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The prediction of site mean internode index (IIX) from estimates of mean internode length (MIL) in
Standpak presently uses a single logioMIL model for all sites and genetic material. The development
of a MIL/ IIX relationship using a logistic sigmoidal model derived from nationally aggregated data
increased the accuracy of stand mean IIX prediction, particularly at high and low levels of MIL.
Prediction of individual log IIX from estimates of site mean IIX are presently made in Standpak
using a three-way distribution which calculates percentage of logs with IIX=0, 0 <IIX < 0.2182, and
IIX > 0.2182, and the mean IIX of logs with IIX > 0.2182. Using the extended branch database the
three-way distribution was refitted, and additional predictive equations developed to allow users to
define a threshold IIX for grading. Simple regression equations were also developed to enable
prediction of percentage of logs, and mean IIX of those logs, greater than a user-defined threshold
ITX. The models developed appear to be reasonable predictors of site mean IIX, and mean IIX for
aggregations of logs in the three-way distribution. Models were validated using second log
internode length data collected from nine Genetics and Tree Improvement progeny trials across New
Zealand (Turner et al. 1997). Validation showed that there is no bias in estimates of the percentage
of logs with 0 < IIX < threshold. All the models for estimating mean IIX, and percentages and
means of logs with IIX > threshold were not biased by stocking or genetic improvement. The
models developed are to be incorporated into Standpak to enable users to predict log IIX from their
own estimates of stand MIL.

Objective: To improve the prediction of individual log internode index (IIX) from estimates of
mean internode length (MIL).



PREDICTION OF INDIVIDUAL LOG INTERNODE INDEX FROM ESTIMATED
STAND MEAN INTERNODE LENGTH

INTRODUCTION

Silvicultural practices involving radiata pine in New Zealand have placed an emphasis
on the production of clearwood (knot-free wood) by pruning the butt log and carrying
out early thinnings to increase diameter growth on pruned trees (Sutton 1984). These
practices have been warranted because of the relatively large size and persistence of
branches in unpruned radiata pine, and the financial premiums that are placed on clear
wood. These premiums also apply to clear cuttings, which when combined with
improvements in timber utilisation technology, have allowed the present processing of
short clear lengths. With this technological ability it has become apparent that the
unpruned second log and even third log may yield substantial volumes of clear
cuttings from internodes, therefore, there has been an increasing interest in accurate
prediction of mean internode length (MIL), internode index (IIX) and hence, clear
cuttings from internode lengths in radiata pine.

Mean internode length (MIL) and internode index (IIX) are measures of the level of
clear cuttings within a log. IIX specifically relates to the proportion of a log length
which is made up of clear cuttings of 0.6 m or greater. MIL (Figure 1) and IIX (Figure
2) are calculated by the equations given below:

Zlength (m) of internodes in branched section of log

1L =
M number of internode lengths in branched section of log

Z(internode lengths > 0.6m)

X =

11.8m

MIL=0.92m

6.3 m

Figure 1: Mean internode length (MIL) calculation.
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Figure 2: Internode index (IIX) calculation. Note that only those internode length
measurements shown in bold (= 0.60 m) were used in the calculation of IIX.

While IIX provides a more useful measure of the potential to cut clears from a
branched log, it is expensive to make the internode length measurements necessary to
calculate IIX. Estimates of MIL are, however, more readily estimable, using whorl
counts and estimates of average whorl depth (Woods & Carson 1988). From these
parameters MIL may be calculated using the following formulae (Woods & Carson
1988):

_1—(n><d)

MIL="""173

where MIL is mean internode length for the log length measured;
I is the length of stem or log being measured,;
n is the number of branch and/ or stem cone whorls per length of stem or log
being measured;
d whorl depth (estimated);
[ is the number of times for each stem or log that the end of the indicated "log"
does not coincide with a branch or stem cone whorl, ie., 0, 1, or 2.
The use of functions to allow prediction of IIX from whorl count based MIL estimates
allows relatively cheap prediction of potential clear cuttings from a stand.

Prediction of IIX for logs from MIL estimates within Standpak (Figure 3) is a two step
process. First, the stand level IIX is estimated from MIL (Log Making Module). Then
X for each log within the stand is calculated based on the expected distribution of
individual log IIX within the stand (Log Grading Module) (Figure 4).
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Figure 3: Flow diagram showing steps taken by Standpak in the calculation of
individual log IIX for log grading. Boxes shaded grey are user inputs. Boxes shaded
black are Standpak outputs used to grade logs.
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Figure 4: The individual log internode index (IIX) estimation modelling process,
illustrated using two stands as examples.



Step 1: Prediction of Stand Average IIX from MIL
Two equations are presently available for the prediction of stand average internode
index (IIX) from mean internode length (MIL). The equation currently used in
STANDPAK and developed by Whiteside (unpubl.) is (Figure 5):
IIX = (1.343(log1o(MIL))) + 0.7697 [Equation 1]

with the constraint:
if (IIX) < 0.0 then IIX =0.0

Another equation, derived by Woods and Carson (1988) for improved breeds, is
(Figure 5):

X =-0.0731 + 0.8904(MIL) [Equation 2]

Woods and Carson (1988) developed four separate equations for predicting IIX from
MIL for:

¢ long internode breed at Woodhill,

e all other breeds at Woodhill;

e long internode breed on other sites;

e other breeds and other sites.
These four equations all have the same slope for the MIL/ IIX relationship, however,
they differ in their intercept.
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Figure 5: Woods and Carson (1988) linear model and the log;oMIL model, developed
by Whiteside (unpubl.), and used in Standpak, plotted against data collected by Inglis
and Cleland (1982).




The fitting of linear regression and log;oMIL equations to MIL/ IIX data appears to be
inappropriate particularly for predicting IIX at high levels of MIL (Figure 5). Both the
linear regression model (Woods & Carson 1988) and the log;o model (Whiteside
unpubl.) over-predict IIX for high levels of MIL, while the linear model also over-
predicts IIX for low levels of MIL and the logio model under-predicts IIX for low
levels of MIL. Data from an extended branch database enables validation of the
present model implemented in Standpak, and the opportunity to develop a sigmoidal
model for prediction of IIX from MIL.

Step 2: Individual Log IIX Prediction
At present STANDPAK estimates individual log IIX from stand average IIX using a
three-way distribution (Whiteside unpubl.).
Percentages of Logs
The three-way distribution estimates percentages of logs with:

o JIX=0;

e 0<IIX<0.2182;

o IIX>0.2182;

using the following respective equations:
(%I1X=0) = -70.03log;o( 11X )-21.5 [Equation 3]
(%IIX > 0.2182) = 183.42( (IIX)) [Equation 4]
(0 < %IIX <0.2182) = 100 - (%IIX=0) - (%IIX > 0.2182) [Equation 5]
Mean IIX for Logs

The mean IIX for logs with IIX > 0.2182 and 0 < IIX < 0.2182 are given by the
following equations:

100(IX) — 0.132(0 < %IIX < 0.2182)
(%IIX > 0.2182)

X >0.2182= [Equation 6]

(0< %IIX<0.2182)=0.132 [Equation 7]

The availability of new data allows the opportunity to further improve prediction of
the three-way distribution of individual log IIX. To improve flexibility in specifying
three-way distribution estimates of percentages of logs, the option of a user-defined
threshold rather than a set IIX of 0.2182 will also be explored (Figure 6).
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Figure 6: Flow diagram showing steps taken by Standpak in the calculation of
individual log IIX for log grading including a user-defined threshold IIX. Grey boxes
are user inputs. Black boxes are Standpak outputs used to grade logs.

DATABASE

The extended branch database (Inglis & Cleland 1982; Tombleson et al. 1990;
Knowles & Kimberley 1992; Kimberley & Knowles 1993; McInnes 1997) from which
internode length data was derived for this study, contained a total of 4001 logs, from 6
log classes (Table 1), with most of these being second or third logs. An ANOVA
identified no significant (p>0.05) difference in the MIL/ IIX relationship between log
classes using the equation currently implemented in Standpak (Whiteside unpubl.).
Analyses were, therefore, performed with all log classes amalgamated.

Table 1: Log height classes used in the study.

Number of Logs Height
First 36 0.3-5.8
Second 567 5.8-11.3
Third 581 11.3-16.8
Fourth 169 16.8-22.3
Fifth 152 22.3-27.8
Sixth 106 27.8-33.8

All first logs which had not been measured for internode length from 0.2-0.3 m were
assumed to have been pruned and were therefore discarded from the dataset. 690 of
the second logs (17% of all the logs in the database) contained in the database had
been partly pruned. No information was available identifying exactly where logs were
pruned to. It was, therefore, assumed that second logs which had over 1.2 m from the
log end to the first whorl had been partly pruned. These logs were discarded from the



data set as IIX calculated for them would be incorrect. The removal of these logs adds
a potential bias against long internode trees if the actual log end is greater than 1.2 m.

The final dataset of 3 473 logs contained internode length data for 35 sites. 94% of the
log data came from forest sites, and the remaining 6% from farm sites. The sites cover
a wide spread of average MIL and IIX (Table 2). Genetic material represented in the
database ranged from GF7 to GF14, and includes long internode’ (LI) material (Table
3).

Table 2: Number of logs measured, site mean internode length (MIL), and site mean
internode index (IIX) for individual locations.

Location Site Type  No. of Logs
Auckland 307 037 0.18
Aupouri forest 56 036 0.21
Whangapoua forest 106 040 0.21
Whatawhata farm 20 026 0.08
Woodhill forest 125 037 0.16
Rotorua 1934 043 0.27
Goudies forest 23 040 024
Kaingaroa forest 691 041 0.21
Matea forest 28 0.37 0.24
Ngatira (LI)* farm 46 0.67 0.49
Ngatira (GF14) farm 59 042 022
Northern Boundary  forest 220 043 0.30
Omataroa forest 108 046 0.37
Rotoehu forest 182 044 0.27
Tarawera forest 408 047 0.34
Tikitere farm 59 034 0.15
Waimihia forest 58 034 0.21
Waratah forest 27 035 0.15
Whakarewarewa forest 25 043 0.33
Hawkes Bay 136 040 0.24
Gwavas forest 64 039 0.23
Mohaka forest 72 041 0.25
Wellington 112 033 0.16
Ngaumu forest 45 038 0.23
Waitarere forest 67 030 0.11
Nelson 48 0.44 0.30
Golden Downs forest 48 0.44 0.30
Westland 369 0.54 045
Mawheranui forest 26 0.56 049
Nemona forest 47 050 0.39
Tawhai forest 199 0.58 0.52
Waimia forest 97 045 034

! The LI material in the database is not from the “870” series selection, but is from a climbing select
(open pollinated) collection by Tony Shelbourne made of the parents in the “870” selection series
which emphasised long internodes (Knowles pers. comm.).

2 Branch habit measurements made at Ngatira are from a trial containing a long internode’ seedlot.



Canterbury 121 044 0.30
Ashley forest 38 042 024
Geraldine forest 33 047 036
Hanmer forest 50 043 0.30
Southland 446 046 0.34
Beaumont forest 42 043 031
Berwick forest 157 044 0.31
Dusky forest 42 048 0.40
Hokonui forest 29 046 0.33
Longwood forest 34 041 030
Otago Coast farm 16 045 0.32
Otago Coast forest 74 050 0.38
Slopedown forest 52 0.53 041

Table 3: Number of logs in the branch database by genetic origin.

Genetic Material Number of Logs

unknown 401
GF7 2742
GF12 25
GF14 259
LI 46

A ‘validation’ data set was formed from second log (6.3 to 11.8 m) internode length
data collected from ten Genetics and Tree Improvement progeny trials across New
Zealand (Turner et al. 1997).

Table 4: Summary details of the 'validation' data set, including site average mean
internode length, and internode index.

Region Forest Cpt  Genetic Material No. of Logs
Auckland sands Woodhill GF14 398 0.34 0.11
Rotorua Kaingaroa 1350 GF16 96 0.54 0.32
Kaingaroa 905 GF14 111 0.48 0.26
Kaingaroa 905 LI 103 0.64 045
Kaingaroa 327 GF14 351 0.54 0.35
Awahohonu GF14 107 046 0.26
Nelson Golden Downs GF14 336 0.59 0.38
Canterbury Eyrewell GF14 320 0.40 0.23
Westland Mawheranui GF14 107 0.47 0.34
Southland Taringatura GF14 109 0.53 0.31




ANALYSIS

Prediction of Stand Average IIX From MIL
Five models were compared, by location, for their fit to the MIL/ IIX data:

1. the present LOG;o model used in STANDPAK (Equation 1)
(Whiteside unpubl.);

2. the four linear models (Equation 2) developed by Woods and
Carson (1988);

3. alogistic sigmoidal model (Equation 8);

4. a logistic sigmoidal model calculated from the data set as a whole
(Equation 8).

5. a Morgan, Mercer, Flodin sigmoidal model (Equation 9)
(Ratkowsky 1989);

[ o+ BMIL
IX=A ———F5 |+7 [Equation 8]
14 % SMIL
[ fe” +aMIL
X = L%] A [Equation 9]

where IIX is internode index;
MIL is mean internode length (m)
o, B, 8, v, A are coefficients estimated from the data

The linear and log;o models were fitted using PROC REG, and the sigmoidal models
were fitted using PROC NLIN in the SAS system (SAS Institute 1986). The five
models were compared for their fit to the data in terms of their root mean square error
(RMSE). The fit of the best model was then checked for biases in IIX estimates across
regions by plotting residuals against MIL.

Individual Log IIX Prediction
Prediction of individual log IIX from stand average IIX is based on a three-way
distribution of IIX. This three-way distribution requires the prediction of mean IIX
and percentage of logs for the three aggregations. At present this three-way
distribution is set as:

o IIX=0;
e 0<IIX<0.2182;
e IIX>02182;

To improve the flexibility of log grading by IIX the option of allowing users to define
a threshold TIX, rather than being restricted to an IIX of 0.2182 as set by Whiteside
(unpubl.), was explored. Analyses were therefore performed to enable the prediction
of mean IIX and percentage of logs for the following three aggregations:

o [IX=0;

o (0 <IIX< threshold,

o IIX > threshold,
where threshold is a user-defined IIX.



Percentages of Logs
Prediction of the percentage of logs with IIX = 0 is derived from stand mean IIX using
a simple regression equation fitted with PROC GLM in the SAS system (SAS
Institute 1986). Prediction of the percentage of logs with IIX > threshold, is clearly
dependent on the user-defined threshold. For a particular threshold, the relationship
between stand mean ITX and percentage IIX is derived from a regression equation with
the slope (B) and intercept (o) being different depending on the threshold level set.
Prediction of percentage IIX for different user-defined thresholds required prediction
using simple regressions of o and [ from the threshold fitted with PROC GLM in the
SAS system (SAS Institute 1986).

Mean IIX of Logs
The mean IIX for each aggregation was derived from simple linear regression
equations and basic arithmetic equations. Mean IIX for logs with 0 < [IX < threshold
was determined from regression equations based on the user-defined threshold
developed using simple regression techniques fitted with PROC GLM in the SAS
system (SAS Institute 1986).

Validation of the models developed was performed by residual analysis on a
‘validation’ data set which was comprised of internode length measurements from a
separate study of internode length habit in “850” families planted in progeny trials
across New Zealand (Turner et al. 1997).

RESULTS AND DISCUSSION

Prediction of Stand Average IIX From MIL

The three basic model types; linear, logo, and sigmoidal differ in how they fit the data
(Figure 7). The linear model (Woods & Carson 1988) over-predicts IIX for high and
low MIL. The log;o model (Whiteside unpubl.) reduces the level of over-prediction of
IIX at high and low MIL, however, it still over-predicts, particularly at high MIL. Both
models may also give nonsensical answers for IIX, ie., IIX greater than 1 are possible.
The logistic sigmoidal model overcomes the problems of over-prediction, as well as
giving logical estimates of IIX such that IIX can not be greater than 1.

10
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Figure 7: A subset of the internode length data (Inglis & Cleland 1982) with linear,
logio and logistic sigmoidal models plotted. The Morgan, Mercer, Flodin sigmoidal
has not been plotted because of its similarity to the logisitc sigmoidal curve.

The fit of the 5 equations to the data set was compared by comparing the root mean
square error (RMSE) of regressions for each of the regions, locations and site types
(Table 4). The sigmoidal model was found to be better than the linear equation on all
but seven sites:- Woodhill, Geraldine, Matea, Waimihia, Waratah, Whakarewarewa,
and the Otago Coast farm site. The sigmoidal model was also found to be better than
the logjp model on all but 9 sites. Geraldine, Hanmer, Waratah, Whakarewarewa,
Hokonui, Longwood, the Otago Coast farm site, Ngaumu, and Mawheranui. The
sigmoidal was better than the Morgan, Mercer, Flodin sigmoidal on all but three
sites:- Golden Downs, Waratah, and Berwick. The overall national model derived
using data from all sites, was found to be only marginally less precise at predicting ox
for the different locations than the individual location sigmoidal models, and is
expected to be more robust in use.
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Table 5: Comparison of root mean square error (RMSE) for individual locations from
linear, logarithmic, Morgan, Mercer, Flodin sigmoidal, logistic sigmoidal and from a
national model based on a sigmoidal function.

Region Location Site Type Linear Logarithmic Morgan etal  Sigmoidal = National Sigmoidal
Sigmoidal
Auckland 0.094 0.104
Aupouri forest 0.110 0.118 0.114 0.109 0.112
Whangapoua forest 0.091 0.105 0.094 0.089 0.108
Whatawhata farm 0.078 0.088 0.085 0.055 0.080
Woodhill forest 0.086 0.088 0.087 0.087 0.105
Rotorua 0.112 0.113
Goudies forest 0.071 0.072 0.073 0.061 0.072
Kaingaroa forest 0.115 0.106 0.109 0.100 0.110
Matea forest 0.089 0.097 0.094 0.090 0.102
Ngatira (LI)> farm 0.160 0.137 3 0.133 0.140
Ngatira (GF14) farm 0.116 0.103 2 0.101 0.111
Northern Boundary forest 0.125 0.119 0.122 0.116 0.117
Omataroa forest 0.114 0.112 0.113 0.111 0.130
Rotoehu forest 0.123 0.109 0.101 0.101 0.105
Tarawera forest 0.133 0.124 0.127 0.116 0.119
Tikitere farm 0.095 0.098 0.096 0.093 0.095
Waimihia forest 0.128 0.131 0.130 0.129 0.135
Waratah forest 0.097 0.101 0.102 0.102 0.107
Whakarewarewa forest 0.109 0.109 2 0.114 0.124
Hawkes Bay 0.098 0.099
Gwavas forest 0.110 0.095 0.104 0.088 0.090
Mohaka forest 0.116 0.116 0.114 0.107 0.109
Wellington 0.092 0.096
Ngaumu forest 0.110 0.106 0.111 0.108 0.113
Waitarere forest 0.089 0.092 0.089 0.079 0.086
Nelson 0.116 0.120
Golden Downs forest 0.137 0.123 0.115 0.116 0.120
Westland 0.111 0.122
Mawheranui forest 0.108 0.103 0.110 0.106 0.126
Nemona forest 0.137 0.121 0.118 0.117 0.123
Tawhai forest 0.134 0.112 0.125 0.106 0.128
Waimia forest 0.119 0.115 0.118 0.114 0.117
Canterbury 0.105 0.108
Ashley forest 0.123 0.094 0.112 0.088 0.090
Geraldine forest 0.107 0.105 0.109 0.107 0.109
Hanmer forest 0.123 0.118 0.124 0.120 0.126
Southland 0.118 0.123
Beaumont forest 0.133 0.109 0.126 0.105 0.116
Berwick forest 0.130 0.119 0.116 0.116 0.118
Dusky forest 0.170 0.152 0.168 0.145 0.173
Hokonui forest 0.092 0.084 0.092 0.084 0.102
Longwood forest 0.153 0.148 0.155 0.150 0.162
Otago Coast farm 0.105 0.106 0.113 0.108 0.112
Otago Coast forest 0.152 0.119 0.139 0.111 0.120
Slopedown forest 0.129 0.116 0.124 0.111 0.120

3 A root mean square error (RMSE) could not be calculated for this model as PROC NLIN failed to

converge.
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These results indicate that to predict IIX from stand mean MIL, the logistic sigmoidal
model is better than the linear, logjo, and Morgan, Mercer, Flodin sigmoidal model
types. The logisitic sigmoidal model can be used on a national basis without a high
level of error, therefore there is little advantage in deriving equations for individual
forests. The differences between actual and predicted IIX (residuals calculated as
actual-predicted) were plotted against MIL for each region (Figures 6 to 13) to
examine for any levels of MIL for which bias occurred. These figures suggest that the
error in predicting IIX using the national logisitc sigmoidal model can be expected to
fall within = 0.4.
Auckland Region
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Figure 8: Errors in predicted IIX for Auckland region using the logistic sigmoidal
model.
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Figure 9: Errors in predicted IIX for Canterbury region using the logistic sigmoidal
model.
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Figure 10: Errors in predicted IIX for Hawkes Bay region using the logistic sigmoidal
model.
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Nelson Regicn
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Figure 11: Errors in predicted IIX for Nelson region using the logistic sigmoidal

model.
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Figure 12: Errors in predicted IIX for Rotorua region using the logistic sigmoidal

model.
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Southland Regicn
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Figure 13: Errors in predicted IIX for Southland region using the logistic sigmoidal
model.
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Figure 14: Errors in predicted IIX for Wellington region using the logistic sigmoidal
model.
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Figure 15: Errors in predicted IIX for Westland region using the logistic sigmoidal

model.

Prediction of Log IIX from Stand Average IIX

The present method of prediction of individual log IIX uses a three-way distribution.
Exploration of the distribution of individual log IIX (Figure 16) suggested that the
fitting of an appropriate density function to the IIX data may not be possible due the
high variability in the IIX distribution (Figure 16). Prediction of individual log IIX
was therefore made through the adjustment of the log IIX predictive models presently
in Standpak using the extended branch database.
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Figure 16: Percentage frequency distribution of individual log IIX for the study’s
dataset. Note that the percentage of logs with IIX=0 is not shown on the plot. Dashed
lines indicate the user-defined threshold used in Table 6 below.
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Percentage of Logs
The relationship between site mean IIX and percentage frequency of logs for which
IIX=0 was refitted using the extended branch habit database. Site average IIX was
transformed using the natural log, as for the model presently in Standpak (Whiteside
unpubl.), with the form of the refitted model being (Figure 17):

(%IIX=0) = -70.03loglo(ﬁ )-21.5 [Equation 10]
with the constraint: if (%IIX=0) < 0.0% then (%1I1X=0) = 0.0%

This model has an R? of 0.89 and a root mean square error (RMSE) of 4.61.

The equation for prediction of the percentage frequency of logs for which
X > threshold from site mean IIX was refitted using the extended branch habit
database. Site average IIX was transformed using the square root, as for the model
presently used in Standpak (Whiteside unpubl.). The slope () and intercept (ct) of the
‘site mean IIX and percentage IIX > threshold’ relationships differ depending on the
threshold set (Table 6 and Figure 16).

Table 6: Intercept (o), slope (), coefficient determination (R?), and root mean square
error (RMSE) for regression equations relating percentage frequency IIX > threshold
to the square root of site mean IIX.

Threshold 11X o B R? RMSE
0.15 -34.91 184.62 0.95 3.99
0.30 -53.77 183.18 0.91 5.67
0.45 -58.88 156.65 0.90 4.59
0.60 -47.02 107.29 0.75 4.81

100 T e IIX=0
m IIX>0.15 -
90 T A 1IX>0.30 T "
x 1IX>0.60 L a
80 T | - -_ sqrt. (IIX>0.15) . i/’ 4
—_Ssqrt. (X > 0.30) .= "= —
70 — -sqrt. (IX > 0.60) e " - -
n - Log. (IIX = 0) ] /’/ i . N A/‘A/
cymmer YL

Percentage Frequency
IN 133
o o

[
o
|
T

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
Site Mean IIX

Figure 17: Relationship between site average IIX, and percentage frequency of logs

with IIX=0, IIX > 0.15 IX > 0.30 and IIX > 0.60. Trend lines were fitted using
regression analysis.
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To allow users to define the threshold IIX, relationships between the user-defined
threshold, and slope (B) and intercept (o) of the ‘site mean IIX/ percentage frequency’
relationships (Table 6 and Figure 17) were developed using regression analysis (Table
7, Figures 18 and 19).

Table 7: Intercept (ar), slope for the IIX term (B,), slope for the IX* term B,
coefficient determination (R%), and root mean square error (RMSE) for regression
equations relating IIX threshold to the slope and intercept of the ‘site mean IIX/
percentage frequency’ relationship.

2 RMSE
Slope 144.24 303.76 -597.23 0.98 9.10
Intercept 18.57 -369.03 428.99 0.94 4.86
200 T .

2
o 100
]
80 +
60 T+
40 +
20 1 y = -597.23x + 303.76x + 144.24 .
R%=0.9796
0 + + + . + . ]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Threshold 11X

Figure 18: Relationship between rhreshold IIX and slope (B) of 'site average IIX/
percentage frequency' relationships with a regression trendline fitted.

0 + + + + + t + {
0.1 0.2 0.3 0.4 0.5 0.6 0.7 8
.

10+ y = 428.99% - 369.03x + 18.573
R? = 0.9444

-20
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-70 + Threshold X

Figure 19: Relationship between threshold IIX and intercept (o) of 'site average IIX/
percentage frequency’ relationships with a regression trendline fitted.
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Mean IIX of Logs
The mean IIX for the IIX=0 class of the three-way distribution is 0. The mean IIX for
IIX > threshold was derived from the basic arithmetic equation:

[(1 00 x ﬁ) - ((% log s(0 < IIX < threshold)) x (ﬁ logs(0 < IIX < threshold)))]
[% log s(ITX > threshold)]

Prediction of the mean IIX for the 0 < IIX < threshold class, was derived from three
regression equations (Figure 20 and Table 8) relating mean IIX to the user-defined
threshold, and differentiated on the basis of site internode length habit (short,
medium, long). For long and medium internode length site types a linear equation was
used. For short internode length sites a natural log transformation of threshold IIX was
performed.

0.45 T y = 0.5924x + 0.0189
R?=09947 B
0.40 + .
m-
" y=0.3962x + 0.0591
5 0.35 R?=0.9955
3 *
3
@ 0.30 - .
[S a
\"
7 0.25 —a
3
4] y = 0.0854Ln(x) + 0.2818
g 0.20 - R?=0.9916
g
X 0.15 * Medium
§ = Long
= 0.10 A Short
Linear (Medium)
------ Linear (Lon
0.05 (Long)
—-=—-Log. (Short)
0.00 t t + t + t {
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

" Threshold IX

Figure 20: Relationships between mean IIX for the 0 < IIX < threshold class in the
three-way distribution and the user-defined threshold TIX.

Table 8: Intercept (ar), slope (B), and coefficient determination (R for regression
equations relating IIX threshold to the mean IIX (% logs (0 < IIX <threshold)).

Threshold 11X
Long linear 0.019 0.59 0.99
Medium linear 0.059 0.39 1.00
Short natural log 0.282 0.09 0.99
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Validation

Internode length measurements from the ‘validation’ data set (Turner et al. 1997)
were used to predict site mean IIX, percentage of logs with IIX=0, IIX > 0.15, IIX >
0.30, IIX > 0.60, and the mean IIX for the logs with 0 < IIX < threshold with the
thresholds being set as 0.15, 0.30 and 0.60. The differences between actual and
predicted values (residuals) were then plotted against the actual values to look for
conditions under which error increased or bias was introduced. Figure 21 shows the
errors in prediction of site mean IIX. Based on this plot, the error in predicting site
mean IIX using Equation 8 can be expected to fall within + 0.10. Figure 22 shows the
errors in prediction of the percentage of logs with IIX=0. Based on this plot, the model
appears to predict the percentage of logs with IIX=0 to within £ 10%. Figures 27 to 29
show the errors in prediction of the percentage of logs with IIX > threshold with IX >
0.15 being estimated to within £18% and, IIX > 0.30 to within +15%. The estimate of
percentage of logs with IIX > 0.60 appears to be slightly over-estimated by up to 14%
indicating that estimates for high threshold may be slightly biased. Further validation
of the models will therefore be necessary as additional internode length data is
collected.
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0.00 . . . . . . . . |
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(73
[
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Actual Site Mean IIX

Figure 21: Errors in predicted site mean IIX using the logistic sigmoidal equation
(Equation 8).
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Figure 22: Errors in predicted percentage of logs with IIX=0.

Actual Percentage of Logs With IIX > 0.15

50

60

-10 +

Residuals Percentage of Logs With lIX > 0.15

-15 +

2l

10

20

30

40 50 60 70

Figure 23: Errors in predicted percentage of logs with IIX > 0.15.
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Figure 24: Errors in predicted percentage of logs with IIX > 0.30.
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Figure 25: Errors in predicted percentage of logs with IIX > 0.60.

Based on the residual plots of estimates of mean IIX for logs with 0 < IIX < threshold,
the error in predicting mean IIX for logs where the threshold is set at 0.15 is £0.014,
+0.02 for a threshold of 0.30, and +0.05 for a threshold of 0.60.
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Effect of Silviculture on Prediction of Individual Log IIX
Silvicultural practice, in particular stocking, has not been identified as having an
effect on MIL or IIX (Siemon et al. 1976; Tombleson, Grace & Carson 1990; Grace &
Carson 1992). Knowles and Kimberley (1992), however, using a clear cutting index
which expresses the proportion of log length which is knotty, found this index
decreased with increasing stocking on both forest and farm sites, ie., the amount of
clear cuttings increased with increasing stocking. The potential effect on internode
lengths of low stockings grown on farm sites, may influence the relationship between
MIL and IIX and estimates of the percentages of logs in different groupings. To test
this influence, data from two farm sites (Table 9) for which internode length
measurements were made on low stocked trees was used to validate the models
developed. Table 9 clearly shows low MIL and IX for the lower final stockings
compared with the higher final stockings on these two farm sites.

Table 9: Initial and final crop stockings, number of logs measured, site average
internode length (MIL), and site average internode index (IIX) for individual
locations.

Initial Stocking
(stems/ ha)

Final Stocking
(stems/ ha)

No. of Logs

Tikitere = 1000 =200 16 0.35 0.22
500 95 13 0.26 0.06
Whatawhata > 800 >183 8 0.31 0.17
400 91 12 0.22 0.03

Internode length measurements from the two farm sites were used to predict site mean
IIX, percentage of logs with IIX=0, IX > 0.15, IX > 0.30, IX > 0.60, and the mean
IIX for the logs with 0 < IIX < threshold with the thresholds being set as 0.15, 0.30
and 0.60. The error in predicting site mean IIX (Table 10) using Equation 8 does not
appear to be different between farm sites with low or high final stockings. The model
appears to over-predict the percentage of logs with IIX=0 by up to 25% on both low
and high stocked sites (Table 10). Estimates of the percentage of logs with IX >
threshold appears to be greatly under-estimated for the higher final stockings, by up to
37%. This is likely to be an artefact of the shorter internode lengths for low stocked
trees resulting in a low percentage of logs with IIX > threshold. There was no bias in
estimates of mean IIX of logs in the different aggregation classes.

Table 10: Residuals (actual - predicted) for high final stockings (> 183 stems/ ha) and
low final stockings (95 stems/ ha) on two farm sites, Tikitere and Whatawhata.

Final
Stocking

Location

% logs (I1X=0)

% logs (IIX > 0.15) % logs (IIX > 0.30) % logs (11X > 0.60)

High  Tikitere 0.08 -21.5 14.8 18.5 0.0
Whatawhata  0.08 -17.6 16.3 37.5 0.0
Low  Tikitere 0.02 -22.8 6.1 0.0 0.0
Whatawhata  0.03 -25.0 0.0 0.0 0.0

24




Effect of Genetic Improvement on Prediction of Individual Log IIX
While a single equation to predict IIX from MIL is implemented in Standpak, the
derivation of 4 equations by Woods and Carson (1988) for different sites and genetic
material suggests that the MIL/ IIX relationship may vary for genetic material. An
exploration of the effect of genetic improvement on the models developed was
therefore carried out.

Non-Seed Orchard Seedlots
Comparison of the models’ prediction ability was made using data from the two sites
for which internode length data from both seed orchard (GF14) and non-seed orchard
(GF7) seedlots were made, Omataroa and Rotoehu (Table 11).

Table 11: Number of logs measured, average internode length (MIL), and site average
internode index (IIX) for GF7 and GF14 seedlots at Omataroa and Rotoehu.

GF Location No. of Logs MIL 11X
7 Omataroa 38 0.44 0.35
Rotoehu 88 043 0.27

14 Omataroa 70 0.47 0.39
Rotoehu 94 0.45 0.27

There is no clear bias in mean IIX prediction and mean IIX of logs in the different
aggregation classes for either GF7 or GF14 seedlots at Omataroa or Rotoehu (Table
12). There appears to be a greater difference in estimates of percentages of logs with
IIX > threshold between the two sites than between the different genetic material
(Table 12).

Table 12: Residuals (actual - predicted) for GF7 (non-seed orchard) and GF14 (seed
orchard) genetic material at Omataroa and Rotoehu.

Location 11X

% logs (IIX=0) % logs (IIX > 0.15) % logs (11X > 0.30) % logs (11X > 0.60)

7 Omataroa  0.08 -15.4 16.1 1.3 -8.2
Rotoehu 0.07 -2.9 -2.1 -0.6 -5.5
14  Omataroa  0.02 -10.0 224 28.5 49
Rotoehu -0.02 -0.3 3.9 2.7 0.2

Long Internode Seedlots

Models fitted for Tawhai (Figure 26) and Dusky (Figure 27) have unusual parameter
estimates (Appendix I) and slightly larger RMSE (Table 5) which may be a reflection
of the highly uninodal habit of trees at these sites, resulting in few logs with IIX of 0,
and a large number with ITX greater than 0.8. Comparison of internode length data for
uninodal' (Figure 28) and multinodal (Figure 29) seedlots on one site, Ngatira, was
used to identify the influence of the long internode habit on the IIX/ MIL relationship
(Tables 13 and 14). The parameter estimates for Dusky and Tawhai forests, and for
the Ngatira long internode material suggest separate models should be used for the
prediction of IIX. A number of sites, for example Longwood, while having large MIL
and IIX do not have model forms which differ from those for more multinodal sites.
Separate models may, therefore, be useful for the three data sets discussed, but not as
a general rule for all long internode sites or material.
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Tawhai
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Figure 26: Logistic sigmoidal curve fitted to individual log MIL and IIX data from
Tawhai.
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Figure 27: Logistic sigmoidal curve fitted to individual log MIL and IIX data from
Dusky.
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Ngatira = Long Internodes Seedlot
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Figure 28: Logistic sigmoidal curve fitted to individual log MIL and IIX data from a
long internode seedlot at Ngatira.

Ngatira — Multinodal Seedlot
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Figure 29: Logistic sigmoidal curve fitted to individual log MIL and IIX data from a
multinodal seedlot at Ngatira.

There is no clear bias in mean IIX prediction, and mean IIX of logs in the different
aggregation classes for either the long internode or multinodal material at Ngatira
(Table 14).
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Table 13: Number of logs measured, average internode length (MIL), and site average
internode index (IIX) for long internode and multinodal seedlots at Ngatira.

No. of Logs MIL
Long Internode' 46 0.67 0.49
|GF14 59 0.42 0.23

Table 14: Summary statistics and residuals (actual - predicted) for long internode and
GF14 (multinodal) genetic material at the Ngatira farm site.

% logs (I1X=0) % logs (IIX > 0.15) % logs (IIX > 0.30) % logs (IIX > 0.60)
Long Internode’ -0.04 -8.7 -11.0 2.5 3.3
|GF14 -0.01 -0.1 3.2 -1.4 -2.6

CONCLUSION

The development of a MIL/ IIX relationship using a logistic sigmoidal model derived
from nationally aggregated data increased the accuracy of IIX prediction, particularly
at high and low levels of MIL. Using the extended branch habit database a three-way
distribution was refitted to the internode length data, and additional predictive
equations developed to allow users to define a threshold IIX for grading. Simple
regression equations were also developed to enable prediction of percentage of logs,
and mean IIX of those logs, greater than a user-defined threshold IIX. The models
developed appear to be reasonable predictors of site mean IIX, and mean IIX for
aggregations of logs in the three-way distribution. Validation of the models using an
independent data set showed that there is no bias in estimates of the percentage of logs
with 0 < IIX < threshold. All the models for estimating mean IIX, and percentages and
means of logs with IIX > threshold were not biased by stocking or genetic
improvement. The models developed are to be incorporated into Standpak to enable
users to predict log IIX from their own estimates of stand MIL.
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APPENDIX I: LOGISTIC SIGMOIDAL MODEL PARAMETER ESTIMATES

Region Location Site Type o B Y A R”
Auckland 0.70
Aupouri forest -5.51 11.45 0.05 0.64 0.65
Whangapoua forest -3.56 6.31 -0.08 1.00 0.80
Whatawhata farm -94.51  260.93 0.03 0.33 0.84
Woodhill forest -2.92 7.25 -0.14 0.67 0.59
Rotorua 0.71
Goudies forest -9.01 20.92 0.05 0.52 0.90
Kaingaroa forest -4.00 9.23 -0.08 0.68 0.73
Matea forest -4.83 11.42 -0.07 0.81 0.80
Ngatira L' farm 2.23 2.93 -14.23 15.03 0.65
Ngatira (GF14) farm -3.21 8.12 -0.23 0.88 0.74
Northern Boundary  forest -2.94 7.06 -0.13 0.84 0.69
Omataroa forest -3.69 7.34 0.10 0.65 0.63
Rotoehu forest -5.31 12.03 -0.02 0.64 0.74
Tarawera forest -5.93 12.34 0.09 0.58 0.68
Tikitere farm -5.50 13.30 -0.02 0.60 0.70
Waimihia forest -2.87 6.87 -0.13 0.88 0.56
Waratah forest 0.03 1.95 -2.12 3.39 0.65
Whakarewarewa forest 0.26 2.54 -2.85 4.02 0.72
Hawkes Bay 0.77
Gwavas forest -4.14 9.99 -0.07 0.72 0.81
Mohaka forest -4.42 9.65 -0.03 0.70 0.75
Wellington 0.74
Ngaumu forest 0.09 3.49 -2.27 3.14 0.72
Waitarere forest -6.68 17.72 -0.01 0.48 0.73
Nelson 0.71
Golden Downs forest -4.77 9.63 0.01 0.78 0.71
Westland 0.75
Mawheranui forest -4.42 8.46 0.21 0.54 0.66
Nemona forest -2.12 6.33 -0.29 0.99 0.66
Tawhai forest 4.00 3.41 -109.55 110.41 0.77
Waimia forest -3.81 9.73 -0.09 0.72 0.67
Canterbury 0.76
Ashley forest -2.20 6.07 -0.32 1.05 0.86
Geraldine forest -4.24 9.77 -0.02 0.68 0.77
Hanmer forest 2.38 3.45 -17.04  17.73 0.61
Southland 0.75
Beaumont forest -1.95 6.01 -0.56 1.40 0.80
Berwick forest -3.67 8.64 -0.07 0.78 0.72
Dusky forest 3.00 4.81 -62.51 63.32 0.70
Hokonui forest -4.15 10.51 -0.24 0.97 0.89
Longwood forest -5.60 12.77 0.03 0.73 0.61
Otago Coast farm -10.42 22.65 0.13 0.46 0.77
Otago Coast forest -1.27 5.23 -0.85 1.64 0.77
Slopedown forest -3.18 7.37 -0.12 0.90 0.85
National Model -3.32 7.76 -0.12 0.84 0.74
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