

Programme: Bioprotection for foliar diseases and disorders of radiata pine

Isolation of *Trichoderma* root endophytes (Milestone 1: 01/07/12–30/06/14)

Authors:
N J Cummings, I Chirino-Valle, R A Hill (Project Leader)

Research Provider:

Date: 30 September 2014

Task No: 1

Milestone Number: 1

Report No. FOA- BIO-T001

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
INTRODUCTION	
METHODS	
RESULTS	
CONCLUSIONS	
ACKNOWLEDGEMENTS	
REFERENCES	

Disclaimer

This report has been prepared by Bio-Protection, Lincoln University for NZ Forest Owners Association (FOA) subject to the terms and conditions of a research agreement dated 25 January 2014.

The opinions and information provided in this report have been provided in good faith and on the basis that every endeavour has been made to be accurate and not misleading and to exercise reasonable care, skill and judgement in providing such opinions and information.

Under the terms of the Research Agreement, Bio-Protection, Lincoln University liability to FOA in relation to the services provided to produce this report is limited to three times the value of those services. Neither Bio-Protection nor any of its employees, contractors, agents or other persons acting on its behalf or under its control accept any responsibility to any person or organisation in respect of any information or opinion provided in this report in excess of that amount.

EXECUTIVE SUMMARY

Foliar diseases and disorders are the largest cause of economic loss for the New Zealand forestry industry. In order to alleviate losses caused by existing diseases and also reduce potential impacts of new biosecurity threats, research is being conducted to establish a long-term symbiotic relationship between radiata pine and beneficial microbes.

For the selection of strains with potential for suppressing foliar disease in *Pinus radiata* in New Zealand plantations, endophytic *Trichoderma* cultures were isolated from exceptionally healthy plants representing a wide range of plant species at several different sites.

A total of 232 *Trichoderma* cultures were isolated from roots of more than 66 species in 49 plant families in this project. These were added to the Bio-Protection Research Centre (Lincoln University) culture collection along with over 500 previously isolated *Trichoderma* root endophytes. Most of these were then screened for growth promotion and disease suppression.

The best isolates are being evaluated in forestry plantation trials.

INTRODUCTION

Fungi in the genus *Trichoderma* have been widely studied as biocontrol agents for plant disease and for their ability to stimulate plant growth. *Trichoderma* species are capable of inhibiting plant disease through direct parasitism, antibiotic production and competitive effects, and some strains also have the ability to form symbiotic endophytic associations with roots and induce systemic disease resistance in their host plants (Harman *et al.* 2004; Hermosa *et al.* 2012). Isolation of endophytic *Trichoderrma* strains from surface-sterilised roots of exceptionally healthy plants therefore represents a promising approach for the discovery of effective *Trichoderma* isolates for use in forestry bioprotection. This approach can significantly streamline the selection process for useful biocontrol strains and has proven extremely successful in improving forestry production in South East Asia (Hill *et al.* 2010). For the selection of strains with potential for suppressing foliar disease in *Pinus radiata* in New Zealand plantations, endophytic *Trichoderma* cultures were isolated from healthy plants from a wide range of plant species at several different sites.

METHODS

Root samples were collected from a range of plant species at the following main locations: Christchurch Botanic Gardens; Biological Husbandry Unit, Lincoln University; Plant and Food Research Truffle demo block, Lincoln. Permission for collection of root samples was obtained from relevant managers of each site. At each site, only plants that appeared exceptionally healthy were selected for root collection. For each plant selected, a small quantity of roots were exposed and removed. Roots were transferred to labelled zip-lock bags and moistened with water to prevent dessication. Following collection, samples were refrigerated at 4°C for up to one week before processing.

For each sample, roots were washed thoroughly under running tap water to remove soil and other debris. Roots were then cut into approximately thirty 0.5-10mm sections representing different types of root morphology (e.g. primary, lateral, feeder roots, etc.) Working in a laminar flow cabinet, 25 root pieces were surface-sterilised by submersion in a deep-well petri dish containing ~50 ml of freshly prepared 1% Virkon for 10 minutes. Dishes were gently agitated every few minutes. After 10 minutes, root pieces were rinsed by transferring to a deep well dish containing ~50 ml of sterile reverse osmosis water and gently agitated. Using flamed forceps, root pieces were removed and placed onto sterile filter paper and briefly air-dried to remove excess water. Five surface-sterilised root pieces were placed onto each of five plates of LU-TSM (McLean et al. 2005) or MRB medium (malt extract 1.0%, yeast extract 0.1%, quintozene 0.02%, rose bengal 0.015%, agar 2%) amended with 100mg/L chloramphenicol. Plates were incubated at 22°C for 7-10 days. *Trichoderma* colonies were identified by cultural characteristics and/or microscopic morphology and subcultured to plates of MYE agar (malt extract 1.0%, yeast extract 0.1%, agar 2%). Isolates were maintained as stock cultures in 20% glycerol frozen at -80°C.

RESULTS

A total of 232 *Trichoderma* strains were isolated into pure culture from roots of more than 66 species in 49 plant families (Table 1, below). All cultures are stored in the Lincoln University culture collection together with over 500 additional *Trichoderma* cultures previously isolated from plant roots using the same methodology.

Table 1. *Trichoderma* isolations from plant roots in 2012-2013.

Collection#	No. of isolates	Host species or substrate	Host family	Collection locality
FCC 372-378	7	Aesculus hippocastanum	Sapindaceae	ChCh Botanic Gardens
FCC 379-382	4	Hypericum leschenaultii	Hypericaceae	ChCh Botanic Gardens
FCC 383-386	4	Acca sellowiana	Myrtaceae	ChCh Botanic Gardens
FCC 387-397	11	Celtis australis	Ulmaceae	ChCh Botanic Gardens
FCC 398-400	3	Indigofera cytisoides	Papilionaceae	ChCh Botanic Gardens
FCC 401-403	3	Agave sp.	Agavaceae	ChCh Botanic Gardens
FCC 404-408	5	Buddleia sp.	Scrophulariaceae	ChCh Botanic Gardens
FCC 409-411	3	Kniphofia sp.	Xanthorrhoeaceae	ChCh Botanic Gardens
FCC 412-413	2	Juglans nigra	Juglandaceae	ChCh Botanic Gardens
FCC 414-415	2	Gunnera sp.	Gunneraceae	ChCh Botanic Gardens
FCC 416-419	4	n.d.	Compositae	ChCh Botanic Gardens
FCC 420-423	4	n.d.	Pteridophyta	ChCh Botanic Gardens
FCC 426-429	4	Hosta sp.	Asparagaceae	ChCh Botanic Gardens
FCC 430-432	3	Crocosmia crocosmiiflora	Iridaceae	ChCh Botanic Gardens
FCC 433-434	2	Juniperus sp.	Cupressaceae	ChCh Botanic Gardens
FCC 435-438	4	n.d.	Leguminaceae	ChCh Botanic Gardens
FCC 439-440	2	Polygonatum sp.	Asparagaceae	ChCh Botanic Gardens
FCC 441-443	3	Solanum tuberosum	Solanaceae	Potato farm, Southbridge
FCC 497	1	Agapanthus sp.	Liliaceae	ChCh Botanic Gardens
FCC 498-500	3	Echium vulgare	Boraginaceae	ChCh Botanic Gardens
FCC 501	1	Polygonum sp.	Polygonaceae	ChCh Botanic Gardens
FCC 502-503	2	n.d.	Lythraceae	ChCh Botanic Gardens
FCC 504	1	Allium fistulosum	Amaryllidaceae	Private garden, Prebbleton
FCC 505-506	2	Mentha sp.	Lamiaceae	Private garden, Prebbleton
FCC 507	1	n.d.	Poaceae	Private garden, Prebbleton
FCC 508-511	4	Pinus pinaster	Pinaceae	PFR truffle block, Lincoln
FCC 512- 518, 531-540	17	Pinus radiata	Pinaceae	PFR truffle block, Lincoln
FCC 519-521	3	Pinus pinea	Pinaceae	PFR truffle block, Lincoln
FCC 522- 524	3	Pseudopanax arboreus	Araliaceae	PFR truffle block, Lincoln
FCC 525-530	6	Corylus avellana	Betulaceae	PFR truffle block, Lincoln
FCC 531-532	2	Malus domestica	Rosaceae	BHU, Lincoln University
FCC 533-534	2	Phormium tenax	Xanthorrhoeaceae	BHU, Lincoln University
FCC 535-537	3	Trifolium sp.	Fabaceae	BHU, Lincoln University
FCC 538-540	3	Vinca minor	Apocynaceae	BHU, Lincoln University
FCC 541-542	2	Poaceae	Salicaceae	BHU, Lincoln University
FCC 543-544	2	Populus sp.	Salicaceae	BHU, Lincoln University

 Table 1. Continued

Collection#	No. of isolates	Host species or substrate	Host family	Collection locality
FCC 545-549	5	Quercus robur	Fagaceae	BHU, Lincoln University
FCC 550-551	2	Acer sp.	Aceraceae	BHU, Lincoln University
FCC 552-553	2	n.d.	Poaceae	BHU, Lincoln University
FCC 554-555	2	Galium aparine	Rubiaceae	BHU, Lincoln University
FCC 556-557	2	Anthriscus sylvestris	Apiaceae	BHU, Lincoln University
FCC 558-559	2	Rubus sp.	Rosaceae	BHU, Lincoln University
FCC 560	1	Symphytum sp.	Boraginaceae	BHU, Lincoln University
FCC 561-563	3	Larix sp.	Pinaceae	BHU, Lincoln University
FCC 564-566	3	Taraxacum officinalis	Asteraceae	BHU, Lincoln University
FCC 567-569	3	Pyrus sp.	Rosaceae	BHU, Lincoln University
FCC 570-571	2	Avena sativa	Poaceae	BHU, Lincoln University
FCC 572-573	2	Brassica napus	Brassicaceae	BHU, Lincoln University
FCC 574-575	2	Cytisus proliferus	Fabaceae	BHU, Lincoln University
FCC 576-577	2	Poaceae	Poaceae	BHU, Lincoln University
FCC 578-580	3	Brassicaceae	Brassicaceae	BHU, Lincoln University
FCC 581-582	2	Capsella bursa-pastoris	Brassicaceae	BHU, Lincoln University
FCC 583-587	5	Plantago sp.	Plantaginaceae	BHU, Lincoln University
FCC 588-590	3	Poaceae	Poaceae	BHU, Lincoln University
FCC 591-593	3	Dactylis glomerata	Poaceae	BHU, Lincoln University
FCC 594-598	5	Iris sp.	Iridaceae	ChCh Botanic Gardens
FCC 599	1	Broussonetia papyrifera	Moraceae	ChCh Botanic Gardens
FCC 602-604	3	Helleborus sp.	Ranunculaceae	ChCh Botanic Gardens
FCC 605-609	5	Rhododendron sp.	Ericaceae	ChCh Botanic Gardens
FCC 610-613	4	Syringa meyeri	Oleaceae	ChCh Botanic Gardens
FCC 614-616	3	Aquilegia sp.	Ranunculaceae	ChCh Botanic Gardens
FCC 617-623	6	Cistus sp.	Cistaceae	ChCh Botanic Gardens
FCC 624-625	2	n.d.	Poaceae	ChCh Botanic Gardens
FCC 626-627	2	Sophora sp.	Fabaceae	ChCh Botanic Gardens
FCC 628	1	Hebe sp.	Scrophulariaceae	ChCh Botanic Gardens
FCC 629-631	3	Podocarpus totara	Podocarpaceae	ChCh Botanic Gardens
FCC 632-635	4	Coprosma sp.	Rubiaceae	ChCh Botanic Gardens
FCC 636-638	3	Clianthus sp.	Fabaceae	ChCh Botanic Gardens
FCC 639-641	3	Colletia cruciata	Rhamnaceae	ChCh Botanic Gardens
FCC 642	1	Unidentified fern sp.	n.d.	ChCh Botanic Gardens
FCC 643	1	Corokia cotoneaster	Argophyllaceae	ChCh Botanic Gardens
FCC 644-645	2	Festuca glauca	Poaceae	ChCh Botanic Gardens
FCC 646	1	Libertia ixodes	Iridaceae	ChCh Botanic Gardens
FCC 647-650	4	Pittosporum sp.	Pittosporaceae	ChCh Botanic Gardens
FCC 651	1	Macropiper excelsum	Piperaceae	ChCh Botanic Gardens

n.d. = not determined

CONCLUSIONS

A total of 232 *Trichoderma* cultures were isolated from roots of more than 66 species in 49 plant families in this project. These were added to the Bio-Protection Research Centre (Lincoln University) culture collection along with over 500 previously isolated *Trichoderma* root endophytes. Most of these were then screened for growth promotion and disease suppression.

Based on nursery and laboratory trials, the best isolates are being evaluated for growth promotion and foliar disease suppression in forestry plantation trials throughout New Zealand.

ACKNOWLEDGEMENTS

We wish to thank Jeremy Hawker (Christchurch Botanic Gardens), Dr Charles Merfield (BHU, Lincoln University), Max Purnell (Waitakaruru), and Dr Alexis Guerin (Plant and Food Research, Lincoln) for their permission for sample collection from various sites.

REFERENCES

Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species – opportunistic, avirulent plant symbionts. *Nature Reviews Microbiology* 2, 43–56.

Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of *Trichoderma* and of its genes. *Microbiology* 158, 17–25.

Hill RA, Ambrose A, Sajali NA, Yatim M, Valdez RB, Agbayani F, Bungang J, Minchin R, Stewart A (2010) Bioprotection of *Acacia mangium* using *Trichoderma* in Malaysia. In: Zydenbos SM, Jackson TA ed. *Microbial Products: Exploiting microbial diversity for sustainable plant protection*. Caxton Press, Christchurch, New Zealand. Pp. 51-55.

McLean KL, Swaminathan J, Frampton CM, Hunt JS, Ridgway HJ, Stewart A (2005) Effect of formulation on the rhizosphere competence and biocontrol ability of *Trichoderma atroviride* C52. *Plant Pathology* 54, 212-218.