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Summary 

 

A suite of empirical stand-level growth models has been constructed using data from 

permanent sample plots from trials at 42 sites in the north and south islands of New Zealand. 

Stand models of predominant height (PDH), basal area (BA), stocking (N) and volume (V) 

are given.  Site index (S) can be predicted from the PDH model and is defined as PDH at age 

15. The stand basal area model is a modification of Clutter’s projection model that includes 

effects due to age and intensity of thinning. The site index term in the asymptote of the BA 

projection model was found to be negative and statistically significant. When altitude and 

latitude terms were included both these terms were non-significant while the S term was 

significant and negative. Since such a negative site index term is difficult to explain it was 

dropped from the BA model but further work, possibly employing a site-productivity 

measure predicted from physiologically-based models such as 3PG to replace or augment the 

site index term, is recommended. 

 

A model which predicts stand basal area at age 10 for unthinned stands with stocking 

between 850 and 1100 sph is also evaluated in order to facilitate simulation of hypothetical 

stands given only site index. Stands can be grown forwards or backwards from age 10 and 

various thinning regimes applied if required. When this suite of models is combined with a 

stem taper model, yield by product type can be predicted by ‘growing-on’ inventory or 

experimental plots. Model fitting used mixed model methodology and included a nonlinear 

mixed model fitting procedure to fit the stand basal area projection model. 
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Introduction 

 

The suite of models described here are empirical models developed from data obtained from 

permanent sample plots (PSPs) provided by the Management of Eucalypts Cooperative 

managed by the Forest Research Institute. The models have been described previously in 

Candy (1997) and with slight modifications the same stand-level models are used here. 

Measurements up to and including those carried out in 2000 were used to fit the models. 

 

Data 

 

Data Summaries 

 

From the 42 trials distributed across both North and South islands, 266 PSPs were measured. 

Site Index (S) was estimated from the PDH model as described later using the measurement 

of the plot closest to the index age of 15 yrs and assigned that estimated value for all 

measurements of the plot. If the plot was measured at age 15 then the S value is estimated 

exactly as the PDH at that measurement. Due to missing values of PDH, S was calculated for 

242 of the 266 PSPs. The term Mean Dominant Height (MDH) is used here synonymously 

with PDH, even though in Candy (1997) it represents the mean of the tallest 50 stems per 

hectare (sph) rather than the tallest 100 sph as is the definition for PDH. Summaries of the 

data are given in Tables 1 and 2 below. 

 

Table 1. Stand data summary 

    
Statistic  M’mnts1 

Per plot 

Age 

(yr) 

Site 

Index 

(SI)(m) 

CAI2  for 

Volume 

(m3ha-1yr-1) 

Altitude 

(masl) 

Latitude 

(deg) 

Mean 3.31   8.1  30.4 27.4 281 40.61 

Minimum  0   1.8  15.9  1.0  80 35.20 

Maximum 10  24.0  38.8 87.0 700 46.10 

L-quartile  1   6.0  26.9 16.0 150 38.10 

U-quartile  5   9.1  33.9 36.8 450 45.30 

1 Suitable measurements (excluding 

missing values of PDH). 
2 Current annual increment. 
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Table 2. Thinning measurements data summary 

     
Statistic  Age at 

Thinning 

(yr) 

Stems 

felled 

(sph) 

Stems 

retained 

(sph) 

Percentage of BA 

removed 

(m2/ha) 

Mean  6.26  471.6  532.7 35.4 

Minimum  2.30    8.0   50.0  1.8 

Maximum 13.60 1932.0 1477.0 90.3 

L-quartile  4.10  100.0  150.0 22.1 

U-quartile  7.00  700.0  800.0 44.0 

 

Figure 1 shows a histogram of age of measurement excluding plots with missing site index 

and measurements with missing PDH while Figure 2 shows a histogram of site index values. 

 

Thinning Data 

There were 167 plot-measurements made at a thinning. Of the 116 plots that were thinned, 86 

were thinned once, 9 were thinned twice, and 21 were thinned three times. Table 2 

summarises attributes of the 167 plot-measurements. 

 

Statistical Methods 

 

The statistical methods described in Candy (1997) were used with a few minor changes that 

are described later. 

 

MDH Increment/Site Index Model 

The state space (Garcia, 1994) or projection form of the 3-parameter Richards model was 

used to model MDH (=H) 
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where 1T  is the age at the start and 2T  the age at the end of the projection period, 1H  is the 

MDH at the start and 2H  the MDH at the end of the projection period, A is the parameter 

representing the asymptotic MDH and α  is a shape parameter. 
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The equation for obtaining site index given an MDH of H  at age T  is obtained by 

substituting H  for 1H , T  for 1T , 15 for 2T  in (1) with 2H  then corresponding to site index 

(base age 15). Figure 2 shows the distribution of plot site index where MDH at age 15 is used 

directly if an age 15 measurement of the plot was taken or an estimate was obtained using the 

measurement age closest to 15 and model (1) with parameter estimates obtained below. 

 

Model (1) was fitted using nonlinear least squares using GENSTAT’s (Genstat 5 Committee, 

1997a,b) FITNONLINEAR directive. The data was first arranged into measurement pairs 

},{ 12 HH  at ages },{ 12 TT  with 2H  the response variable that represents MDHs at the second 

measurement through to the last measurement on each plot. 1H  represents the MDH at the 

start of each projection period at age 1T . For a more rigorous notation we could replace the 

index 2 by k+1 and the index 1 by k where k=1,...,m-1  and m is the number of measurements 

on the plot (Candy, 1989) but the simpler notation given by the measurement pairs above will 

be used throughout. This approach to fitting corresponds to the state-space (Garcia, 1994) or 

projection form of the model (Clutter et al., 1983). When model (1) was fitted using ordinary 

least squares (OLS) the asymptote ( )Aln  was estimated at 3.7222 (s.e.=0.0254) giving 

Â=41.4 and the shape parameter estimate was α̂=1.2668 (s.e.=0.0273). This model 

accounted for 98.0% of the variance in PDH with a residual mean square (RMS) obtained 

from the OLS fit of 0.9649. The estimate of the asymptote is clearly unrealistically low since 

the tallest measured PDH was 39.7 m. Figure 3 shows ordinary residuals (Res1) from the fit 

of model (1) to 2H  versus fitted value ( 2Ĥ ). 

 

When the asymptote was fixed at 60m, as in Candy (1997), a shape parameter estimate of 

1.0644 was obtained with standard error 0.0153. This model accounted for 97.8% of the 

variance in PDH with residual mean square (RMS) of 1.047. Figure 4 shows ordinary 

residuals (Res2) from the fit of model (1) to 2H  versus fitted value ( 2Ĥ ). 

 

In both Figs. 3 and 4 the regression line fitted to the residuals is shown. In both cases the 

regression is significant, implying some bias in the predictions, but with the regression 

explaining only 1.9% of the variance in the Res1 residuals the bias in this case is relatively 

small. For the Res2 residuals the bias is more concerning with the regression explaining 

14.4% of the variance and the regression line in Figure 4 shows a more serious departure of 
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the constant-zero line than in Figure 3. Further, to investigate the trends in both the Res1 and 

Res2 residuals these were plotted against the altitude and latitude for each of the PSPs. The 

regression of the residuals against the combined linear regression of altitude and latitude as a 

linear mixed model with random plot effects was significant in each case, as judged by Wald 

tests (Genstat 5 Committee, 1997a,b) but only explained a small proportion of the variance (5 

and 7% for Res1 and Res2 respectively). 

 

To compare model (1) with the anamorphic projection form of the Richard’s model given by 

eqn (7) of Candy (1989) this last model was fitted again using OLS. The parameter estimates, 

for this model were α̂=0.04876 (s.e.=0.00577) and β̂ =1.0173 (s.e.=0.0242) with RMS of 

1.210. There was little difference between predictions from the polymorphic model (1) with 

4.41ˆ =A and those from the 2-parameter anamorphic projection model for the range of ages 

of interest. For the remainder the former model was used to estimate site index and given 

preference over the version of model (1) with A fixed at 60 m due to the bias in the latter as 

discussed above. However, model (1) with 4.41ˆ =A  gives site index curves that differ quite 

dramatically from those in Candy (1997) particularly for ages above 15 years (Fig. 5) due to 

the very different values for the asymptote. 

 

Site index is required as a predictor variable in some of the models described below. An 

estimate of site index can be obtained at each measurement of each plot in the dataset. 

However, site index would then vary with age, which contradicts the intent that site index be 

a measure of site productivity. So, for the remainder site index, S, was estimated using the 

measurement age closest to the index age of 15, and this estimate was used for all 

measurement periods for the particular plot to calibrate the models which rely on site index as 

input. 

 

 

Stand basal area projection model 

 

The basic form of the model used (i.e. excluding thinning effects) is given by eqns (4.42) and 

(4.43) in Clutter et al. (1983). The stand basal area, B, instantaneous growth rate function is 
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where α α α0 1 2, ,  are parameters to be estimated and S is site index defined earlier. The 

projection form of the model, which is at this stage a state-space model, is given by 
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where ( )12 ,BB  are the stand basal areas giving response and conditioning variable defined in 

the same way as those given for MDH. Stand basal area 2B  is net basal area, that is, it 

excludes trees that have died in the projection period. 

 

Model (2) is consistent (i.e. 12 BB =  if 12 TT = ) and path invariant. The property of path 

invariance ensures that the same predicted value of B is obtained irrespective of the number 

of intermediate ages at which B is predicted (Clutter et al., 1983) and is a function of the 

state-space definition of (2). However, this property needs qualification when a thinning has 

been carried out or is simulated. If a thinning occurs at age tT  then for projections of 2B  after 

thinning, 1B  in (2) should be set to the residual basal area at the thinning age (or initialised at 

a later age if inventory is at age tTT ≥1 ). Model (2) has two less desirable features. First, the 

growth rate (1) is not defined at age zero, as a result a starting basal area is required in (2) to 

obtain a yield curve for a given site index. The yield curve corresponding to (2) is given by 
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with the projection model (2) derived from the yield equation by solving for β  in terms of 

initial age, 1T , and basal area, 1B . So starting values of basal area and age as well as site 

index are required to determine the yield curve. Second, if  ( ) SB
2

1

2

0

1ln
α

α
+

α

α
>   then the 

relative growth, ( ) ( )12 lnln BB − , is negative. Since the right hand side of the above inequality 

is the logarithm of the asymptotic basal area, then theoretically this inequality should never 
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be satisfied. However, the asymptote must be estimated and it is possible that a measured 

basal area is greater than the estimated asymptote but this is unlikely to occur in practice. 

Candy (1989, 1997) obtained a projection model from the same instantaneous growth rate 

function by solving for the asymptote rather than β  and then modelling β  and 2α  

parameters as functions of site index and other stand variables. The above inequality can 

never occur with this ‘anamorphic’ projection model. 

 

The above properties of model (2) do not in general limit its utility as discussed later. 

 

Thinning effects 

 

The simplest way to handle the effect of thinning is to assume that there is no effect of 

thinning on relative growth [i.e. ‘grow on’ the residual basal area after thinning using (2)]. 

Alternatively, thinning may affect the relative growth compared to an unthinned stand of the 

same initial basal area, initial age, and site index. Commonly, thinning effects are 

incorporated in basal area projection models using combinations of age, intensity, and nature 

of thinning (Bailey and Ware, 1983; Pienaar and Shiver, 1986; Candy, 1989). Bailey and 

Ware (1983) incorporate thinning effects in model (2) with the constraint that 12 =α . The 

yield model in this case is a simple log/reciprocal model which is often not flexible enough to 

model yield or increment which is the reason Clutter et al. (1983) introduced the extra 

parameter, 2α . Here thinning was incorporated in (2), while maintaining path invariance, as 

follows. 

 

Let ‘linear age components’ be 
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tP   is the proportion of basal area removed in thinning at age tT . For unthinned stands or 

ages prior to thinning in thinned stands tP  and tT  are each set to zero. After thinning, tP  

and tT  remain fixed at their thinning-age values for all later projection periods unless another 

thinning is applied in which case they are changed to this later thinning’s values (note that the 

data used here involved at most one thinning). As described earlier, the age at thinning should 

start a new projection period with tTT =1  and 1B  set to the retained basal area. It can be seen 

that these thinning terms affect growth by modifying the age terms in (2). Depending on the 

age and intensity of thinning and the sign and magnitude of the parameters 543 ,, ααα , the 

‘age shift’ may be to an earlier or later age. Since growth rate depends on age, as in (2), then 

relative growth may be increased or decreased by thinning. Since model (3) is purely an 

empirical construct, expression of the effect of thinning in relative basal area growth depends 

largely on the thinning data available. Note that model (3) no longer has a state-space 

representation since given tTT >1  future values of the state variable, stand basal area, do not 

depend solely on the state variables (i.e. at age 1T ). 

 

Model fitting 

 

The response variable in the fit of (3) was ( )2ln B . Since the calibration data involved repeat 

measurements of sample growth/experimental plots, a mixed model was constructed from (3) 

by adding random plot effects to the linear age and site index components of the model. At 

the same time to facilitate the fitting procedure the parameters in the linear site index term, 

S
2

1

2

0

α

α
+

α

α
, were reparameterised as S10 α′+α′ . The nonlinear mixed model (NLMM) is then 

 

iitititititiii

iitititititiii

bSTPTPPT

bSTPTPPT

254322

254311

+α+α+α+=η

+α+α+α+=η
 

 

( ) ( ) i

i

i

ii

i

i

i BB 2

2

1

1

2

1

2

22

1lnln ε+





















η

η
−γ+









η

η
=

αα

 (4) 

 

iii bS 110 +α′+α′=γ  (5) 
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where the i n= 1,...,  subscript is introduced to represent the ith plot in a total of n plots and 

b i1   and b i2  are random plot effects with n elements each and ε2i  is a random error 

independent of the random effects. 

 

A more conservative iterative weight function to that used by Candy (1997) was employed 

here. The weight function is 
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where 2=κ  was used in Candy (1997) while 1=κ  was used here since it was noted here 

and in Candy (1997) that using 2=κ  over-corrects for the trend of increasing variance of 

(conditional) residuals with increasing 1−
iw . 

 

A further departure from the estimation method of Candy (1997) was to include a covariance 

parameter for the covariance between 1b  and 2b . Therefore ( ) D=21 ,bbCov  where D is the 
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A problem with the performance of the fitting algorithm of Candy (1997) (as modified above) 

was encountered here. In Candy (1997, Appendix 1), model (4,5) was fitted using the 

‘marginal’ method or, more specifically, using marginal weighted generalized least squares 

(WGLS) which is the normal errors equivalent of marginal quasi-likelihood of Breslow and 

Clayton (1993). The marginal method in effect simply removes the random plot effects from 

the calculation of the γηη ,, 21  terms and the working response variable but retains them as 

linear random effects in the linear mixed model of the working response variable. This is an 

approximate solution to producing ‘population-average’ estimates of the parameters 

( )60 ,....,αα  in model (4,5). However, this approximate method may fail if the random effects 

are relatively large. Here problems were encountered in obtaining convergence in parameter 

estimates when using the marginal method. The damping of consecutive iteration’s estimates 

was used to improve convergence properties of the marginal method in Candy (1997, 

Appendix 1) but this failed here. The subject-specific (i.e. plot-specific) fitting method on the 

other hand retains the estimated random plot effects in the calculation of the γηη ,, 21  terms 

and the working response variable. The algorithm then proceeds as for the marginal method. 

Although this subject-specific (SS) fitting algorithm performed well in terms of the 

convergence of parameter estimates it was found that it gave an unrealistic estimate of 2α  

(=1.29) when typically 2α̂  is less than 0.9 (e.g. Candy, 1997). Apart from this difficulty, 

which resulted in serious under-prediction of stand basal area at ages above 15, the random 

effects must be integrated out of SS predictions (Lee and Nelder, 1996) in order to obtain the 

required PA predictions (Candy, 1997). 

 

For the above reasons ordinary least squares (OLS), as used by Clutter et al. (1983), was used 

to provide estimates of the parameters in model (4,5). However, after screening out eight 

outliers and fixing 2α  at the OLS estimate of 0.8385, the marginal method of fitting the 

NLMM converged successfully giving WGLS estimates which were then used as the final 

parameter estimates. 

 

The data set used in the fit consisted of 872 measurement pairs after excluding missing values 

for site index, S, (due to missing values of PDH), measurement pairs for which 31 ≤T , and 

the outliers mentioned above. 
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When model (4,5) was fitted, using the WGLS fitting algorithm the estimate of the parameter 

for the site index term in model (5) was negative and statistically significant. The estimate of 

1α̂′  was –0.0536 (s.e.=0.0132) while the OLS fit gave an estimate of -0.0450 (s.e.=0.0141). 

The negative site index term in (5) indicates that this term modifies (i.e. by reducing) the 

positive relationship between BA increment and initial BA (i.e. 1B ) as quantified by the first 

term on the right hand side of (4). This last term is always positive so increasing 1B  increases 

the BA increment in proportion to 1B  for fixed values of ii 1, ηγ  and i2η . This can be seen 

by expressing the predicted BA increment from (4,5) as 
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In contrast, for fixed iB1 , i1η  and i2η  then BA increment decreases with increasing site index 

via the term iγ  if 1α′  is negative. Nevertheless, for a given stocking rate and initial age, 1T , 

then 1B  will be an increasing function of site index as quantified by the B10 model in Candy 

(1997). The overall effect is that BA increment will generally increase with site index since 

the positive effect of initial BA (and thus indirect effect of site index) on BA increment will 

‘overpower’ the negative effect of site index within the iγ  term. However, model (4,5) with 

negative 1α′  can give counter-intuitive predictions of decreasing BA increment with 

increasing site index if 1B  and S are ‘unlinked’ by fixing 1B  while varying S. This discussion 

does not include the effect of thinning on BA increment. 

To further investigate the effect of S within the iγ  term additional covariates of plot altitude 

(E ) [i.e. elevation (masl)] and latitude (L) ( 0S) were added to give 

iiiii bLES 17610 +α+α+α′+α′=γ  (5a). 

The estimate of 7α  was not statistically different from zero with an estimate of 0.0062 (s.e. 

0.0118). Dropping the latitude term gives  

iiii bES 1610 +α+α′+α′=γ  (5b) 
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with estimates of 1α′  and 6α  being –0.0207 (s.e. 0.0130) and –0.358x10-3 (s.e. 0.205x10-3) 

respectively. The OLS estimates for model (5b) of 1α′  and 6α  were –0.0435 (s.e. 0.0141) and 

–0.120x10-3 (s.e. 0.213x10-3). Dropping the elevation term gives model (5). 

Table 3 gives the OLS parameter estimates. 

The final version of the model fitted was model (4,5c) where model (5c) is the simple 

constant log-asymptote model 

ii b10 +α′=γ  (5c). 

The OLS parameter estimates and fit statistics are given for model (4,5c) in Table 4. 

 

Table 3. Parameter estimates for the stand basal area projection 

model (4,5) using OLS 

Parameter 
0α′  1α′ α2  α3 α4  α5  

Estimate 6.0864 -0.0450 0.7800 10.220 2.552 -0.1426 

Standard 

error 

0.4740  0.0141 0.0356  1.880 1.140  0.0454 

fit 

statistics 

RSS{ ( )iB2ln } 

Value 

/estimate 

12.92 

d.f.=867 

$σ2      0.01490 

 

Dropping site index, to give model (4,5c), and using an OLS fit gave an estimate of 2α  of 

0.8385 (s.e. = 0.0296). As discussed earlier model (4,5c) was then fitted using the marginal 

method for the NLMM. The parameter estimates are given in Table 4. 

 

Conditional (i.e. plot-specific) predictions (or fitted values) from the WGLS fit of model 

(4,5c) are given by ( ) ( )22112

)ˆ(

2
ˆ,ˆlnln bbbbBB b ===

∧∧

 where best linear unbiased predictions 

(BLUPs) (Robinson, 1991) of 1b  and 2b  were used to give 1b̂  and 2b̂ , respectively. Figure 6 

gives the conditional residuals given by ( ) ( )








−
∧

)ˆ(

22 lnln bBB  versus conditional predictions (or 

fitted values). 
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Table 4. Parameter estimates for the stand basal area projection 

model (4,5c) using WGLS 

Parameter 
0α′  1α′ α2  α3 α4  α5  

Estimate 4.6078 - 0.8385 10.8218 1.5193 -0.1048 

Standard 

error 

0.0472  -  1.9394 0.9412  0.0383 

fit 

statistics 

( ){ })0(

2ln =bBRSS

( ){ })ˆ(

2ln bbBRSS =
 

Value 

/estimate 

12.96 

 5.14 

(d.f.=865) 

Standard 

Error 

- 

- 

 

2

11σ̂  
0.3659 0.1160 

2

22σ̂  
2.5291 0.7369 

12σ̂  0.5546 0.2628 

σ̂  0.0583 0.0037 

 

Figure 7 shows marginal residuals, ( ) ( )
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2ln =bBRSS  in Table 4 is the marginal residual sum of squares. Figure 8 shows weighted 
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 versus conditional fitted values. Figure 9 

shows values of current annual increment (CAI) in stand basal area, ( ) ( )1212 / TTBB −−  

versus marginal predictions given by ( ) ( ) 1121
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2lnexp
−=

∧

−








−





TTBB b . Figure 10 shows the 

equivalent figure to Figure 9 using conditional predictions of CAI. Note how improved the fit 

is with a value of the conditional sum of squares, ( ){ })ˆ(

2ln bbBRSS = , of 5.14 (see Table 4) 

compared to 12.96 for the marginal sum of squares. Figures 11 and 12 show conditional and 

marginal residuals in terms of 2B  versus age, 2T . Figure 13 shows values of current annual 

increment (CAI) in stand basal versus predictions calculated using OLS estimates of 

parameters in model (4,5c). 

 

It is clear from Figures 9 and 13 that there are a substantial number of projection periods for 

which the observed CAIs for stand basal area range between 8 and 10.7 m
2
ha
-1
yr
- 1
 (i.e. 100 
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projection periods) whereas predictions range from no more than 8 m
2
ha
-1
yr
-1
, often 

substantially less, down to 0.5 m
2
ha
-1
yr
-1
. For these projection periods most of the ages at 

period end are less than 8 yrs with the upper quartile being 6.4 yrs. The upper and lower 

quartiles for the period length, 12 TT − , are 0.7 and 0.9 yr respectively. These very large 

observed CAIs were not explained by high stockings with the lower and upper quartiles being 

1067 and 1690 sph respectively. The 100 periods came from 75 plots most of which 

contributed a single period. Given the predictor variable values in 21 ,ηη , and 1B  it is unclear 

why these projection periods have observed CAIs in stand basal area so much greater than the 

predicted values. 

 

Figure 14 gives a histogram of conditional residuals, i2ε̂ , and Figure 15 histograms of the 

BLUPs of 1b , and 2b . Figure 16 shows a scatterplot of 1b̂  versus 2b̂ . Figure 17 gives the 

partial residuals from the fit of the BLUPs of 1b  as a multiple regression on S and E. The 

fitted relationships in Fig. 17 are shown as lines and the partial residuals are positioned with 

respect to the lines to represent the observed data [GenStat Release 4.2 (Fifth Edition), 

©2001, Lawes Agricultural Trust]. It can be seen that Figure 17 confirms the negative 

estimates of 1α′  and 6α  from the fit of model (4,5b). 

 

Stand basal area at age 10 

The typical use of stand projection models is to ‘grow-on’ inventory plots established in 

existing stands that are old enough for inventory to reliably represent each site’s growth 

potential. Another use of these models is the growth simulation of hypothetical stands. To 

carry out these simulations a starting age and corresponding MDH (or site index) and stand 

basal area are required. Stands can be grown forwards or backwards from this starting age. 

To make this task possible given only site index, a model has been constructed to predict 

stand basal area at age 10 (B10) for unthinned stands with stocking in the range 900 to 1100 

sph from a single input of site index. The data used to fit this model was obtained by 

selecting measurements for which the stocking was in the required range and no prior 

thinning had occurred. Figure 18 shows values of B10 versus site index. The curve in Figure 

18 is the model fitted in Candy (1997) given by 

 

( )152.388432.4exp10 −−= SB  (6) 
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since the data was too restricted in the range of site index to allow model (6) to be re-

calibrated here. From Figure 18 it can be seen that apart from a few obvious outliers the 

model of Candy (1997) fits the data reasonably well. 

 

Stand volume 

 

Stand volume, V, was defined earlier as the total of individual-tree entire stem volumes (i.e. 

volume from ground to tip) for the plot divided by plot area. The Schumacher model was 

used to predict V given measured MDH (H) and stand basal area (B) at any stand age. The 

model is given by 

 

{ } ε+β+β+β= )ln()ln(exp 210 BHV  (7). 

 

Candy (1989) fitted model (7) as a GLM with gamma error and log link function. Candy 

(1997) fitted model (7) as a GLMM with a single random effect for the intercept. 

Alternatively model (7) can be fitted as a log-linear model assuming normally distributed 

errors on the log scale to give 

 

( ) ε′+β+β+β= )ln()ln(ln 210 BHV  (8). 

 

Excluding missing values of H, there were 1417 observed values of V, H, and B across 266 

plots, available for model fitting and testing. Observed and fitted values of stand volume from 

the fit of model (7) as a gamma/log link GLM are shown in Figure 19 while Figure 20 shows 

the corresponding ordinary residuals, ε̂ . The corresponding standardized residuals (i.e. 

deviance residuals scaled by the leverages, GenStat Reference Manual, pg.364) are given in 

Figure 21.  Alternatively, model (8) was fitted using OLS and Figure 22 shows ordinary 

residuals, ε′ˆ , versus observed values. All these residual plots demonstrate a significant lack 

of fit of Schumacher’s model. Due to the different methods of fitting the trend in the residuals 

with observed values is different but in both cases unacceptable.  Figures 23 and 24 show 

observed versus fitted values and ordinary residuals on the log scale for the simple linear 

regression of ( )Vln  on the log of the product of MDH and live stand basal area given by 
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( ) ε ′′+β+β= )ln(ln 10 HBV . 

 

Figure 23 indicates that there is a change in slope of the linear relationship between ( )Vln  

and ( )HBln  which occurs somewhere between 2 and 4 on the ( )HBln  scale which is also 

demonstrated by the trend in residuals in Figure 24. 

 

To remove this trend in residuals, a nonlinear model which smoothly joins two linear 

regression lines was fitted where this model given by equation (4.5.6) of Ratkowsky (1989, 

pg.119) is 

 

( ) { } { }[ ] eHBHBV +θ+γ−β+γ−β+β= 22

210 )ln()ln(ln  (9). 

 

Table 5 gives the parameter estimates and some fit statistics for model (9) whereby the 

nonlinear parameter estimates of ( )θγ,  were obtained using an OLS fit of model (9) and the 

linear parameters ( )210 ,, βββ  were fitted using GLS by fitting (9) as a LMM conditional on 

the OLS estimates of ( )θγ, . For the OLS fit, model (9) explained 99.8% of the variance in 

( )Vln . A random plot-level intercept term, ( )10 b+β , and slope term, ( )22 b+β , were fitted as 

part of the LMM using the GLS/REML fitting algorithm. Fitting was unsuccessful when all 

three linear parameters in model (9) were allowed to incorporate random plot effects that co-

vary across random effects. The log-likelihood for the above LMM was greater than that 

obtained when a random plot-effect was incorporated in 1β  rather than 2β . For comparison 

with the GLS estimates and their standard errors, Table 6 gives the full set of OLS parameter 

estimates. Figures 25 and 26 show observed values and ordinary residuals versus ( )HBln  

respectively from the OLS fit with the fitted regression line shown in Figure 25 based on the 

parameter estimates in Table 6. Figure 27 corresponds to Figure 25 with the fitted model in 

the former case based on the estimates in Table 5. Figure 28 shows the marginal residuals 

(i.e. excluding the estimated random effects from fitted predictions) and Figure 29 the 

conditional residuals (i.e. including the estimated random effects in predictions) from the fit 

of the LMM versus ( )HBln . Figure 30 shows the random effects estimates 1b̂  versus 2b̂ . 

Figure 31 shows a histogram of the conditional residuals, ê , while Figure 32 shows 

histograms of 1b̂  and 2b̂ . 
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Table 5. Stand volume model parameter estimates and fit statistics for the 

GLS/OLS fit for linear/nonlinear parameters 

Parameter β0  β1  β2  γ  θ  

estimate   1.6750   0.7883   0.1340   2.4971  -0.8780 

standard 

error 

  0.0084   0.0013   0.0027   0.0919   0.1780 

fit 

statistics 

RSS{ln(V |b) 

)( 1bVar  

)( 2bVar  

),( 21 bbCov  

2σ  

Value 

/estimate 

2.075 (df=1409) 

 0.01163 

 0.00076 

-0.00275 

 0.00190 

 

standard 

error 

- 

0.00159 

0.00013 

0.00043 

0.00009 

 

 

Table 6. Stand volume model parameter estimates and 

fit statistics for the OLS fit for linear parameters 

Parameter β0  β1 β2  

estimate   1.6309   0.7953   0.1418 

standard 

error 

  0.0963   0.0055   0.0080 

fit 

statistics 

RSS{ln(V)} 

2σ  

value/estimate 

 

  6.769 

(df=1412) 

 

  0.004794 
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Stand mortality 

 

The proportional hazards model of Candy (1989, 1997) was fitted here. The model is given by 

 

ε+












 η−−= ∫

2

1

)(exp112

T

T
dttNM  (10) 

 

where 

 

M2  is the mortality on the plot between ages T1  and T2 , N1  is the number of live trees on the plot 

at age T1 , and )(tη  is the hazard function given by 

 

)exp()( 2

3210 ttSt β+β+β+β=η  

 

and ε  is a binomial error conditional on N1 . 

 

Candy (1989) fitted this model as a GLM with binomial error for M2  conditional on N1 , 

complementary log-log link, linear predictor 

 

2

3210 mm TTSO β+β+β+β+=η  

 

where 2/)( 12 TTTm += , 

 

and where O is an ‘offset’ given by )ln( 12 TT − . This model approximates the integral in model 

(10) using the mid-point rule and the observed measurement periods (Candy, 1986). Candy (1989) 

applied prior weights to scale the binomial error variance but this was not done here, instead model 

(10) was fitted initially simply as a standard GLM. 

 

Some screening of the data was required to exclude periods in which the mortality was too 

excessive to be due to regular mortality. For all 975 projection periods that had a site index 

estimate available, the maximum annual mortality rate (i.e. [ ]APTTMR )(/ 122 −=  where AP  is plot 

area in hectares) was 875 stems/ha. Projection periods for which R was greater than 250 stems/ha 
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were excluded giving 956 periods. Figure 33 shows signed deviance residuals (McCullagh and 

Nelder, 1989) versus age from the fit of model (10) as a GLM. If model (10) truly represents the 

systematic and random variability in M2  then the absolute value of each point in Figure 33 should 

have close to a chi-square distribution with single degree of freedom. The residual mean deviance 

was 1.397 which would normally indicate a lack of serious overdispersion. However, the majority 

of the values of M2  were zero (i.e. 717 out of 956 values) which makes the usual assumption that 

the residual deviance has an asymptotic chi-square distribution unlikely to be even approximately 

satisfied. Figure 34 shows the observed compared to predicted values of R and demonstrates the 

large influence of the substantial proportion of zero values of M2  on the predictive model.  

 

Figures 35 and 36 correspond to Figures 33 and 34 respectively with the difference being that the 

signed deviance residuals and predictions of R are based on the fit of model (10) with the zero 

values of M2  excluded (i.e. 956-717=239 values). Figure 37 corresponds to Figure 36 with the 

difference that predictions of R were based on the fit of model (10) as in Candy (1997) as a 

Generalized Linear Mixed Model (GLMM) using the marginal method of fitting (Breslow and 

Clayton, 1993) and the GenStat procedure GLMM. Model (10) was also fitted as a Heirarchical 

Generalized Linear Model (HGLM) (Lee and Nelder, 1996,2001) and gave similar results to the 

GLMM. Although, the HGLM is theoretically more appealing, since it only gives ‘subject-

specific’ parameter estimates, predictions must be obtained by integrating random effects out using 

their estimated distribution (Lee and Nelder, 1996; Candy, 2002). This makes implementing the 

HGLM unwieldy so it was not pursued here. The GLMM incorporated a conditional binomial error 

and a random plot effect, b, within the linear predictor so the hazard function is now  

 

)exp()( 1

2

3210 bttStb +β+β+β+β=η  

 

where 1b  has a normal distribution with variance 
2

1σ . The conditional (i.e. given 1b ) binomial 

variance is given by 1/)ˆ1(ˆ Npp −φ  where 1ˆ /
ˆˆ

1

NMp
b

=  are the conditional predictions. The value 

of the dispersion factor, φ , was set to unity. Table 7 gives the parameter estimates and some fit 

statistics. 

Given the condition that the parameter estimates for model (10) given In Table 7 are based only on 

periods that had non-zero mortality less than 250 stems/ha/yr, predictions in general will over-

estimate periodic mortality. 
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Table 7 Mortality model (10) parameter estimates and their standard errors 

Parameter     β0      β1      β2      β3  

estimate -5.4650  0.0336  0.3571 -0.0186 

standard error  0.6664  0.0220  0.0954  0.0072 

fit statistics

2

1σ  

φ  

value/estimate 

   0.3610 

 

     1.0 

 

Standard error 

   0.0790 

 

 

To give unbiased predictions, model (10) was combined with a model that predicts the probability 

of non-zero mortality. To construct this last model a binary variable, Y, was constructed whereby 

Y=1 for a projection period if R>0 and Y=0 if R=0. After screening potential predictor variables 

using Wald tests obtained from the VDISPLAY directive of GenStat (Genstat 5 Committee, 

1997a,b) the final GLMM model fitted, using the GenStat GLMM procedure (Payne et al., 1997) 

was  

 

( ) ( ) ( ){ }00 exp1/exp1Pr η+η==Y  (11) 

where 

05432100 . bSFFSNO A +α+α+α+α+α+α=η  

 

)ln( 12 TTO −= , AA PNN /1=  is the stocking (stems/ha) at the start of the period, F=1 if the plot 

has been thinned prior to age 1T  and F=0 otherwise, Y has a binomial distribution conditional on 

0b  and 0b  has a normal distribution with variance 
2

0σ . Table 8 gives the parameter estimates and 

some fit statistics obtained from the fit of the GLMM. 

 

To combine models (10) and (11) in order to predict R for 0≥R  the marginal predictions (i.e. 

setting 010 == bb ) are given by  

 

( ) ( ) ( ) ( ) ( )0Pr01Pr1 222 ==+=== YYMEYYMEME . 

 

However, since the second term on the right hand side of the above equation is zero the model 

simplifies to 
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( ) ( ) ( )1Pr122 === YYMEME  (12) 

 

where ( )12 =YME  is given by model (10) with parameter estimates given in Table 7 since these 

estimates represent the fit with zero values of M, and thus R, excluded. The values of 

( )1Pr =Y are obtained from model (11). Figure 38 shows observed and predicted values of R 

obtained from model (12) where the observed values of zero are included. 

 

Table 8 Occurrence-of-Mortality model (11) parameter estimates and their  

standard errors 

Parameter     0α      1α      2α      3α      4α      5α  

estimate -6.1660  0.7306 0.000402  0.1702 -9.0630  0.2423 

standard error  0.9652  0.2404 0.000162  0.0350  3.2830  0.1039 

fit statistics

2

0σ  

φ  

value/estimate 

  0.441 

 

  1.0 

 

Standard error 

  0.180 

 

 
 

Figure 39 shows histograms of the estimated random effects from the fits of model (10) and model 

(11). 

 

The values of Y were accumulated in six classes where these classes were allocated by dividing the 

estimated values of the linear predictor, 0η̂ , from model (11) into classes with cut-points of -2,-1,-

0.5,0.0, and 0.5. The proportion of the Y’s that were one versus the class median value of the linear 

predictor is shown in Figure 40 along with the predicted curve obtained from model (11). The 

fitted curve in Figure 40 is not expected to be a least squares fit to the class proportions since 

model (11) was fitted to the binary data values and included random plot-effect estimates. 

However, examining Figure 40 is useful in confirming the general trend in Pr(Y=1) with predictor 

variables as quantified by model (11). 

 

Figure 41 shows predicted stocking curves for unthinned stands with 3000, 2000, and 1000 initial 

stems per hectare at age 3 for each of site indices 20 and 30. The curves in Figure 41 were 
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constructed by combining models (10) and (11), as given by (12). Using annual intervals, model 

(10) was evaluated using the mid-point rule to evaluate the integral ∫ η
2

1

)(
T

T
dtt  in the same way that 

the GLM and GLMM models were fitted (i.e. via the offset and the mid-points given by mT ). 

Stocking was updated at the end of each annual projection period as a required input to model (11). 

Since stocking and projection period length are included as a predictor variables in model (11), 

then the combined model (12) is path-variant. Path-variance means that projection of stocking 

between ages 1T  and 3T  in a single step rather than projecting to an intermediate age, say 2T  

(where 321 TTT << ) and then to age 3T  in a second step will result in different estimates of 

stocking. If model (11) was replaced by the following generalized logistic model (Monserud 1976) 

with the stocking and O terms dropped from the linear predictor 

 

( ) ( ){ } ( )12

0exp10Pr
TT

Y
−−η−+==  

 

and with (12) redefined  

 

( ) ( ) ( )[ ]0Pr1122 =−== YYMEME  

 

then the combined model is path-invariant. However, there was a significant reduction in 

goodness-of-fit when stocking was removed from model (11) (deviance increase of 7.2; P<0.01 cf: 

chi square distribution with single degree of freedom). When the stocking term was included in the 

above generalized logistic model the residual deviance was greater by a value 4.2 (P<0.05) 

compared to that of model (11). 

 

It was found that the two-level ‘thinning status’ factor (measurement periods that were not 

preceded by a thinning versus those that were) and its interaction with the age and site index terms 

in model (10) were not significant for the restricted data set defined by 0<R<250.  However, the 

thinning factor and its interaction with site index were significant in model (11) (Table 8). The 

overall improvement in combining models (10) and (11) to give predictions via (12) compared to 

simply fitting model (10) (with separate parameters for each level of the thinning factor) for the 

data set including the zeros was measured by the reduction in the residual (marginal) deviance. 

The residual deviance was reduced from 1343 to 1331 for model (12) predictions. The larger 

deviance was calculated using model (10) predictions for the 956 values of M as obtained by 
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fitting the model as a marginal GLMM to allow a fair comparison (i.e the GLM fit is designed to 

minimize the marginal binomial deviance). The improvement in fit is not very large, but as noted 

by Woollons (1998), modelling zero and non-zero mortality separately facilitates the exploration 

of candidate models. The parameter estimates for the version of model (10) with the thinning-

status factor included, redefined as model (13), and calibrated with the zero values included in the 

data, are given in Table 9. These estimates were obtained from the GLMM fit mentioned above 

where model (13) is given by. 

 

bTFTFSFFTTSO mmmm +β+β+β+β+β+β+β+β+=η 2

7654

2

3210 ...  (13) 

 

where F was defined for model (11) and b is a random plot effect. Figure 42 shows the observed 

and predicted values of R obtained from the fit of model (13) while Figure 43 shows the histogram 

of estimated random effects. Figure 44 shows predicted stocking curves calculated from model 

(13). 

 

Table 9 Mortality model (13) parameter estimates and their standard errors 

Parameter    β0    β1   β2    β3     4β    5β     6β    7β  

estimate -11.0106  0.1630  0.5520 -0.0309 -26.9716  0.3764   3.2941 -0.1833 

S.e.   0.8629  0.0278  0.0943  0.0070   4.8488  0.0913   1.0859  0.0736 

fit statistics

2

1σ  

φ  

value/estimate 

   0.964 

 

   1.0 

 

Standard error 

   0.161 

 

 

It can be seen from Table 7 that the standard errors for the parameter estimate of 1β  indicate that 

the site index term in model (10) may not be significant. However, this term should be retained 

since self-thinning is a priori more intense at earlier ages in highly stocked stands on high quality 

sites relative to lower quality sites (Candy 1989). In addition, the site index term and its interaction 

with thinning status are both highly significant in model (11) and the site index term is highly 

significant in model (13) (Table 9). Overall the site index effect appears to be stronger in model 

(12) compared to model (13) (Figure 45). 
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The recommendation of which model should be implemented is not obvious. The path-variant 

model (12) (based on combining models (10) and (11) with parameter estimates given in Tables 7 

and 8) can be implemented with annual steps used to update stocking as used to construct Figure 

41. Alternatively, the path-invariant model (13) [note that model (10) is in theory path-invariant by 

way of the integral ∫ η
2

1

)(
T

T
dtt ] using parameter estimates from Table 9 could be implemented. 

Woollons (1998) notes that models such as (11) can be implemented stochastically by using a 

random uniform number in the [0,1] interval to determine if a projection interval, such as the 

annual steps used to construct Figure 41, is assigned zero mortality. If for that interval non-zero 

mortality is assigned then model (10), using Table 7 parameter estimates, can be directly applied. 

 

Discussion 

The single asymptote polymorphic site index curves given in Figure 5 depend as expected 

very strongly on the estimate of the single asymptote. The estimated asymptote of 41.4 m 

seems unrealistically low given that the largest value of PDH of 39.7 was obtained at age 22. 

There were a number of PDHs above 36 m for stands ranging in age from 19 to 22. Further 

work could be carried out to determine the effect of site-dependent variables such as altitude, 

latitude, and other variables that determine physiological determinants of growth (such as 

average temperature, number of frost days) on the shape and asymptote of the PDH versus 

age trajectory. 

 

The site index term in the asymptote of the BA projection model was found to be negative and 

statistically significant. Such a negative term in the asymptote can be considered counter-intuitive 

although it was described earlier how such a negative effect of site index can occur in a stand basal 

area projection model. A similar negative trend was also estimated as significant for P. radiata 

PSPs in Tasmania (Candy, 1989, 1997b) with that data being much more substantial in terms of 

number of plots and age range than the data used here. Despite this, applications of the projection 

model that ‘unlink’ site index and stand basal area can give nonsensical BA projections. It would 

be more reassuring to have either a positive or non-significant site index term. The deviations from 

the final BA projection, model (4,5c), when expressed in terms of current annual increment are 

noisier than expected as discussed earlier. In comparison, the model calibrated using only 

Tasmania data had variance component estimates that were substantially smaller than those given 

in Table 4. In addition the trends in random effects obtained from the fit of model (4,5c) were 

reverse of those seen in Figure 17. The large latitudinal range of the New Zealand PSPs of almost 
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11 degrees compared to a 3.5 degree range for mainland Tasmania could explain the large 

variability in model deviations. Further work, possibly employing a site-productivity measure 

predicted from physiologically-based models such as 3PG to replace or augment the site index 

term is recommended in order to improve the precision of predictions. 

 

The failure of the Schumacher model to accurately predict stand volume as a function of PDH and 

stand basal area is unusual. Also the change of slope in the relationship between stand volume and 

ln(MDHxBAlive) seen in Figures 25 and 27 is difficult to explain. For example the change of 

slope was not due to thinning since when measurements at and after a thinning were excluded (i.e. 

293 measurements) the graph of observed and fitted values versus ln(MDHxBAlive) did not 

change noticeable from Figures 25 or 27. 

 

Mortality is one of the most difficult stand characteristics to model satisfactorily. The lack of older 

age measurements (i.e. > 20 years) available for model calibration results in a lack of confidence in 

predictions from either model (12) or (13) at ages greater than 20. If such data were available it 

might show that the stocking curves converge to a single lower asymptote independent of initial 

stocking (i.e. at age zero) (Xue and Hagihara, 2002) rather than separate asymptotes as seen in 

Figures 41, 44, and 45. The equivalent figure to Figure 44 given in Candy (1989, Fig.3) suggests 

that this hypothesis of a common asymptotic stocking has some support with the qualification that 

this asymptote, although independent of initial stocking, may depend on site index. 
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Appendix 1: Projection stand basal area from an inventory 

Two types of predictions of 2B  given model (4,5c) were given above, plot-specific predictions 

given by ( )




 ∧
)ˆ(

2lnexp bB  and average-plot predictions ( )





=

∧

22 lnexpˆ BB . In application of model 

(4,5c) to projecting a set of inventory plots within a forest patch or compartment from the 

measurement age to a later harvest age, then plot-specific predictions are not available since 

estimation of 1b  and 2b  is not possible for the inventory plots. The average-plot predictions are 

available since these are obtained by setting 1b  and 2b  to zero as described above. However, 

population-average (PA) predictions can also be obtained using a bivariate normal distribution for 

1b  and 2b , with variance-covariance matrix D for which estimates of its elements are given in 

Table 5, and the following integration: 

 

( )





= 2

~

2 lnexp
~

BB  

 

 

where 

 

( ) ( ) ( ) ( ){ } 2121

1

212
1

,

2122

~

,,exp,ln
2

1
ln

12

2

1

dbdbbbbbbbBB
T

bb

−
∧

−
−

π
= ∫∫ DD . 

 

Since the joint distribution of the random effects can be expressed from Bayes Theorem as 

( ) ( ) ( )22121 ., bfbbfbbf = , model (4,5c) is linear in 1b , and the expected value of 1b  is zero then 

the above integral can be simplified to  

 

( ) ( ) { }∫ σ−=
πσ

=
∧

2

2

2

22

2

22
1

212
2

22

2

~

/exp,0ln
2

1
ln

b

dbbbbBB  (A1). 

 

 

The question arises then as to which estimate of the two possible predictions 2B̂  (average-plot 

estimate) or 2

~
B  (population-average estimate) should be used in ‘growing on’ a sample of 

inventory plots for a given area of forest. There are two methods of growing on a sample of 
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inventory plots with each method suggesting the most appropriate of the two types of predictions. 

If each inventory plot is grown-on to age 2T , then it is recommended that PA predictions, 2

~
B , are 

calculated, requiring the above integral (A1) to be evaluated for each plot, and the average of the 

resultant sample of 2

~
B ’s then used to represent the average stand basal area per hectare at age 2T . 

If however, an average of the plot attributes at age 1T  is used to provide an ‘average plot’ which is 

then grown-on to age 2T , then the average-plot prediction 2B̂  should be used to represent the 

average stand basal area per hectare at age 2T . 

 


