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EXECUTIVE SUMMARY

Methods are needed to accurately project inventory data through time so that product yield can be predicted not
just at the time of inventory but at any future time. Stand-level growth models can be used, but can predict
individual tree height increment only approximately.

This report describes the development of a method for predicting individual tree height from site, stand and tree
information.

Initially the possibility of directly predicting height increment was examined but results were not promising.

Existing and new methods, based on the relationship between tree diameter and height, were compared. The
new equation relates tree height to a proportion of stand mean top height based on the relative diameter of the
tree. It requires information on the site (region, altitude), the stand (stocking, mean top height, mean top
diameter) and the tree (Dbh and position in the Dbh distribution), at the start and end of the prediction period.
This equation is shown to predict tree height accurately.

Using this method at the start and end of a period gives an estimate of tree height increment which can be used
in the projection of inventory data.

Summary



PROJECTING INVENTORY DATA:
PREDICTING INDIVIDUAL TREE HEIGHT GROWTH

Introduction

Forest inventory enables the forest manager to assess the potential yield of a stand of trees. Young stands can be
adequately assessed without detailed measurements, but as a stand reaches mid-rotation more detail is required.
The size of the yield and its break-down into possible log products must be determined.

Commonly used inventory procedures can provide the requisite level of detail but the results still represent a
snap-shot of the stand at one point in time. What is needed is a method to take the inventory description of the
stand and use it as a basis for predicting the potential yield at any point in the stands future. Techniques are
available for using stand-level growth models to project inventory data through time, but they involve
aggregating the tree information before projecting the growth, then disaggregating the "grown” stand back to
its individual trees.

Comparisons of methods used to project tree diameters have shown that simply scaling the initial diameter, by a
factor based on stand growth model basal area predictions, under-estimates the variance of the resulting
diameter distribution (Gordon and Lawrence 1992). To address this problem an individual tree diameter
increment function was developed (Gordon and Lawrence 1994), which can be used as an adjunct to a stand
level growth model. This exploits the stability of stand level models, which are usually well-tested and trusted
over a range of sites, silvicultural practices and projection periods, while allowing the increment to be
apportioned to trees on the basis of the individual tree model.

Although stand models predict the growth of some measure of stand height (mean top height, predominant
mean height) individual tree height increment is needed when projecting inventory data. Simply using the
increment in stand height growth, as a common estimate of the height growth of each tree, is a viable
approximation but it does not use any of the information available about each tree. '

This report describes the development of a method for predicting individual tree heights from site, stand and
tree information. Using this method at the start and end of a period gives an estimate of individual tree height
increment which can be used in the projection of inventory data.

Data

Plots were selected from the Permanent Sample Plot data base (McEwen, 1978; Pilaar and Dunlop, 1989) from
seven growth modelling regions, to form a general data set. At least 15 trees measured for diameter were
required in each plot to reduce the varinbility of estimates of stand parameters derived from each plot. This
ruled out very small plots, particularly where the stocking was low. Plots were required to have had three or
more consecutive measurements, with the first measurement somewhere between ages 15 and 25 inclusive.
Only plots with "normal” levels of mortality (ie. excluding windthrow, poison thinnings etc.) were chosen, and
all thinning operations were required to have been completed prior to the initial measurement. An estimate of
mean top height was required.

A total of 291 plots were selected which met these criteria. They are listed by Gordon and Lawrence (1994).
All the trees which had been measured for height were extracted from the Permanent Sample Plot system
giving 3458 trees with between 2 and 13 height measurements per tree.

Screening Tree Height Increments

Procedures were developed to calculate the annual height increment of each height tree after each plot
measurement excluding the last. This involved interpolation where re-measurement did not take place 12
months later. Trees which died were excluded from the data set from the last re-measurement where their



diameter increment was less than or equal to zero. At each measurement point, from which increments were
derived, corresponding stand statistics were calculated.

Tree height increments were found to be highly variable. Although this was not unexpected, a surprisingly
large number of increments were found that were negative or exceeded 4m. Overlaid graphs of height and
height increment against age were examined for all trees with unusual increment values. In many of the graphs
there appeared to be several sequences in the height measurements; the breaks in these sequences possibly due
to changes in the position in the sample plot from where the measurements were taken. Other graphs simply
contained individual extreme measurements which were usually associated with two unusual increments.

Height increment tends to slowly decrease with age (in the age range of interest), so the following approach

was taken to screen out incorrect measurements: For each height tree a regression of increment on age was

fitted . The difference between the actual and the conditional mean increment at each age was then compared
with the confidence interval around the mean. This interval was bounded at 2.0 m, as in some sample plots

with only a few measurements the degrees of freedom were too low to produce a reasonable confidence interval.
Those observations that deviated from the expected increment by more than this were removed from the data
set. This method of screening the data allowed each tree to have its own increment pattern and included some
allowance for between-year differences which might be caused by differences in annual rainfall for example.

Further screening was made on the basis of comparing individual height increments with the increment of tree
diameter and stand mean top height for the same period. Graphical plots showed up anomalous observations for
checking. The data set which resulted comprised 13440 observations. Table 1 shows the range of site index and
age by growth modelling region. Table 2 shows the range of tree heights and height increments and the number
of observations by growth modelling region.

Table 1. Range of Site Index and Age.

Site (m) Age (years)

Region Min Mean Max Min Mean Max

CANTY 21.1 2491 29.0 15.1 20.72 29.8
CLAYS 234 29.64 345 15.0 21.92 29.1
GDNS 20.0 2693 31.1 14.8 1991 30.1
HBAY 232 28.38 335 14.7 21.74 33.0
KANG 229 32,59 38.1 15.0 20.28 40.0
SANDS 195 25.23 327 14.6 23.30 45.7
SOUTH 20.6 23.55 27.9 14.6 23.65 38.0

ALL 19.5 28.32 38.1 14.6 21.41 45.7




Table 2. Range of Tree height and height increment.

Number Tree Height (m) Height Increment (m)
Region of obs. Min Mean Max Min Mean Max
CANTY 301 15.8 24.57 379 00 097 39
CLAYS 831 155 3043 437 0.0 1.00 3.6
GDNS 2538 10.3 25.28 410 0.0 1.16 39
HBAY 1365 152 29.58 453 0.0 1.23 3.6
KANG 4449 102 31.65 518 0.0 1.30 3.7
SANDS 1959 143 26.37 404 0.0 0.78 29
SOUTH 1997 11.3 26.23 47.6 0.0 1.05 3.5
ALL 13440 10.2 2843 51.8 0.0 1.12 3.9

The variables available in the data set can be grouped loosely as:

e Site variables including growth modelling region, plot identifier, site index, latitude, longitude, altitude,
spring, summer and annual rainfall, distance from the sea, and sufficiency scores for the elements N.K,P,B
and Mg from the nutritional atlas (Hunter et al, 1991).

e  Stand variables such as year of measurement, mean top diameter, basal area, mean top height and its
increment and stocking.

e Tree variables including Dbh, Dbh increment, height, height increment, basal area in trees larger than the
subject tree and age.

A number of variables, such as relative diameter, Dbk to height ratio and relative spacing, were derived from
combinations or transformations of the variables available in the data set.

Possible Approaches

An approach currently in use (implemented in the GroMARVL software for example) uses the increment of
stand height (mean top height) as an estimate of individual tree height increment. In this way tree height
growth is tied to the stand height growth which allows increment levels to be set by the stand height model
used and the site index. However this does not allow for any differences in height growth within the stand
which may be due to differences in growth rates between trees of different crown classes, for example.

Other approaches which are connected with stand height growth use some form of tree height / Dbh
relationship to predict the tree height directly from its Dbh and stand parameters. Increment can then be
determined if the stand parameters and Dbh are known at the beginning and end of the increment period. This
method is available through the "Weibull tables" (Lawrence 1990) used in the stand table (diameter
distributions) generator in STANDPAK, but is not used in STANDPAK for this purpose.

Alternatively, individual tree height increment can be predicted directly using a height / age growth curve for
each tree, allowing the shape of the curve to alter with changing tree and stand parameters. Although this
promises a great deal of flexibility, there is no guarantee of consistency with stand height growth.

Initially individual increments were examined to determine which variables could be used to predict height
increment and to test how successful this approach could be. Two methods based around stand height growth
were then evaluated. The first used equations that are already in place that have been derived regionally for
stand table generation in conjunction with Weibull Dbk distributions (Lawrence 1990). The Petterson curve is
used to relate tree height (h) and Dbh (d) in the following way:

-2.5

h =14+ B0+E- Equation 1.
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Lawrence (1990) provided a series of equations to predict the Bo coefficient of the curve from the parameters of

the stand (age, mean top height, basal area and stocking). If stand mean top height is known, and mean top
diameter can be calculated, then the B1 coefficient can be solved directly. So height increment can be calculated

when the stand parameters and tree Dbh are known at the beginning and end of the period.

The second method was suggested by considerations of consistency between the tree heights and the stand mean
top height which, by definition, is the average height of the tree of mean top diameter. If tree height is

estimated by adjusting mean top height by the ratio of Dbh to mean top diameter, consistency is assured. The
following equation was used:

fO
hei [ 4 -
.= thO _ Equation 2.
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where f{) may be some function of site, stand and tree variables.

Methods and Results

Direct Prediction of Height Increment

The variables available in the data set were tested as linear predictors to tree height increment using “all-
subsets” regression, with the three best (largest R-square) regressions calculated for 1 to 12 predictor variables.
The R-square values rose rapidly with the number of predictors, tending toward an asymptote of around 0.2,
implying that a maximum of only 20% of the variation in height increment could be accounted for. There was
considerable interchange in the variables selected in the best regressions for each number of predictors.

To give a better idea of which were the important predictor variables, the same approach was tried using the
logarithm of tree height increment as the dependent variable, under the assumption that any factors affecting
the size of the increment would be likely to interact and hence a multiplicative model should be used. A similar
proportion of the variation was accounted for but this analysis indicated that the important variables included
age, site index, stand mean top height, the Dbk to height ratio and distance from the sea, or altitude.

Repeating the analysis by region added little information. Site index, stand mean top height and the Dbh to
height ratio all appeared as predictors but apart from these there was no clear or consistent selection of
predictor variables. Tree height, and height relative to mean top height, did not show up as useful predictors.

Principal component regression was used in an attempt to determine how many underlying “factors” were
influencing height increment. 87% of the variation in the predictor variables was accounted for by the first 7
components. The regressions showed components 1,2 and 6 to be the most useful predictors. Unfortunately
components 1 and 2 were formed from fairly equal contributions of a large number of the predictor variables.

Component 6 however showed that relative diameter (—) and basal area in trees larger than the subject tree
d 0o

(G>4) were both important in the prediction of height increment. These variables are closely related to the Dbh

to height ratio as measures of the position of the tree within the diameter distribution.

No clear results were forthcoming from this analysis and this approach was not pursued further.

Height Increment from Dbh and Stand Parameters

Equation 2 was used as a basis for prediction of tree height. By rearranging this equation a new variable was
generated:
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and added to the data set. This variable can be thought of as the curvature of the line relating relative diameter
to relative height. Missing values were introduced for those trees of Dbh equal to the stand mean top diameter.
Again, "all-regression" procedures were used to find potential predictor variables. Only weak correlations were
found but the variables that were consistently selected were altitude, stand relative spacing and G4. When
analysed by growth modelling region the results were less satisfactory. It appeared that only a minor gain was
made by including these variables as well as a constant term so equation 2 was refitted by region with only a
constant term, that is f{) was replaced by Bo- An analysis of the residual sums of squares was made to test the
hypothesis that one model could be used for all regions (Table 3). The reduction in the residual by including the
growth modelling region was significant which indicates that a single model for all regions cannot be used.

Table 3. Analysis of Variance of Residual Sums of Squares for Equation 2.

Source d.f. Sum of Squares Mean Square
Residual about Hypothesis 13439 37419.46 2.784393
Residual about Maximum
Canty 300 556.08
Clays 830  3249.97
Gdns 2537  8361.01
Hbay 1364  4035.33
Kang 4448 10591.68
Sands 1958  4983.84
South 1996  4743.37
Combined 13433 36521.28 2.718773
Differenc 6 898.18 149.6967
e
F= Difference Mean Square = 55.06037

Max. Model R.M.S.

Rather than exclude the effect of altitude, stand relative spacing and G- ,by simply using regional models with

one constant term each, a composite fit was then attempted by using boolean variables to represent the regions
in the constant term.

At this stage the data set was divided at random into two sets. To avoid unbalancing the first set, it included
only 25% of the Central North Island data (Kang) and 40% of the Nelson data (Gdns) while the other region’s
data sets where divided approximately in two. The first set was used to estimate parameters while the second set
was used for independent tests.

The composite model for all regions is:



where

FO=PBe+ BI:I—N

h100

+B,Gsa+ By altitude’

Table 4. Coefficients and their Standard Errors

Coefficient Standard Error
Bp
CANTY 0.2555 0.0349
CLAYS 0.1901 0.0301
GDNS 0.3316 0.0275
HBAY 0.1992 0.0318
KANG 0.2308 0.0260
SANDS 0.2192 0.0307
SOUTH 0.2567 0.0309
B; 21.47 10.05
By 8.842E-4 3.760E-4
B3 -2.131E-7 0.549E-7

Equation 3.

All coefficients (table 4) are significant. Residuals were examined, by region, for trends against predicted

values, the predictor variables and other variables in the data set but none were found.

Comparison of Accuracy of Equation 3 and Petterson Curves

Equation 3 was then applied to the independent data set and the errors in the height prediction were calculated.
For comparison, tree heights were also calculated via the equations derived by Lawrence (1990) for predicting
the Petterson curve coefficient for stand table generation. The errors in the height prediction are shown in table
5 which lists the standard deviation of the error and the probability of obtaining a mean error of that size under
null hypothesis that the mean is zero (no bias). Probability values less than 0.05 indicate a significant bias in

the predictions.
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Table 5. Summary of errors from Stand table Petterson curves.

Region number of mean error standard P(t);
observations (m) deviation mean=0.0

Canty 154 -0.305 1.314 0.00
Clays 408 -0.137 1.986 0.16
Gdns 1563 0.241 1.810 0.00
Hbay 668 0.054 1.780 0.44
Kang 3410 -0.003 1.724 093
Sands 996 0.090 1.613 0.08
South 977 0.112 1.577 0.03
Combined 8176 0.061 1.726 0.00

Significantly biased predictions were made in three regions. Table 6 shows the errors from equation 3.

Table 6. Summary of errors from Composite Equation (3) with Regional constants..

Region number of mean error standard P(t);
observations (m) deviation mean=0.0

Canty 154 -0.009 1.355 0.93
Clays 408 -0.150 1973 0.13
Gdns 1563 -0.087 1.778 0.05
Hbay 668 0.121 1.737 0.07
Kang 3410 -0.098 1.525 0.00
Sands 996 -0.013 1.606 0.80
South 971 -0.011 1.540 0.83
Combined 8176 -0.058 1.628 0.00

As table 6 shows, equation 3 gave slightly more accurate and precise predictions of the tree heights in the
independent data set. Only the central North Island data (Kang) shows a significant bias (table 6) which is due

in part to the much larger sample, as the precision is higher than all regions except Canterbury. Significant bias
appears in 3 regions in table 5.

This composite model (equation 3) was then tested further by examining the prediction errors for correlations
with other variables. No trends in the errors were found.

Discussion

Equation 3 was then examined to check its consistency. Figure 1 shows a series of tree height predictions over
age and Dbh for an example plot with a long series of measurement on a wide range of height trees.
Corresponding graphs for example plots in the other regions are shown in Appendix 1.



Tree Height / Dbh Relationship
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Figure 1. Height Predictions through Time.

Height increment can be calculated from the successive height predictions, which require information on the
site (region, altitude), the stand (stocking, mean top height, mean top diameter) and the tree ( Dbh and position
in the Dbh distribution), at the start and end of the prediction period. The predicted tree height growth is
strongly tied to the stand mean top height growth and will respond directly to changes in the site index and the
stand height / age relationship. All trees with Dbh equal to mean top diameter will grow at the same rate as
mean top height. In figure 1 the plot estimate of mean top height was used in equation 3 to calculate tree
height, which is why the curves are not displaced in closer correspondence to the time interval between
measurements.

In a given stand, height increment calculated in this way does not alter with initial tree height. This approach is
supported by Tanaka (1988), who found no relationship between height increment and height and argued that
the amount of apical meristem is relatively constant amongst trees regardless of height. However predictions of
height increment will alter with changes in relative diameter.

The regional constants in equation 3 (Table 4) are similar over six of the regions, varying from 0.1901 for
Clays to 0.2567 for Southland. The Nelson constant is the largest with a value of 0.3316, which indicates a
stronger (steeper) relationship between tree height and diameter in this region.

Equation 3 can be expanded for use as an individual tree height / age curve by replacing mean top height with
its estimate from a stand height / age curve, that is, a function of age and site index. If the other stand and tree
predictor variables are also calculated as functions of age, a height / age curve for an individual tree is obtained.

Altitude has a clear effect on the height diameter relationship as shown in figure 2.



Altitude Effects
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Figure 2. Changes in Height Diameter relationship with Altitude

Increasing altitude tends to weaken the relationship and reduce the variation in tree height within a stand.
Figure 2 shows the predicted height / diameter relationship based on plot RO 690 0 3 0 at age 27. The curves
were calculated by altering only the altitude while keeping all other variables constant. As the mean top height
and diameter have not changed all the curves pass through this point. The effect is not linear as can be seen in
the smaller trees, where the change in the predicted heights gets larger even though the change in altitude is
the same between the three curves.

Spacing (stand density) exerts a small effect on the height / diameter relationship. Figure 3 shows the same plot
but at different stockings: 150, 300 and 600 stems per hectare.,



Spacing Effects
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Figure 3. Spacing effects on the Height Diameter relationship

This is a small effect which tends to weaken the height diameter relationship as stocking increases.

The shape of the Dbk distribution has an effect through the G, variable, which represents the cumulative tree
basal area distribution. As the variation in the Dbh distribution increases so this variable changes more slowly
from the smallest to the largest tree. Plot RO 690 0 3 0 was used to examine the effect of this variable by
artificially changing the shape of the cumulative distribution of tree basal area. Two extreme and one
intermediate distributions were constructed. The trees in the plot were then ranked on Dbh and these ranks
were used to determine the proportion of the total plot basal area from the distributions that was assigned to the
G4 variable. The intermediate distribution was similar to the original plot distribution.
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Distribution Effects
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Figure 4. Effect of the shape of the Dbh distribution on the Height Diameter relationship

Figure 4 shows the height diameter relationship for this plot under the three different distributions. The effect is
quite minor and shows that increasing the variation in the Dbh distribution leads to a slight decrease in the
slope of the height diameter relationship. That is, a small tree with less stand basal area above it will be slightly
taller than one of the same size but in a more suppressed condition.

Summary

Equation 3 can be used to predict the height growth of individual trees as is required when projecting inventory
data. This equation requires information on the site (region, altitude), the stand (stocking, mean top height,
mean top diameter) and the tree (Dbh and position in the Dbh distribution), at the start and end of the
prediction period, so it must used in growth prediction algorithms after the diameter increment has been
calculated.

Because equation 3 is tightly connected with stand mean top height it should be possible to implement it in
conjunction with stand-level growth models, so that the individual tree height increments will respond directly
to changes in the site index and the stand height / age relationship.
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Appendix 1

Tree Height / Dbh Relationship
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Figure 1. Example from Canterbury region

Tree Height / Dbh Relationship
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Figure 2. Example from Clays region
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Tree Height / Dbh Relationship
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Figure 3. Example from Nelson region

Tree Height / Dbh Relationship
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Tree Height / Dbh Relationship
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Figure 5. Example from Central North Island region

Tree Height / Dbh Relationship
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Figure 6. Example from Sands region
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Tree Height / Dbh Relationship
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Figure 7. Example from Southland region
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