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ABSTRACT 

 

 

A new mortality function based on Reineke’s ‘line of self-thinning’ concept has been developed 

for New Zealand Douglas-fir. The model was derived using data from more than 1,300 

permanent sample plots from throughout New Zealand. All measurements made since 1970 were 

used in the development of the model. Reineke’s 3/2 power rule is defined on a graph of log 

(Stocking) versus log(DBH), and the thinning line is invariant with site. However, analysis of the 

data indicated that DBH
2
×MTH performed better than DBH as the tree size variable in the model. 

The self-thinning line was found to vary with site with more productive sites able to carry higher 

stockings of trees of a given size compared to lower productivity sites. Mortality levels are 

therefore lower for stands of similar stocking and tree size on sites with high values of SBAP, 

and to a lesser extent, SI. The model can be used in Douglas-fir throughout New Zealand. 

However, there is some evidence that it over-predicts mortality slightly in the South Island and 

under-predicts in the North Island (by about plus and minus 12% respectively). In the 

implementation of the model in the Douglas-fir Calculator, the user can enter a percentage 

adjustment to account for such differences. 
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INTRODUCTION 

 

Models for predicting mortality in forest stands are important components of forest growth 

modelling systems. For New Zealand Douglas-fir, an interim mortality function was developed 

several years ago for use with the Douglas-fir National Growth Model. This model was 

described briefly at the 2001 meeting (Meeting Proceedings, page 49), and is currently 

implemented in the Douglas-fir Calculator. This report describes a new and improved version of 

this mortality function. 

 

Mortality in forest plantations can be categorised into three types: 

• Attritional mortality – low-level mortality not due to rare catastrophic events in stands 

which are not at excessively high stockings. 

• Catastrophic mortality – mortality occurring as a result of rare and catastrophic events 

such as major storms, fires, etc. 

• Competition-induced mortality – this occurs in highly-stocked stands when competition 

becomes intense causing the smaller, less vigorous trees to die. 

 

There is some debate as to whether mortality functions implemented in growth modelling 

systems should predict the effects of all three types of mortality. Arguably, it is better to handle 

catastrophic mortality independently of the growth model. For example, it could be assumed that 

there is a certain probability of a stand being destroyed or severely damage as a result of a major 

storm event. These risks could be considered separately when assessing the likely benefits and 

risks from long-term activities such as forestry. For predicting the likely stocking at the end of a 

rotation, and its effect of mean stem size, it is probably better to ignore such catastrophic events. 

Growth Model mortality functions should therefore predict the effects of attritional and 

competition-induced mortality only.  

 

However, it can be difficult to decide whether mortality is ‘catastrophic’ rather than attritional or 

competition-induced. For example, to eliminate catastrophic mortality, Garcia removed 

observations from his model dataset when there were more than two tree deaths during a growth 

increment (Goulding, pers. com.). However, when we applied this criterion to the New Zealand 

Douglas-fir data, it was apparent that growth increments with more than two tree deaths, tended 

to be clustered around the ‘self-thinning’ boundary line and were clearly mainly caused by 

competition rather than being due to catastrophic events. Therefore, it was decided not to attempt 

to screen out plots on the basis of catastrophic mortality when developing the model described in 

this report. The only mortality excluded from the analysis was of trees identified in the database 

as being ‘windthrown’, but these form only a minor proportion of total mortality in the database. 

However, although some catastrophic mortality may be included in our data, it is likely that plots 

in seriously damaged or destroyed stands will have often been abandoned without re-

measurement. Therefore, to some extent catastrophic mortality may have been eliminated by 

default from the database.  

 

Reineke (1933) noticed that in fully-stocked plots, a graph of log(Stocking) against log(DBH) 

typically has a straight line with slope approximating -3/2 (the 3/2 power rule). This result was 

found to hold generally for a wide range of forest species in North America. In order for this 

relationship to hold, there must be a rise in mortality when the mean diameter of a stand 

approaches this self-thinning boundary. Reineke also developed a Stand Density Index (SDI) 

which categorises stands in terms of their distance from this self-thinning line. Reineke believed 

that each species could attain a certain maximum SDI, which is largely invariant to site. A graph 

of log(Stocking) versus log(DBH) for our New Zealand Douglas-fir data clearly shows the  
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existence of a Reineke-type relationship. It was therefore considered desirable to incorporate this 

concept into the new mortality model, as suggested by Dave Marshall, the mensurationist based 

at US Forest Service, Olympia, Washington, and more recently with Weyerhaeuser at Tacoma. 

This report describes the model and the methodology used to develop it. 

 

 

DATA 

 

The data used in this analysis consisted of measurements from permanent sample plots (PSPs) 

from throughout New Zealand. Only measurements made since 1970 were included in the 

analysis, and plots with less than 150 stems/ha were excluded. Mortality, expressed as an annual 

percentage, was calculated for each growth increment using: 

 

[1] ( )[ ]TNNM
∆

−×=
1

011100  

 

where N0 and N1 are stocking in stems/ha at the beginning and end of the increment period, and 

∆T (= T1 - T0) is the length of the increment in years. A total of 8,004 growth increments from 

1,316 PSPs were available for analysis (Table 1). The mean increment length was 2.2 years. The 

average mortality in the complete data set was just over 0.7% per annum. When trees identified 

in the database as windthrown were excluded from the calculation, the mean mortality reduced to 

slightly over 0.6%. 

 

Table 1. Data used to develop mortality function. 

 

Region Number of 

plots 

Number of 

increments 

Mean 

mortality (%) 

Mean mortality 

excluding 

windthrow (%) 

Bay of Plenty 425 3566 0.64 0.56 

Waikato 50 191 0.75 0.71 

Gisborne 6 51 0.94 0.89 

Hawkes Bay 148 598 1.74 1.72 

Wairarapa/Manawatu 23 90 1.14 1.13 

Wellington 15 27 1.47 1.07 

Nelson 226 1358 0.62 0.56 

Marlborough 13 62 0.60 0.47 

West Coast 21 107 0.86 0.20 

Canterbury 210 1086 0.40 0.33 

Otago 127 641 0.52 0.44 

Southland 

 

52 227 0.88 0.76 

Total 1,316 8,004 0.70 0.62 
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MODELLING METHODOLOGY 

 

A simple model of attritional mortality model which assumes a constant annual mortality rate, 

M, which is unaffected by stand parameters or environmental factors, can be represented by the 

following equation: 

 

[2] ( ) TMNN
∆

−= 100101  

 

where N0 and N1 are stocking in stems/ha at the beginning and end of the increment period, and 

∆T is the length of the increment in years. To incorporate the Reineke relationship into a 

mortality function, the mortality rate M must increase for stands positioned near the self-thinning 

boundary. This effect can be achieved using the following function: 

 

[3] 
( )
d

c

DNSDI

SDIbaM

×=

×+×=

   where

100
  

 

In this above function, M is percentage annual mortality, and SDI is the Stand Density Index as 

defined by Reineke. The SDI is defined in terms of the stocking, N, and the quadratic mean 

DBH, D, of the stand. The model parameters are a, b, c and d and each have an interpretation: a 

is the minimum mortality rate and can be regarded as the attritional mortality (possibly including 

also a component from rare catastrophic events) in stands not subject to serious competition; b 

represents the intercept of the self-thinning boundary line; c controls the rate at which mortality 

increases as a stand approaches the boundary; and d is the slope of the self thinning boundary 

(without the minus sign) which according to Reineke should have a value of about 3/2. Note that 

to enable a more general form of the relationship, the parameter d was estimated from the data 

rather than assumed to have a value of 3/2. To use the model for predicting a change in stocking, 

the mortality predicted by [3] is applied in Model [2] to predict stocking N1 from the previous 

stocking N0 over a time step length ∆T.  

 

When implemented, the model will not be invariant to step length. It is necessary to take account 

of this when fitting the model to the data. For example, if the model is to be implemented with a 

step length of one year, the correct procedure would be to fit the model using the above equation, 

with N and D as the stocking and diameter at the beginning of the increment, only if the great 

majority of increments were of one year. On the other hand, if the model is to be implemented 

with a very short step length, the terms N and D in the above equation should be replaced by (N0 
+ N1) / 2 and (D0 + D1) / 2, respectively when fitting the equation to the data. As the National 

Douglas-fir Growth Model is implemented with a short step length of one month, this approach 

was adopted. 

 

To estimate the parameters of the combined Models [2] and [3], it was desirable to take account 

of the distributional form of the chosen dependent variable n1, the number of stems in a plot at 

the end of an increment period. This can be assumed to follow a binomial distribution with 

expected value ( ) TMN
∆

− 10010 , where N0 is the number of stems at the beginning of the 

increment, and M is as defined in Equation [3]. The model was fitted using the SAS (Version 9) 

Nonlinear Mixed Modelling procedure NLINMIX with an allowance for over-dispersion. This 

fitting procedure automatically adjusts for the effects of increment length, mean mortality level, 

and plot size on the residual variance. 
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Several variations of Model [3] were tested. Although Reineke used the ln(N) versus ln(D) graph 

to establish an appropriate self-thinning boundary, other authors have suggested that tree size 

parameters other than D may perform better. For example, Yoda et al. (1963) suggest using 

mean plant biomass, while Zeide (1995) suggested that mean diameter at the base of the green 

crown (DBGC) may perform better than DBH. We tested the use of mean top height (H), D
2
H 

(as a surrogate for biomass), and DBGC, in place of D in Equation [3]. Estimates of DBCG were 

established for each measurement using the D-fir crown length function and a taper equation.  

 

Reineke believed that the self-thinning boundary was invariant to site for each species. However, 

other researchers had suggested that the boundary moves to the right on more productive sites, 

which can therefore carry a higher stocking of trees for a given mean diameter. Two measures of 

site productivity were tested for inclusion in the mortality model, namely, Site Index (SI), and 

Site Basal Area Potential (SBAP). These were derived for each plot used in the analysis using an 

automated routine developed by Lars Hansen which operates in conjunction with the latest 

version of the D-fir Calculator. These productivity indices were incorporated into the SDI term in 

Equation [3], for example: 

 

[4] ( ) 000,1lnlnexp DdNSBAPfSDI ++×=   

 

All models were compared using -2(log likelihood) as the goodness of fit criteria. Generally, the 

model with the smallest value of this statistic has the best fit.  

 

Some authors have suggested that the self-thinning boundary is non-linear. To test this, an 

additional term in (ln D)
2
 was included in Model [3], but this provided no significant 

improvement in fit. Also, tests of different rates of mortality in different regions of New Zealand 

were obtained by fitting the model to regional subsets of the data with all parameters other than b 

(or, in some cases, a) fixed to their national estimates. The estimates of b obtained for each 

region could be converted into ‘multiplier’ terms suitable for each region if these were 

considered necessary. A similar procedure was used to test for differences in mortality rates 

between measurement years. 

 

 

RESULTS 

 

In Fig. 1, a plot of ln(Stocking) vs ln(DBH) is shown for the PSP data, with each point 

representing a PSP growth increment. Points are classified into four classes based on mortality. 

In this graph, the self-thinning boundary is clearly evident, and the mortality increases markedly 

when a stand approaches this boundary. The corresponding graph using DBGC in place of DBH 

(Fig. 2) suggests that this variable is not as useful as DBH. Although there is some relationship 

between ln N and ln DBGC, many plots not undergoing mortality lie close to the ‘self-thinning’ 

line on this graph. 
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Fig. 1. Annual mortality rate plotted on the ln N versus ln D graph for New Zealand Douglas-fir. 

  

 

 
Fig. 2. Annual mortality rate plotted on the ln N versus ln DBGC graph for New Zealand 

Douglas-fir. 
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The fits of the various models tested are given in Table 2. When no site productivity variables 

were included in the model, mean top height (H) provided the best performing model, with 

substantially better fit than DBH or D
2
H. As expected from Fig. 2, DBGC performed poorly. 

When SBAP was included in the model there was a large gain in performance demonstrating that 

the self-thinning boundary is not invariant with site. Site Index gave much less improvement in 

fit than SBAP, but there was a small benefit in including SI in addition to SBAP in the model. 

When productivity indices were included in the model, DBH performed better than MTH as the 

tree size variable, but D
2
H performed slightly better than DBH. 

 

Table 2. Fit of various mortality models as indicated by -2 log likelihood statistics. Note that in 

general the smaller the value, the better the fit. 

 

 Productivity variables included in model 

Tree size 

variable 

None SBAP SI SBAP & SI 

D 19,207 17,303 19,206 17,303 

H 18,643 17,861 18,575 17,816 

D
2
H 18,709 17,259 18,688 17,241 

DBGC 21,279 20,150 21,271 20,073 

 

The importance of including site productivity in the model is demonstrated clearly in Fig. 3 

where mortality is plotted against SDI based on the basic Reineke Model (Equation [3]), with the 

data split into three SBAP productivity classes. For the same SDI, mortality is lower on more 

productive sites and higher on less productive sites. This shows that higher productivity sites can 

sustain a higher stocking of trees for a given mean size than lower productivity sites, or 

equivalently, that they can sustain the same stocking of larger sized trees.  
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Fig. 3. Mean mortality in plots classified into SDI classes and into three site productivity classes 

on the basis of SBAP. In this graph, a simplified version of SDI was used (SDI = N × D
1.17
). 
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The best model was therefore: 

 

[5] 

( )

( )
( ) ( )( ) 000,1lnlnexp   and

100   where

1001

2

01

HDdNSIgSBAPfSDI

SDIbaM

MNN

c

T

++×+×=

×+×=

−=
∆

 

 

Parameter estimates for the model are given in Table 3. The attritional mortality parameter, a, is 

estimated to be zero (it was constrained to be non-negative in the fitting process). The self-

thinning boundary slope, d, has a value very different from 1.5 because of the use of the size 

variable D
2
H in place of D. The equivalent model using D in place of D

2
H has a slope of 1.37 

(std. error 0.02), slightly below Reineke’s theoretical value of 1.5. Note that both D and H are 

expressed in metres in this formulation.  

 

Table 3. Parameter estimates of Model [5]. 

 

Parameter 

 

Estimate Standard 

error 

a 0 0 

b 0.0452 0.0068 

c 1.990 0.043 

d 0.4766 0.0080 

f -0.487 0.020 

g -0.00675 0.0022 

 

An examination of the frequency distribution of SDI within the dataset showed that it had a 

maximum of about 1.0, but that very few stands had an SDI greater than 0.8 which may be taken 

to be a more realistic maximum (Fig. 4). The maximum SDI in well managed stands will be 

much lower than this. When we restricted our data to a maximum age of 50 years and a stocking 

of 800 stems/ha, the highest SDI was about 0.5.  
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Fig. 4. National frequency distribution of SDI, and mean mortality in 0.05 SDI steps for North 

Island and South Island PSPs. 
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Figure 4 also shows the mean mortality of the data for 0.05 steps in the SDI for both the North 

and the South Islands. As expected, mortality increases with increasing SDI. It appears that 

North Island stands may generally have higher levels of mortality than South Island stands of 

equivalent SDI. The apparent slight reduction in mortality for the highest SDI class in Fig. 4 for 

the South Island data is probably due to the limited number of plots representing this data point.  

 

Although it may be possible for Douglas-fir stands in New Zealand to achieve an SDI of 0.8, Fig. 

4 shows that high levels of mortality will occur at much lower values. In fact, the mortality 

begins to rise appreciably when the SDI is at a quarter to a third of its maximum. According to 

Long & Daniel (1990), competition begins at 35% maximum SDI, and self-thinning begins at 

60% maximum SDI. Fig. 4 shows that increased levels of mortality can occur at well below the 

60% level, and suggests that ‘self-thinning’ is a much more gradual developing process than is 

often believed and does not have a sharp threshold.  

 

To explore the issue of regional variation in mortality, we added an additional multiplier term to 

the second term in Model [5] so that it became: 

 

[6] ( ) cSDIbRM ××+×= 1001100  

 

Note that the a parameter is not shown as it has a value of zero (Table 3). The R parameter 

allows this model to predict higher or lower levels of mortality than the standard model. A value 

of R = 0 gives no adjustment while a value of R = 100 will double the mortality and a value of R 

= -100 will reduce the mortality to zero. The other parameters in the model retain their estimated 

values as given in Table 3. This model was fitted to subsets of the data and parameter estimates 

of R obtained for each subset. Fig. 5 shows estimates of R for the major geographical regions 

represented in the database for each decade of data.  

 

There was some tendency for the R values of the South Island regions to be negative, and the 

North Island regions positive, although the pattern was somewhat inconsistent between decades. 

For example, the highest mortality (50% above model prediction) was in Canterbury during the 

1980’s although other decades were below average for this region. It appears, however that 

Nelson had a consistently lower mortality than model predictions.  
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Fig. 5. Mortality adjustments R estimated for each of the important regions in the database by 

decade of measurement. Error bars show standard errors. 

 

The model was also fitted to each year of data separately for the North and South Islands (Fig. 

6). This showed that mortality varied considerably between years, but that North Island levels 

were generally higher than South Island levels. For the North Island, R averaged 12 while for the 

South Island it averaged -13 (i.e., mortality was 12% greater in the North Island and 13% lower 

in the South Island than predicted by the model). In 27 of the 37 years, the North Island R value 

was higher than the South Island value. This is a statistically significant difference (Sign Test; p 

= 0.008), although these yearly observations are not statistically completely independent. 

However, we believe that this provides strong evidence that mortality levels are somewhat 

higher in the North than the South Island. In the implementation of the model in the Douglas-fir 

Calculator, the user will be able to enter their own value of R as a percentage adjustment to 

account for such differences if required. 
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Fig. 6. Mortality adjustments R estimated for each measurement year of the South Island and 

North Island. 
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CONCLUSIONS 

 

A new mortality function based on Reineke’s line of self-thinning concept has been developed 

for New Zealand Douglas-fir. The model predicts mortality as a function of log(Stocking) and 

log(DBH
2
×MTH). The level of mortality is also influenced by site productivity with more 

productive sites able to carry higher stockings of trees of a given size compared to lower 

productivity sites. This effect is incorporated into the model using SBAP and SI. The model can 

be used for predicting mortality in Douglas-fir stands throughout New Zealand. However, there 

is some evidence that it over-predicts mortality slightly in the South Island and under-predicts in 

the North Island (by about plus and minus 12% respectively). In the implementation of the 

model in the Douglas-fir Calculator, the user will be able to enter a percentage adjustment to 

account for such differences. 
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