency 
of application, and their spatial layout (for spatial 
problems). This then broadly defines them as 
optimisation problems, and more specifically as 
control problems. The spatial component (if 
relevant) turns the problem into a combinatorial 
one, one of the hardest problems to solve 
mathematically. 
 
Adding more than one objective to an 
optimisation problem adds complexity. For 
example, you may want to optimise a structural 
design that is both light and rigid. Because these 
two objectives are in conflict with one another, a 
trade-off is required. There is an optimal lightest 
design, one that has the stiffest design, and an 
infinite number of designs that offer some 
compromise of weight and stiffness. This set of 
trade-off designs is known as a Pareto set. A 
design is judged to be Pareto optimal if it is not 
(completely) dominated by any other design. A 
Pareto optimal design must be better than 
another design in at least one aspect. If it is 
worse than another design in all respects, then it 
is dominated and is not Pareto optimal. 
 
Suppose there is clarity on the planning level 
and the data available to address a problem. 
Then the size (the number of variables) of the 
problem presents challenges that can influence 
the optimisation technique used. The skill, bias 
and experience of the modeller will further 
influence the analysis approach adopted.  
 
Assessing Algorithms 

An accumulation of problematic issues such as 
data scarcity, the level of planning, size of 
problem, and the modeller�s skill and bias, 
creates complexity that makes it difficult to make 
simple comparisons of different techniques and 
approaches. The best way to make comparisons 
is to compare the results of the same problem 
analysed by different heuristic search 
algorithms. The parameters in Table 1 may be 
useful for judging the quality of the solution 
obtained[1]. 
 

One classic comparison example is the 
comparison between a heuristic (i.e. a method 
used to rapidly come to a solution that is hoped 
to be close to the best possible answer, or 
optimal solution) and conventional optimisation 
techniques (such as Linear Programming). The 
comparison was frequently used in top scientific 
journals in the mid-nineties which focused on 
determining the �optimal� solution. It is, however, 
not possible to verify an optimum when dealing 
with NP-hard problems, where NP-hard refers to 
non-deterministic problems whose computation 
time can be quantified by a simple polynomial 
function of the number of variables. Non-
deterministic problems permit more than one 
choice of next move at some step in the 
computation.  
 
By definition, NP-hard problems are those that 
experience an exponential increase in 
computation time with every unit increase in the 
number of variables, becoming rapidly 
prohibitive in cost as the number of variables 
increases. NP problems are considered �hard� in 
the sense that they are not currently solvable in 
deterministic (i.e. permitting at most one next 
move at any step in a computation) polynomial 
time[2]. 
 
If you can solve a P (i.e. deterministic 
polynomial time) problem with a conventional 
technique, it means that the solution is optimal 
and no other method can improve it. For 
heuristics, however, there is no guarantee that 
they will perform equally for that P problem. The 
key point is that for NP-hard problems, 
conventional techniques will simply not yield any 
results, as it would take thousands of years even 
on a supercomputer to find a solution. This is 
where heuristics come in. By their very nature of 
not guaranteeing optimality they therefore 
warrant a more thoughtful comparison. 
 
With heuristics, issues such as the 
differentiability of functions and standardization 
of data no longer become necessary. However, 
this flexibility, which makes heuristics 
application-neutral, comes at a cost, as 
heuristics tend to be problem-specific and have 
to be tailored to the data and problem definition. 
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Unfortunately the concept taken from 
conventional techniques � that data sets can be 
standardized and therefore it is possible to have 
a �one size fits all� technique or tool �  does not 
generally apply to heuristics. While it may apply 

to tightly specified subsets of problems, such an 
approach would place large restrictions on land 
use problem types, severely limiting problem 
solving for NP-hard problems.

 
 
Table 1. These measures help in understanding why one algorithm is successful or more successful than another 
algorithm. Without them, there is no real understanding of how the algorithms are actually searching the search 
space. 
 

Name Purpose 
Best found cost Useful for comparison of algorithms where 

one algorithm is clearly superior to 
another, but gives no indication of why it is 
superior. 

Number of repairs to solution of cost 
TARGET 

Implementation independent measure of 
how fast an algorithm finds a certain 
quality of solution. This is a finer measure 
than the best-found cost.  

CPU seconds for run Practical measure if the algorithm is to be 
used to solve real problems. 

Local minima cost over a run: Mean and 
standard deviation 

Measure of the quality of search space 
visited by the local search algorithm. 

Number of moves between local minima This gives an indication of how diverse or 
intense the search is. 

Number of repetitions during search This gives an indication of how much 
cycling is going on during the search. 

Entropy: Mean, Standard deviations, Min, 
Max 

This measures how well the search space 
is covered by the local search algorithm. 

 
 
The Theory Behind the Techniques 

Sitting at the heart of all optimisation techniques 
is �hill-climbing�, which is essentially an iterative 
movement that relies on finding the �better� local 
neighbouring potential solution. Other 
techniques use different approaches that 
improve on the hill-climbing iterative movement. 
For example, simulated annealing and genetic 
algorithms rely on probabilistic, memoryless 
decisions, whereas tabu search is based on the 
use of a memory of previously visited solutions. 
Genetic algorithms use probabilistic transition 
rules to determine the next point from a 
database of movements simultaneously 
�climbing� a search surface in parallel. 
Therefore, hill-climbing, tabu search, simulated 
annealing and genetic algorithms correspond to 

different search philosophies, that is, simply, 
memory-based and probabilistically-driven. In 
this section, more detail will be provided for each 
search technique. 
 
Hill-climbing 

Hill-climbing is initiated by randomly selecting a 
potential solution and then iteratively improving 
on this solution by exploiting other potential 
solutions in the neighbourhood, i.e. the heuristic 
climbs in the steepest permissible direction. 
Therefore, each step of the algorithm makes 
locally the best choice and hence it is called a 
greedy algorithm. It avoids an exhaustive search 
and makes maximum use of local information. 
Hill-climbing requires only a limited amount 
computer memory (only the current state is 
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stored), is easy to implement efficiently and 
works well for most unimodal type functions 
where the solution space has only one 
extremum. 
 
Hill-climbing techniques make moves that 
improve only the cost function or leave its value 
unchanged (the so-called sideway moves). Four 
flavours of hill-climbing can be identified[3]:  
 Steepest ascent with guaranteed progress: all 

points in the neighbourhood are evaluated, 
and the point that gives the greatest 
improvement is selected. If there is no point 
that is strictly better, then the process is 
stopped; 

 First ascent with guaranteed progress: the 
first point found in the neighbourhood that is 
better than the current point becomes the new 
current point. If there is no point that is strictly 
better, then the process is stopped; 

 Steepest ascent with neutrality: all points in 
the neighbourhood are evaluated, and the 
point that gives the greatest improvement is 
selected. If the best point has equal 
evaluation to the current point, it becomes the 
new current point; and 

 First ascent with neutrality: the first point 
found in the neighbourhood, which is better 
than the current point becomes the new 
current point. If the best point has equal 
evaluation to the current point, it becomes the 
new current point. 

 
Any of these versions of hill-climbing can be 
combined with random search. When the hill-
climbing gets stuck at a local optimum, then it 
chooses another random starting point and 
starts all over again. This is called hill-climbing 
with random restarts. Hill climbing has the 
advantage that it is very easy to implement. It 
has the disadvantage that it gets stuck in local 
optimum. Sometimes the random restart method 
is effective at overcoming this problem, and 
sometimes it is not. 
 
 

 

 

Tabu Search 

The main component of tabu search is the use 
of memory. Discoveries of more refined ways to 
exploit this memory and of more effective ways 
to apply it to special problem settings provide 
one of the key research thrusts and account for 
its growing success in dealing with NP-hard 
problems[4]. The central idea is to allow non-
improving moves and deterministic choice of a 
solution from the neighbourhood of the current 
solution.  
 
Solutions already visited are declared tabu and 
the search will move to the best non-tabu 
neighbour. The algorithm is as follows: 
 

Choose an initial solution s 
REPEAT 

Move to the best s´ from the 

neighbourhood of s that is not tabu; 
Update the tabu list of solutions; 

UNTIL stopping criteria 
 
The computational time for the algorithm to 
consistently check the tabu list is kept at a 
minimum by ensuring that only the last visited 
solutions are stored in the list. This is still a 
memory-hungry strategy where only the 
properties of the solutions visited are stored in 
the list, hence all solutions with such properties 
are declared tabu. In a �regular� tabu search, 
one must also evaluate the objective for every 
element of the neighborhood N(S) of the current 
solution. This can prove extremely expensive 
from a computational standpoint. An alternative 
is to instead consider only a random sample 
N'(S) of N(S), thus reducing significantly the 
computational burden. 
 
However, it can happen that properties in the 
tabu list may prevent solutions that have not 
been visited. To counter this effect, aspiration 
criteria are introduced that may overrule the tabu 
state of a solution. For example, a simple 
aspiration criterion may be a solution with a 
better objective value than the best found so far. 
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Simulated Annealing 

Simulated annealing is a generalisation of a 
Monte Carlo method for examining the 
equations of state and frozen states of n-body 
systems[5]. The concept is based on the manner 
in which liquids freeze or metals re-crystallise in 
the process of annealing.  
 
In an annealing process, a melted substance, 
initially at high temperature and disordered, is 
slowly cooled so that the system at any time is 
approximately in thermodynamic equilibrium. As 
cooling proceeds, the system becomes more 
ordered and approaches a "frozen" ground state 
at T=0. Hence the process can be thought of as 
an adiabatic approach to the lowest energy 
state. The essence of the process is slow 
cooling, allowing ample time for re-distribution of 
the particles of an n-body system, as mobility is 
lost.  
 
The Boltzmann probability distribution is used to 
express the idea that a system in thermal 
equilibrium at temperature T has its energy 
probabilistically distributed among all different 
energy states E, i.e.  
 

Probability(E) = exponential(-E/kT) 
 
The quantity k (Boltzmann�s constant) is a 
constant of nature that relates temperature to 
energy.  The system sometimes goes uphill as 
well as downhill, with less likelihood of an uphill 
excursion at lower temperatures.  
 
These principles are coded in numerical 
calculations, and thus a simulated 
thermodynamic system is assumed to have an 
initial state of energy E and temperature T. 
Holding T constant the initial state is perturbed 
and the change in energy dE is computed. If the 
change in energy is negative the new state is 
accepted. If the change in energy is positive it is 
accepted with a probability given by the 
Boltzmann factor:  
 

p = (E1 �E2)/kT 
 

as the analogy to statistical mechanics 
suggests[5]. This general scheme of always 
taking a downhill step while sometimes taking an 
uphill excursion is known as the Metropolis 
algorithm.  
 
To generalize the application of the Metropolis 
algorithm to apply it beyond thermodynamic 
systems, the following characteristics are 
featured[6]:  
 A description of possible system states; 
 A generator of random changes in the state � 

these changes are �options� presented to the 
system; 

 An objective function E (analog of energy) 
whose minimisation is the goal of the 
procedure; and  

 A control parameter T (analog of temperature) 
and an �annealing schedule� that determines 
the trend of lowering T. For example, after 
how many random changes in the state is 
each downward step in T taken, and how 
large is the step. The assignment of initial T 
and the annealing schedule may require 
insight into the problem, trial-and-error, and 
experience. 

 
How do these characteristics fit into a 
combinatorial optimisation problem? The current 
state of the thermodynamic system is analogous 
to the current solution to the combinatorial 
problem, the energy equation for the 
thermodynamic system is analogous to the 
objective function, and ground state is 
analogous to the global minimum. The major 
difficulty (the art) in implementing the algorithm 
is that there is no obvious analogy for the 
temperature T with respect to a parameter in the 
combinatorial problem. 
 
Genetic Algorithms 

This approach emulates biological adaptation in 
a population where each organism has a 
different set of genes. These genes correspond 
to the parameters of the model to be optimised, 
and so each organism represents a potential 
solution to the optimisation problem. For each 
organism we can determine how well its 
parameters solve the problem in hand: this 
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determines the �fitness� of each organism, with 
better (lower error) solutions corresponding to 
higher fitness. The idea behind a genetic 
algorithm is then to produce new members of 
the population from members of the current 
population using various genetic operators.  
 
The process of recombination (or crossover) is 
the equivalent of two parents interchanging 
genes to create new offspring. The operation of 
mutation is a means by which the offspring 
receives randomly changed genes from one 
parent only. Therefore, new generations are 
created iteratively, and at each stage the fitness 
of each member is a measure of how well each 
solves the optimisation problem. The goal of this 
approach is to produce diversity within the 
population and so explore various gene 
combinations or solutions to the optimisation 
problem[7].  
 
However, this is not a blind search: the 
probability of reproduction is related to the 
fitness of the parents, i.e. fitter parents are 
generally made to produce more children. 
Nevertheless, not only the fittest individuals 
produce children: although that may seem the 
best strategy, it is similar to permitting only 
downhill moves in the search for the global 
minimum. Such a strategy is prone to getting 
stuck in local minima. Therefore, while less fit 
members may be produced in the interim, the 
goal is that, over many generations, the fitness 
landscape is comprehensively explored, and 
that the population adapts towards a fitter state. 
 
Here is the general search process for a genetic 
algorithm[8]:  
 
 Create a random initial state: An initial 

population is created from a random selection 
of solutions (which are analogous to 
chromosomes); 

 Evaluate fitness: A value for fitness is 
assigned to each solution (chromosome) 
depending on how close it is to solving the 
problem (satisfying objective and constraint 
criteria). These �solutions� are not to be 
confused with �answers� to the problem; think 
of them as possible characteristics that the 

system would employ in order to reach the 
answer; 

 Reproduce (and children mutate): Those 
chromosomes with a higher fitness value are 
more likely to reproduce offspring (which can 
mutate after reproduction). The offspring is a 
product of the father and mother, whose 
composition consists of a combination of 
genes from them, a process is known as 
�crossing-over�; and 

 Next generation: If the new generation 
contains a solution that produces an output 
that is close enough or equal to the desired 
answer then the problem has been solved. If 
this is not the case, then the new generation 
will go through the same process as their 
parents did. This will continue until a solution 
is reached. 

 
Experience and Update in Application 

The Metropolis algorithm was used to solve a 
multi-objective land use and management 
problem for 1500-ha farm with 315 paddocks in 
the Rotorua District. The Wharenui farm had 
plantation forestry, dairy, sheep and beef 
farming. A multi-objective optimisation was used 
to analyse a 50-year period (from 2006-2056) to 
determine land use change driven by the need 
to reduce nitrogen leaching, phosphorus loss 
and sedimentation, without compromising return 
on investment. Each paddock was theoretically 
eligible for land use change in any year, though 
there was a cost to such a change, and there 
were multiple versions of each of the land uses, 
e.g. dairying using feed-pads. 
 
Clearly the optimisation problem was large 
because of the number of continuous and 
discrete variables. A priori knowledge from the 
client helped to focus the search for optimal 
solutions by ranking preferred management 
alternatives and land uses for each paddock that 
were most likely to generate maximum return.  
 
The result of this optimisation showed an 
increase in area of 59% to plantation forestry, 
134% to beef cattle, 1.4% to sheep and 
elimination of dairy farming, with positive 
environmental outcomes. The returns were still 
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maximized under such a scenario. The 
environmental outcomes included a 30% 
reduction in nitrogen leaching, 16% decrease in 
phosphorus loss and 9% in sedimentation. 
 
Given that the formulated problem had 14 
objectives, it was not expected to have only one 
solution. Instead, based on the author�s previous 
experience, a suite of efficient solutions (i.e. the 
Pareto optimal solutions) were expected that a 
decision-maker could choose from.  The 
Metropolis algorithm, however, is not suited to 
that kind of analysis as it would require many 
runs of the model with subtle changes in the 
constraints in order to determine the Pareto set. 
Genetic algorithms being a population search 
algorithm would be more suited to determining 
the Pareto set.  
 
There is work going on (2010) to formulate the 
same problem using genetic algorithms. 
Currently the model is running without spatial 
constraints, which are still being formulated. 
Parallelisation of the code is also being 
investigated in order to shorten computation 
time, which has increased substantially. 
 
The possibility of finding a Pareto set will no 
doubt enhance an understanding of the solution 
space, far better than the single solution derived 
from the original Metropolis formulation. 
Determining a single solution from the Pareto 
set will then depend on the preferences of the 
decision maker. 
 
Conclusion  

The number of complexities that need to be 
considered when modelling land use problems 
has a fundamental effect on the approach to 
solving them. The problems are computationally 
difficult or NP-hard, and heuristics may be the 
only options when other methods would be 
mathematically intractable. 
 
An overview of the heuristic search approach 
was given. Four variants of hill-climbing were 
described: tabu search, Metropolis algorithm, 
simulated annealing and genetic algorithms.  
 

One of them, the Metropolis algorithm, was 
applied to a 315 paddock farm. While this 
provided useful results, a second approach 
based on genetic algorithms is being 
investigated in order to increase the knowledge 
of the solution space, i.e. to determine the 
Pareto set of optimal solutions. This will provide 
even more options for the decision maker.  
 
Comparing these two heuristics to determine, for 
example, which is the �best� approach for land 
use problems remains problematic. Different 
heuristics are appropriate for different numbers 
of objectives, data and variables, to the 
presence of spatial constraints, and the skill and 
experience of the model developer. This, 
combined with different search strategies 
potentially finding different solutions, means that 
there is no one heuristic that will work best for all 
land use problems.  
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