FRI/INDUSTRY RESEARCH COOPERATIVES

EUCALYPT BREEDING COOPERATIVE

FOREST RESEARCH INSTITUTE PRIVATE BAG 3020 ROTORUA

EARLY PERFORMANCE OF E. GRANDIS X E. NITENS HYBRIDS IN NEW ZEALAND

R. McConnochie, C.J.A. Shelbourne

REPORT NO. 17

MARCH 1996

Confidential to Participants of the Eucalypt Breeding Cooperative

EARLY PERFORMANCE OF E. GRANDIS X E. NITENS HYBRIDS IN NEW ZEALAND

R. McConnochie, C.J.A. Shelbourne

REPORT NO. 17

MARCH 1996

EARLY PERFORMANCE OF E. GRANDIS X E. NITENS HYBRIDS IN NEW ZEALAND

EXECUTIVE SUMMARY

The hybrid cross between *E. grandis* and *E. nitens* is aimed at capturing the benefits of both species. It may extend the site ranges, increase growth rates, and improve the pulping characteristics of each species. Unlike *E. grandis*, *E. nitens* does not root easily from cuttings, however a hybrid between the two species could introduce the capacity for vegetative propagation and allow clonal forestry to be explored.

E. grandis x *E. nitens* hybrids were produced using eight New Zealand selected parents of *E. nitens*, each from central Victoria and New South Wales provenances as pollen parents and nine *E. grandis* seed orchard clones in South Africa as females.

The performance of the control-pollinated hybrid and the open-pollinated progenies of the parent species are being tested at four sites within New Zealand and were assessed 10 months after planting. The best growth was at the North Island, Bay of Plenty site at Te Teko where the central Victorian hybrid averaged 30.9 dm in height. There is large variation between and particularly within hybrid crosses which suggests that selection within families will be important.

The techniques for producing coppice cuttings from the hybrid are being developed and early results suggest that cuttings of the best individuals in the field trials can easily be propagated from coppice shoots as a lead into clonal forestry.

EARLY PERFORMANCE OF E. GRANDIS X E. NITENS HYBRIDS IN NEW ZEALAND

INTRODUCTION

E. grandis is a fast-growing eucalypt adapted to subtropical climates with a summer rainfall and is well known for its good form, and desirable pulp and timber properties. However, in New Zealand conditions it has performed poorly, being susceptible to cold temperatures, insect attack and fungal diseases. These problems with *E. grandis* might be overcome by crossing with another member of the subgenus Symphyomyrtus with complementary characteristics, such as *E. nitens*.

E. nitens is currently the most widely grown eucalypt species for pulpwood production in New Zealand which is cold-hardy and may be planted up to altitudes of 800m. A hybrid between *E. nitens and E. grandis* with intermediate characteristics might reduce the siting limitations of both species, enhance *E. nitens* pulping characteristics and give the hybrid propagability by rooted cuttings, which is lacking in *E. nitens*. The capability of propagating individual hybrids from coppice cuttings would allow development of clonal forestry.

With this in mind crosses were made between New Zealand-selected *E. nitens* pollen parents of both central Victoria and southern NSW populations, with seed orchard clones of *E. grandis* at Tzaneen, eastern Transvaal, South Africa as female parents. The pollen was shipped to South Africa and the control pollinations were completed by the Division of Forest Science and Technology of Combined Scientific and Industrial Research (FORESTEK), Nelspruit.

E. GRANDIS X E. NITENS HYBRID TRIALS

A single-pair-cross mating design was used to provide interspecific crosses and these were compared with open-pollinated progenies of the pure species selections, using nine *E. grandis* clones selected in South Africa by FORESTEK as female parents and eight selected parents of *E. nitens* of central Victorian and New South Wales origin from New Zealand as males.

The mating design and a listing of the *E. nitens* and *E. grandis* ortet codes is shown in Table 1.

The seed from these crosses and open-pollinated seed was raised in root -trainers and planted in field trials in November 1994. There were a total of 40 seedlots.

The trial design is a randomised complete block with single-tree-plots and eight replications were established at four sites.

Site Details

- 1. Tairua, Coromandel Peninsula warm site, Carter Holt Harvey Forests Ltd, lat. 37° 12', sea-level, NNE aspect, ex pasture, ripped.
- 2. Te Teko, Rangitaiki Plains mild site, Tasman Forestry Ltd, lat. 38° 02', <50m altitude, flat, previously *P. radiata* seed orchard, ripped and rotary hoed.
- 3. Kinleith moderate site, Carter Holt Harvey Forests Ltd, lat 38°25', 250m altitude, cutover, v-bladed.
- 4. Awarua, Southland cold site, South Wood Exports Ltd, lat.45° 05', 220m altitude, NE aspect, 15 20° slope, ex-pasture.

ASSESSMENT

This hybrid is a new taxon to New Zealand and these trials are measured regularly to record their progress. The trials were 10 months from planting at the time of assessment.

The hybrid seedlings displayed intermediate morphological characteristics from each parent species. The stem shape and petiole were the features that best distinguished *E. grandis*, *E. nitens* and the interspecific hybrid. In Figure 1, Photo A is *E. grandis* typically with a rounded stem and petiole. Photo D shows *E. nitens* with a square stem and no petiole . Photos B and C are examples of the *E. grandis* x *E. nitens* hybrids displaying a combination of the characteristics of both pure species. Invariably the hybrids had a square stem and petiole.

The following traits were assessed:

In decimetres 1. Height: 2. Stem shape: 1 - 5 scale 1 = Square, pure *E. nitens* 5 = Rounded, pure E. grandis Petiole: 1 - 5 scale 3. 1 = no petiole present, pure *E. nitens* 5 = well developed petiole present, pure *E. grandis* 4. Foliage Health: 1 - 3 scale 1 - very unhealthy 2 - some infection or insect attack 3 - healthy.

5 Malformation: 1 - 5 scale 1 - multileadered to 5 - dominant leader with no distortion.

The site at Kinleith was not assessed as it had sustained damage from spray-drift during a preplant spraying operation in the adjacent compartment.

ANALYSIS

The data was analysed by SAS, using PROC ANOVA. Duncan's Multiple Range Tests for family means and species means were calculated for each site separately.

Family code 207 was removed from the analysis. At all three sites it had rounded stems and a well-developed petiole and appeared to be pure *E. grandis* and not a hybrid. This may have been an error during the crossing operation or during sowing and trial establishment.

RESULTS AND DISCUSSION

Survival of *E. nitens* and the hybrid was generally good at all sites, but as expected the survival of *E. grandis* at the cold site at Awarua, Southland, was much lower, 36.1%. (Table 8). The average values and Duncan's Multiple Range Test for height, petiole, stem shape, leaf health and malformation for each species group at each site are shown in Tables 2, 3, 4, 5, 6, and 7. The best growth was at Te Teko with the central Victorian hybrid averaging 30.9 dm. When comparing the frequency distributions for the pure species and the hybrid it is evident that the curve for the hybrid is severely skewed to the left (Fig 2). The seedlings in this tail are stunted and malformed, probably indicating some genetic abnormality in these individuals. This situation was also observed in the nursery soon after germination and while many of these seedlings soon died, others grew to plantable size and condition and were included in the field trials.

At Teko both hybrid groups (CV and NSW) grew better in height than open-pollinated progenies of the same provenance, at Tairua there was little difference and at Awarua pure *E. nitens* grew better than the respective hybrids. However, if the mean heights of the best 5 individuals, per site are compared similarly (Table 3), the hybrids show an advantage at Te Teko and Tairua, but not at Awarua.

There are considerable rank changes at the three sites with changing status of the hybrids and pure *E. nitens* as well as the near-failure of *E. grandis* at Awarua.

The variation in height between individuals within a cross is large. The ANOVA results are shown in Tables 9 a, b and c for species group mean values and Tables 10 a, b and c for family mean values. There are highly significant differences in all traits, both between families and between species/hybrid groups at each site. An overall-sites analysis was not done because of the rank changes at different sites.

Leaf health was assessed at each site. It was noted at the time of assessment that there appeared to be a high incidence of leaf-spotting at the Te Teko site. The overall leaf heath score for the Te Teko site was 2.2 compared with 2.8 at the Tairua site. (Table 3d). The trial is located beside a clonal seed orchard which is regularly sprayed to keep the site totally weed-free and spray drift may have effected the hybrid trial. The *E. grandis* scored 1.5 for health at the Awarua site where cold is most likely the cause.

CONCLUSIONS AND RECOMMENDATIONS

From the early assessment of the *E. grandis* x *E. nitens* hybrid trials it appears that there is large variation between and within crosses and the high incidence of abnormal seedlings in the hybrid crosses suggests that in any future development of these hybrids many parental cross combinations should be made and that selection within families will be important. The parents with high breeding values in the pure species will not necessarily produce good hybrid families.

The South African experience with this hybrid has shown that it propagates well from coppice shoots. Techniques for rooting cuttings from hybrid seedlings are currently being developed at the NZ FRI nursery and will extend to taking coppice cuttings from coppice shoots derived from selected seedlings growing in field trials.

It seems likely that the best-grown individuals can be selected in the field progeny tests after several years growth and these individuals can then be felled and propagated from the resulting coppice. These clones can then be tested in field trials with eventual commercial production of cuttings from the best clones. Unlike radiata pine there should be no problem in rejuvenating clones by coppicing to recover fully juvenile propagation material.

ACKNOWLEDGMENTS

I wish to thank Brian Pierce and his team at CSIR Forestek, Nelspruit for producing the *E. grandis* x *E. nitens* hybrid seed, Eucalypt Breeding Cooperative members for their assistance with the establishment, weed control and measurement of these trials, and Michael Hong for the statistical analysis.

REFERENCES

SHELBOURNE, C.J.A. 1992: Breeding plan for *Eucalyptus grandis* hybrids with *E. urophylla*, *E. camaldulensis* and *E. nitens*. CSIR Forestek, Pretoria, S. Africa (unpublished report)

- SHELBOURNE, C.J.A. 1992: Possibilities for clonal forestry with *Eucalyptus grandis* x *E. nitens* hybrids in New Zealand. NZFRI Project Record 3475, Eucalypt Breeding Cooperative Report No. 6 (unpublished)
- SHELBOURNE, C.J.A. 1994: Field testing of *E. grandis* x *E. nitens* interspecific hybrids. NZFRI Workplan No. 2350

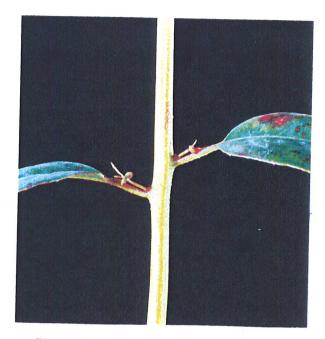


Photo A Eucalyptus grandis

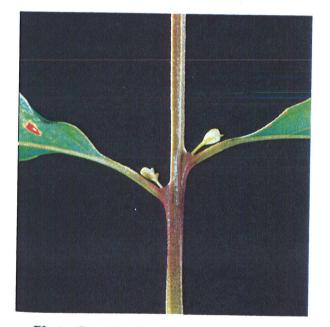


Photo C Eucalyptus grandis x Eucalyptus nitens

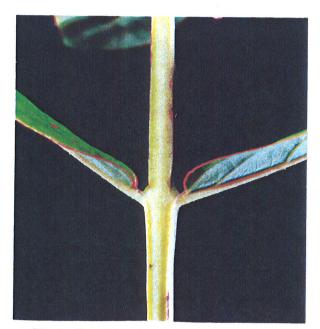


Photo B Eucalyptus grandis x Eucalyptus nitens

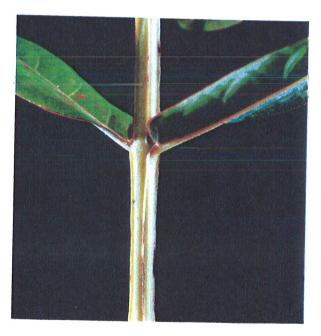
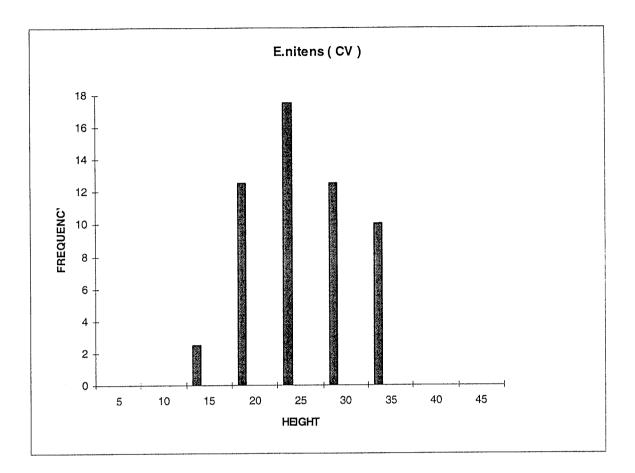
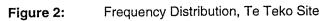
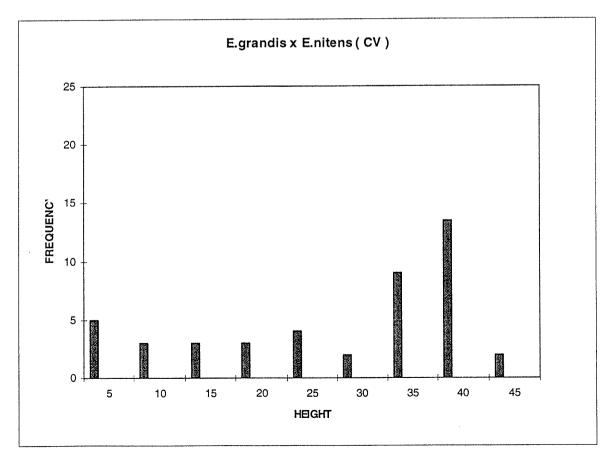





Photo D Eucalyptus nitens

8

Table 1: Mating Design of E. grandis x E. nitens Hybrids

¢

	401	301 101	302	303	304	305	306	307	308	309
(Male Parents)	402		102							
	403			103						
E. nitens	404				104					
CV	405					105				
	406						106			
	407								108	
	408									109

E. grandis (Female Parents)

	501	301 201	302	303	304	305	306	307	308	309
(Male Parents)	502 503		202	203						
E. nitens	504			200	204					
NSW	505 506					205	206			
	507						200	207		
	508									208

E. grandis		E. nite	ns (CV)	E. nitens (NSW)		
Code no.	Ortet No.	Code No.	Ortet No.	Code No.	Ortet No.	
301 302 303 304 305 306 307 308 309	G58 G38 G17 G19 G74 G75 G101 G39 G97	401 402 403 404 405 406 407 408	890-042 888-877 888-854 890-052 890-055 888-885 890-045 890-044	501 502 503 504 505 506 507 508	892-003 892-004 892-005 892-006 892-007 892-008 892-009 892-010	

Table 2: Average values for each species group and Duncan's Multiple Range Test

	Te Teko	Tairua	Awarua	
E. grandis	26.3 A	15.3 A	4.6 C	
Hybrid CV	30.9 A	15.8 A	4.2 BC	
Hybrid NSW	25.8 A	13.5 B	4.1 BC	
E. nitens CV	26.2 A	17.0 A	6.3 A	
E. nitens NSW	19.8 B	12.5 B	5.2 B	

Height (dm)	
-------------	--

Means with the same letter are not significantly different

Table 3: Average values of the best 5 trees in each species group

	Te Teko	Tairua	Awarua
E. grandis	36.2	25.2	6.2
Hybrid CV	42.6	28.4	8.9
Hybrid NSW	38.4	21.8	6.7
E. nitens	35.0	25.2	9.4
<i>E. nitens</i> NSW	28.8	19.4	8.0

Ŷ,

Height (dm)

Table 4: Average values for each species group and Duncan's Multiple Range Test

	Te Teko	Tairua	Awarua
E. grandis	5.0 A	4.9 A	4.8 A
Hybrid CV	3.9 B	4.2 B	3.3 B
Hybrid NSW	4.2 B	3.9 B	3.1 B
E. nitens CV	1.0 C	1.0 C	1.1 C
<i>E. nitens</i> NSW	1.0 C	1.0 C	1.1 C

Petiole Score

Means with the same letter are not significantly different

Table 5:

Average Values for each species group and Duncan's Multiple Range Test

	Te Teko	Tairua	Awarua
E. grandis	4.9 A	4.7 A	4.7 A
Hybrid CV	1.7 C	1.3 C	3.4 B
Hybrid NSW	1.5 B	2.0 B	3.3 B
E. nitens CV	1.0 D	1.0 C	1.4 C
E. nitens NSW	1.0 D	1.0 C	1.4 C

Stem Shape Score

Means with the same letter are not significantly different

w

Table 6: Average Values for each species group and Duncan's Multiple Range Test

	Te Teko	Tairua	Awarua
E. grandis	2.3 A	2.6 B	1.5 C
Hybrid CV	1.7 B	2.7 B	2.5 B
Hybrid NSW	1.7 AB	2.7 B	2.4 B
E. nitens CV	2.6 A	3.0 A	2.9 A
E. nitens NSW	2.6 A	2.9 A	2.9 A
Overall	2.2	2.8	2.4

Leaf Health

Means with the same letter are not significantly different

 Table 7:
 Average values for each species group and Duncan's Multiple Range Test

Malformation

	Te Teko	Tairua	Awarua
E. grandis	4.2 B	4.4 A	3.3 B
Hybrid CV	3.9 B	3.9 B	3.1 AB
Hybrid NSW	4.4 B	3.6 B	3.4 AB
E. nitens	4.8 A	4.4 A	3.8 A
E. nitens NSW	4.1 B	4.2 A	3.6 A

Means with the same letter are not significantly different

Table 8: Average values for each species group

	Te Teko	Tairua	Awarua
E. grandis	98.4	65.4	36.1
Hybrid CV	70.3	72.3	81.4
Hybrid NSW	65.6	66.7	83.9
E. nitens CV	84.4	82.5	98.2
E. nitens NSW	92.2	84.7	93.8

Survival (%)

TABLE: 9a Analysis of variance of species, Awarua

Trait	Source	DF	Type III SS	Mean Square	F Value	Pr > F
Height	REP	7	3109.241	444.177	4.65	0.0016
	SPECIES	4	3100.109	775.027	8.11	0.0002
Petiole	REP	7	0.812	0.116	1.14	0.3711
	SPECIES	4	78.367	19.592	191.77	0.0001
Stem Shape	REP	7	0.493	0.070	0.70	0.6697
	SPECIES	4	63.376	15.844	158.04	0.0001
Leaf Health	rep	7	0.382	0.055	1.43	0.2332
	species	4	10.309	2.577	67.64	0.0001
Malformation	REP	7	3.732	0.533	1.32	0.2812
	SPECIES	4	3.857	0.964	2.38	0.0767

٠

General Linear Model Procedure (SAS)

TABLE: 9b Analysis of variance of species, Tairua

Trait	Source	DF	Type III SS	Mean Square	F Value	Pr > F
Height	REP	8	114.412	14.302	2.87	0.0158
	SPECIES	4	142.865	35.716	7.17	0.0003
Petiole	REP	8	2.544	0.318	2.63	0.0247
	SPECIES	4	121.333	30.333	250.59	0.0001
Stem Shape	REP SPECIES	8 4	4.894 87.669	0.612 21.917	1.98 71.02	0.0813 0.0001
Leaf Health	REP	8	0.318	0.040	0.92	0.5126
	SPECIES	4	1.074	0.268	6.22	0.0008
Malformation	rep	8	5.584	0.700	3.65	0.0040
	Species	4	4.487	1.122	5.86	0.0012

.

General Linear Model Procedure (SAS)

TABLE: 9c Analysis of variance of species, Te Teko

Trait	Source	DF	Type III SS	Mean Square	F Value	Pr > F
Height	REP	7	171.590	24.513	3.15	0.0138
	SPECIES	4	326.463	81.616	10.50	0.0001
Petiole	REP	7	0.836	0.119	1.60	0.1778
	SPECIES	4	114.589	28.647	382.91	0.0001
Stem Shape	REP	7	1.036	0.148	1.29	0.2909
	SPECIES	4	87.268	21.817	190.19	0.0001
Leaf Health	REP	7	1.064	0.152	0.92	0.5066
	SPECIES	4	3.557	0.889	5.38	0.0024
Malformation	REP	7	2.105	0.301	2.30	0.0550
	SPECIES	4	2.744	0.687	5.25	0.0028

.

General Linear Model Procedure (SAS)

TABLE: 10a Analysis of variance of families, Te Teko

,

.

Trait	Source	DF	Type III SS	Mean Square	F Value	Pr > F
Height	rep	7	1307.748	186.821	3.88	0.0005
	Family	39	7650.580	196.169	4.07	0.0001
Petiole	rep	7	3.753	0.536	2.26	0.031
	Family	39	831.031	21.308	89.98	0.000
Stem Shape	rep	7	4.134	0.591	1.35	0.2268
	Family	39	753.649	19.324	44.28	0.0001
Leaf Health	rep	7	9.189	1.313	2.04	0.0515
	Family	39	87.304	2.239	3.48	0.0001
Malformation	rep	7	16.526	2.361	3.01	0.0050
	Family	39	59.179	1.517	1.93	0.0017

.

General Linear Model Procedure (SAS)

16

Trait	Source	DF	Type III SS	Mean Square	F Value	Pr > F
Height	rep	8	421.211	52.651	1.84	0.0715
	Family	39	2672.249	68.519	2.39	0.0001
Petiole	rep	8	9.478	1.185	3.34	0.0013
	Family	39	730.589	18.733	52.85	0.0001
Stem Shape	rep	8	11.297	1.412	2.98	0.0035
	Family	39	595.151	15.260	32.19	0.0001
Leaf Health	rep	8	0.980	0.123	0.63	0.7480
	Family	39	21.744	0.558	2.89	0.0001
Malformation	rep	8	28.403	3.550	3.83	0.0003
	Family	39	64.122	1.644	1.77	0.0060

.

General Linear Model Procedure (SAS)

TABLE: 10c Analysis of variance of families, Awarua

Trait Source DF Type III SS Mean Square F Value **Pr > F** Height REP 7 16364.688 2337.813 9.17 0.0001 FAMILY 39 29598.310 758.931 2.98 0.0001 Petiole REP 7 4.516 0.645 1.42 0.1984 FAMILY 39 455.784 11.687 25.76 0.0001 Stem Shape REP 2.518 7 0.360 1.05 0.3969 FAMILY 39 371.668 9.530 27.85 0.0001 REP Leaf Health 7 1.640 0.234 0.87 0.5302 FAMILY 39 53.093 1.361 5.06 0.0001 ò.1701 Malformation REP 15.732 2.247 7 1.50 39 FAMILY 64.770 1.661 1.11 0.3204

General Linear Model Procedure (SAS)

.