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EXECUTIVE SUMMARY

Tree-ring analysis can be used to estimate growth in forest inventory, and
to supplement or replace permanent sample plot data in the development
of growth models. Costs can be reduced by measuring growth rings in a
carefully selected subset of the trees in a plot, making use of the
information on current tree size. Efficient sampling strategies for estimating
past basal area were investigated by simulation with permanent sample plot
data.

Combinations of simple random, stratified, and variable probability sampling
with minimum variance unbiased, ratio, and regression estimators were
tested, as well as a method based on order statistics from the Weibull
distribution. Best results were obtained with a variable probability sampling
procedure related to systematic sampling.
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Abstract

Tree-ring analysis can be used to estimate growth in forest inventory,
and to supplement or replace permanent sample plot data in the develop-
ment of growth models. Costs can be reduced by measuring growth rings
in a carefully selected subset of the trees in a plot, making use of the in-
formation on current tree size. Efficient sampling strategies for estimating
past basal area were investigated by simulation with permanent sample
plot data.

Combinations of simple random, stratified, and variable probability
sampling with minimum variance unbiased, ratio, and regression estima-
tors were tested, as well as a method based on order statistics from the
Weibull distribution. Best results were obtained with a variable probabil-
ity sampling procedure related to systematic sampling.

Introduction

Growth ring measurements are widely used in forest management in many coun-
tries. Measurements can be made at breast height, on increment cores or cut
cross-sections, to determine past basal areas or diameters at breast height. A
full stem analysis can provide information on taper, volumes, and heights.

In forest inventories, increment cores are often used to estimate growth.
Because of the cost, cores are commonly taken only from a subset of the sample
plot trees. This sub-sampling is usually random, or the trees are somehow
“selected to cover the diameter range” (some sort of stratification).

Growth models for managed stands can be developed using pairs of con-
secutive measurements of stand variables such as basal area per hectare, stems
per hectare, and mean top height. The availability of long series of permanent
plot measurements, although desirable, is not essential (Garcia 1988a, 1988b).
Under certain circumstances, this kind of data can be reliably derived from tree-
ring measurements (P. L. Wilcox, 1987 unpublished). Information obtained by
these means has been used to supplement a permanent sample plot data base
in a model for radiata pine in Canterbury, New Zealand (M. E. Lawrence 1988
unpublished, P. L. Wilcox 1990 unpublished, Garcia 1988a). The extraction
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and analysis of several increment cores from each tree in a plot, however, was
expensive and time-consuming.

Usually, individual tree diameters or basal areas at two points in time are
highly correlated. This fact could be exploited to improve the estimation of past
stand basal area from tree-ring samples. Knowledge of the current diameters
can be used to select the sample trees, to improve the estimators, or both. A
preliminary simulation study was carried out to compare estimation methods,
and to assess the likely gains from using current diameter information.

Pairs of permanent sample plot measurements were used. The objective was
to estimate the past basal area for the trees alive at the second measurement.
To obtain the past plot basal area it would be necessary to add the basal area of
any dead trees. It is assumed that trees that have died in the relevant interval
can be recognized and measured; in most situations their increment can be
safely ignored. Strategies for the joint estimation of basal area and height or
other variables were not considered.

The next section describes the data used. Then, several sampling/estimation
methods from classical survey sampling theory, and one method based on order
statistics are discussed. These correspond to “model independent” and “model
dependent” methods, respectively (Hansen et al. 1983). Simulation details,
results and conclusions follow.

Data

Measurements were obtained from the Forest Research Institute permanent
sample plot (PSP) database (Pilaar and Dunlop 1990). Radiata pine plots
established according to the specifications described by Tennent (1988) were
used. These are variable-area plots, designed to include a similar number of
final crop trees. Sixty pairs of measurements separated by 2 years, and sixty
separated by 6 years (with no thinnings between them) were taken at random
from the whole database. Since some of the plots had as little as 10 trees, the
10 plots with the smallest numbers of trees were then deleted (at random if
necessary), leaving 50 plots for each interval length. Some characteristics of the
selected data are given in Table 1.

Table 1: Data (“current” values)

2-yr intervals 6-yr intervals
Mean Min. Max. Mean Min. Max.
Age (years) 17.1 7 33 22.2 13 38

Stems per hectare 411 167 1570 319 142 628
Basal area (m?/ha) 33.6 74 702 476 129 723

Mean dbh (cm) 36.1 8.2 57.7 445 249 654
Dbh increment (cm) 4.0 1.3 7.7 9.8 41 209
Plot size (ha) 0.11 0.02 0.17 0.12 0.04 0.18
Trees per plot 35.8 17 111 37.9 21 83

Tree basal areas calculated from the diameters at breast height (dbh) over
bark were used. This differs from ring measurements, where diameters under



bark would be obtained and bark thickness would be estimated from regression
equations. The errors in deriving dbh from radial measurements in increment
cores or stem cross-sections are also different from those arising from diameter
tape measuring. These differences, however, are unlikely to affect the compari-
son of sampling strategies.

Probability-sampling methods

Knowing the current dbh (and tree basal areas) of all the trees in a plot, we want
to estimate their total basal area at some point in the past by ascertaining the
past basal areas in a subset of them. Probability-sampling is a commonly-used
approach to this type of problem (Cochran 1977, Sukhatme and Sukhatme
1970). Randomization is used to minimize any dependency of the inferences
on models or assumptions about the population, although models and prior
knowledge are used to achieve efficient sample designs (Hansen et al. 1983).

The sampling design has two parts, a sampling plan that determines the se-
lection probabilities of the potential samples, and an inference procedure which
here is a point estimator. Ancillary information, in this case the current dbh
values, can be used in the sampling plan, in the estimator, or in both. I tested
combinations of simple-random, stratified, and variable-probability sampling,
with minimum variance unbiased, ratio, and regression estimators. In general,
the methods were chosen as those likely to be the most efficient. The availabil-
ity of sample-based error estimators was not a consideration, since this is not so
important in this application, and error estimates based on very small samples
would not be reliable anyway.

The estimators will be given as generalized expressions in terms of the sam-
pling plan inclusion probabilities. This simplifies the presentation by treating
all combinations of sampling plan and estimator in a unified way. Variables in
the population (in this instance the plot) are denoted by upper case letters, and
variables in the sample by lower case.

Sampling plans
Simple random sampling (SRS)

A sample of n trees is selected with equal probabilities and without replacement
from the N trees in the plot. The past basal areas ¥y,...,y, are measured.
The probability of the i-th tree appearing in the sample (inclusion proba-
bility) is m; = n/N. The joint inclusion probabilities, that is the probabilities
of both trees ¢ and j appearing in the sample, can be used to compute the

variance of estimators. These are m;; = ]—\,"—E%—"_IIL)

Stratification (STR)

The data shows that there is usually a close proportionality relationship between
the past tree basal area Y; and the current basal area X;. One way of making
use of this ancillary information is to divide the population into strata defined



by intervals of the variable X, such that the aggregate values of the X variable
are approximately the same for each stratum (Hansen et al. 1983). This is
similar to the Ekman rule for approximately optimal stratification, which is
known to perform consistently well (Cochran 1977, Sukhatme and Sukhatme
1970). For maximum efficiency the stratification was carried out down to one
observation per stratum.

The specific procedure was as follows. The N trees were sorted according
to increasing values of X;, and the values were accumulated. The range of
the accumulated X was subdivided into n equal intervals. The strata were
then formed by shifting the interval boundaries to the nearest accumulated X;
value. One tree was selected at random, with equal probabilities, within each
stratum.

Trees with a value of X larger than the interval size ) X;/n were placed in
a separate stratum by themselves (i. e. sampled with probability 1), and the
procedure just described was then applied to the remaining trees and sample
size. This only happened in one plot, for the largest sample size.

The inclusion probabilities are clearly 7; = 1/Nj, where Ny, is the number
of trees in the stratum containing tree :. The joint selection probabilities are
mij = 1/(Np;Ny;) if trees i and j are in different strata, and zero otherwise.

Systematic with probability proportional to prediction (SP?)

Another way of using ancillary information in the sampling plan is with vari-
able probability sampling (Sukhatme and Sukhatme 1970, Chapter II). If the
inclusion probabilities were proportional to the Y;, the mean could be estimated
with zero variance. Of course, this is not possible without knowing Y;, but if
it is assumed that the Y; are approximately proportional to the X;, sampling
with probability proportional to X; can be expected to be efficient.

There are a number of schemes that could be used for sampling with prob-
ability proportional to X. A simple one is to sample proportional to X with
replacement. Another is 3-P sampling, developed by Grosenbaugh for forest
inventories (Grosenbaugh 1965). These two procedures have the inconvenience
here that the number of trees to be measured would be a random variable. A
method suggested by Madow produces samples of fixed size with specified in-
clusion probabilities, is likely to be more efficient, and is easy to use (Sukhatme
and Sukhatme 1970, Cochran 1977, Schreuder et al. 1971).

Madow’s method is a kind of systematic sampling from the accumulated X;.
A sampling interval L = Zf’ X;/n was calculated, and a starting point s was
selected at random between 0 and L. The N values of X; were accumulated, and
the first trees whose accumulated X values exceeded each of the numbers s, s+
L,s+2L,...,s+ (n—1)L were taken as the sample. This procedure produces
a sample of size n with probabilities proportional to X without replacement,
provided that the largest of the X; does not exceed L. As in the STR sampling
plan, and as suggested by Schreuder et al. (1971), trees larger than L were
placed in a separate stratum and sampled with probability 1.

The individual inclusion probabilities (for X; < L) are m; = nX;/ > X;.
The exact joint inclusion probabilities are complicated, and have been given by
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Connor (1966). The theoretical analysis is easier for a variant of the method,
where the units are arranged at random before the accumulation. However,
if the trees are considered in the order in which they are visited in the plot
it is possible to approximate this sampling plan without having to list and
number the trees (Schreuder et al. 1971). Although tree sizes are related to their
locations (Garcfa 1991), the effect of the ordering would probably be small. In
the simulations the trees were taken in the order of their PSP numbers, which
is typical of the order in which they might be visited in the field.

Ordered systematic with probability proportional to prediction (0OSP?)

This is similar to SP3, except that the trees are sorted in increasing order of X
before sampling. The method has been analyzed by Hartley (1966), and usually
leads to more efficient estimates. Listing and numbering of all the trees before
selection is required, however.

Estimators

I discuss estimation of the mean past basal area ¥ = 1 Y;/N. The plot basal
area estimate is obtained multiplying by the known number of trees V.

The estimator equations are given here in terms of the inclusion probabilities
7;. Thus they can be applied in a uniform way to any sampling plan.

Minimum variance unbiased (MVU)

The minimum variance unbiased estimator for the mean with variable proba-
bility sampling is the Horwitz-Thompson estimator:

y_Llyu

N17r,~

With SRS and STR this gives the usual unbiased estimators after substituting
the inclusion probabilities given previously.

Expressions for the sampling variance in terms of the m;; are given by
Sukhatme and Sukhatme (1970) and Cochran (1977). Sample-based unbiased
estimates of the variance are available when none of the 7;; is zero (this is not
the case for STR, SP3 or OSP?).

Ratio (RAT)

Ratio estimators attempt to improve estimation efficiency by making use of an
assumed proportionality relationship between the variable of interest (Y) and
some ancillary variable (X). They are slightly biased, but can be much more
efficient than the MVU estimator. Only large-sample variance approximations
are available.

For sampling with variable probabilities, a generalized ratio estimator based
on “m-inverse weighting” is

7, Eyi/ﬂ'z’ >
Y= &Y
in/mx’
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where X = 3 X;/N is the population mean (Sarndal 1980).

With the SRS and STR sampling plans this estimator reduces to the ordi-
nary ratio estimator, and to the combined ratio estimator, respectively. With
SP3 and OSP3 it coincides with the MVU estimator.

Regression (REG)

If there is an approximately linear relationship between X and Y, but with
a non-zero intercept, a regression estimator can be preferable. From Sérndal
(1980), a m-inverse weighted regression estimator can be written as

where
5= 2 %ilm G = o yi/mi
Si/m’ Soi/m’
and
5 Dlei= D =)/

(e — &)/

With SRS this gives the usual regression estimator. For stratified sampling this
differs from the classical regression estimators given by Cochran (1977) and
Sukhatme and Sukhatme (1970), but Sarndal (1980) points out that it is in line
with the approach of other authors. The classical estimators cannot be used
with one sample tree per stratum, as in STR.

A model-dependent approach

Given a probability distribution, good location and scale parameter estimates
can often be obtained from just a few properly chosen order statistics (Zacks
1971, Chan and Cheng 1988). For example, for a family of continuous distribu-
tions of the form F[(z—u)/0o], the location (1) and scale (o) parameters may be
estimated by linear combinations of any subset of order statistics. Coefficients
can be obtained to produce estimates that are best linear unbiased (BLUE) or
“asymptotically best linear” (ABLE, almost BLUE for large samples). For any
subset size, the ranks of the selected order statistics can be chosen to maximize
the efficiency of the estimators (Chan and Cheng 1988).

Assume that the past tree basal area distribution can be modelled by some
continuous probability function, so that the past N basal areas are a random
sample from it. Assume also that growth preserves the dbh rankings, so that
the ordering of the trees according to the current basal areas coincides with the
one for the past basal areas. Then, we can chose n trees corresponding to any
specified set of order statistics (sample quantiles) from the sample of N, and
use their past basal areas to estimate the distribution parameters. The mean
or total past basal area can be obtained from the estimated distribution.

A commonly used model for tree basal area (or, equivalently, dbh) distribu-
tions is the two-parameter Weibull, with distribution function

F(y) =1 —exp[—(y/b)]-
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The logarithm z = In y has the smallest extreme value distribution

z_-

),

G(z) = 1 — exp[—ezp( =
with
pu=Inb, oc=1/c,

which is of the location-scale type. Hassanein (1972) gives the ABLE coefficients
and optimal ranks for this distribution and n between 2 and 10. These values
were used to estimate the past basal area with samples of 2, 4, and 8 trees.

The procedure is as follows. The trees in a plot are sorted in decreasing
order of dbh, receiving ranks 1,..., N. Select the trees with ranks [AMN +
1],...,[AnN +1], where [z] denotes the integer part of z (i. e. the largest integer
not exceeding z), and the \; are the optimal “spacings”, from Hassainen’s Table
2. Estimate the Weibull parameters by

b= (3 bl
=1

o
Il

1/(Zciln %),

where y; are the past tree basal areas for the selected trees, and the coefficients
are from Table 2 in Hassanein (1972). The past mean basal area estimate is
given by

Y = 0T(1+ 1/c).

The assumptions on which this method is based can be regarded only as
rough approximations (Sutton 1973, Garcia 1991). In addition, “best” esti-
mates of distribution parameters do not result necessarily in “best” estimates
for the mean. Nevertheless, the assumptions are probably not too far from real-
ity, and the high efficiency of the estimators when the model is “true” originally
suggested the possibility of obtaining acceptable estimates with a small number
of tree-ring measurements. Incidentally, Weibull distributions and no changes
in ranking imply a linear relationship between the logarithms of the tree di-
ameters at two points in time (Bailey 1980, but note that equation (11) and
following results are incorrect). Data plotting shows reasonably good log-log
trends.

Simulation

The 10 distinct combinations of probability sampling plan and estimator were
applied to the 100 plots (fifty 2-year intervals and fifty 6-year intervals), with
sample sizes of 2, 4, and 8 trees. Although in a few cases the exact variances
could have been calculated, repeated sampling was used to compare the perfor-
mance of the various methods. In each instance, 100 samples were simulated,
and mean errors (bias) and mean squared errors were computed.



All the programming and computations were done in APL, using STSC’s
APL*PLUS interpreter. The APL built-in random number generator, known
to be of good quality, was used. Computing time for the 300000 samples was
approximately 3.7 hours on a 16 MHz 386SX personal computer.

The quantile-based estimator was also applied to the 100 plots, using 2, 4,
and 8 quantiles. The method does not involve randomization, so that there
were no replications.

Results

Probability sampling

There was no consistent pattern in the mean errors for the unbiased (MVU)
compared to the ratio and regression estimators (RAT and REG). Therefore,
any biases in RAT and REG are likely to be small. By using mean square
errors, bias effects are included in the performance comparisons below.

There are clear relationships between the mean square errors and the means,
with the form of these trends varying across methods. The number of trees in a
plot had no appreciable effect. For presentation purposes, the plots have been
grouped according to their mean basal areas into three classes of 17, 16, and 17
trees.

It was found that a logarithmic transformation gave a more symmetrical
distribution and stabilized the variances of the mean square errors. For this
reason, the statistical analysis was based on the logarithms of the relative root-
mean-square (RMS) errors.

Tables 2 and 3 show the percentage relative RMS for the 2-year interval
and 6-year interval plots, respectively. These are geometric means within each
class (corresponding to the means of the logarithms). An analysis of variance of
the logarithmic relative RMS was used to calculate least significant differences
between methods (LSDs) at the 95% confidence level. The individual-class
LSDs were all fairly similar, with a clear trend only across sample sizes, so that
pooled LSDs for each sample size were used. In the tables, vertical bars join
methods differing by less than the LSD.

It is clear that large gains are possible by using fully the information on
current diameters instead of ignoring it (SRS/MVU) or of using it just for
stratification (STR/MVU). Simple random sampling with ratio or regression
estimators was generally inferior to stratification and variable probability sam-
pling.

There was no gain from using regression over the ratio or MVU estimators
in stratified and variable probability sampling, respectively. Regression could
be useful, however, in estimating variables not so directly related to current
basal area, such as height or volumes.

The most efficient methods were OSP3/MVU or STR/RAT, with the first
slightly better for the 2-year intervals, and the second for the 6-year intervals.
Implementing the stratification procedure is somewhat more complicated than
OSP?3 sampling. Together with the theoretical bias of the ratio estimator, this
might suggest OSP3/MVU as the better method in general.



Table 2: Relative RMS error of past basal area estimates (%). 2-year intervals

Mean diameter, cm
3-28 29 - 37 38 — 56

OSP3/MVU _ 7.35 OSP3/MVU _ 3.30 STR/RAT 195
OSP3/REG  7.37 OSP3/REG  3.30 STR/REG  1.95
STR/RAT = 7.58 STR/RAT 3.5 OSP3/MVU  2.01
STR/REG  7.61 STR/REG  3.46 OSP3/REG  2.01
n=2 SP3/MVU  T7.89 SP3/MVU  3.50 SP3/MVU 221
SP3/REG 7.90 SP3/REG 3.51 SP3/REG 2.22
SRS/RAT  8.49 SRS/REG  3.66 SRS/RAT  2.30
SRS/REG  8.49 SRS/RAT  3.66 SRS/REG  2.30
STR/MVU  16.80 STR/MVU  12.44 STR/MVU 1257
SRS/MVU  24.03 SRS/MVU  18.96 SRS/MVU  19.90

OSP3/MVU  4.50 OSP3/MVU  2.16 OSP3/MVU 1.2
OSP3/REG ~ 4.52 OSP3/REG  2.16 OSP3/REG  1.26
STR/RAT  4.86 SP3/MVU  2.30 STR/RAT  1.29
STR/REG  4.89 SP3/REG 2.30 STR/REG  1.29
n=4 SRS/RAT  5.46 STR/RAT  2.43 SP3/MVU 141
SRS/REG  5.47 STR/REG  2.43 SP3/REG 1.41
SP3/MVU  5.52 SRS/REG 248 SRS/RAT 1.45
SP3/REG 5.53 SRS/RAT  2.49 SRS/REG 145
STR/MVU  8.56 STR/MVU  6.13 STR/MVU  5.61
SRS/MVU  16.49 SRS/MVU  13.17 SRS/MVU  13.46

OSP3/MVU  3.07 OSP3/MVU  1.30 OSP3/MVU  0.77
OSP3/REG  3.09| OSP3/REG 131 OSP3/REG  0.77
STR/RAT 3.1 SP3/MVU  1.38 STR/RAT  0.84
STR/REG  3.13 SP3/REG 1.39 STR/REG  0.84
n=8 SP3/MVU 351 STR/RAT 145 SRS/RAT 097
SP3/REG 3.53 STR/REG 146 SRS/REG  0.97
SRS/RAT  3.54| SRS/REG 161 SP3/MVU  0.98
SRS/REG  3.54 SRS/RAT  1.61 SP3/REG 0.98
STR/MVU  4.71 STR/MVU  2.87 STR/MVU  2.59
SRS/MVU  10.66 SRS/MVU  8.06 SRS/MVU 850

SP3/MVU was not far behind, and the fact that it can be approximated
without having to list and number all the plot trees (i. e., without a sampling
frame) would make it preferable in many circumstances. The approximation
involves having to guess the current basal area before measuring the trees, and
can cause some variation in the intended sample size. Incidentally, as indicated
by Schreuder et al. (1971), this seems an attractive alternative to the popular
3-P sampling in forest inventories, especially since the advent of intelligent
portable data-loggers. Sample size is more predictable, and precision can be
expected to be higher.

As expected, the RMS error is higher for 6-year than for 2-year intervals.
Data plotting shows much weaker relationships between current and past basal
areas in very young stands compared with more mature ones. This contributes
to the differences in performance with tree size observed for the methods based



Table 3: Relative RMS error of past basal area estimates (%). 6-year intervals

Mean diameter, cm
4 -33 33 -38 39 - 57

OSP3/MVU  10.43 STR/RAT __ 6.98 STR/RAT __ 5.39
OSP3/REG  10.49 STR/REG 7.0 STR/REG  5.40
STR/RAT  10.58 SP3/MVU  7.44 OSP3/MVU  5.74
STR/REG  10.62 SP3/REG 7.45 OSP3/REG  5.75
n=2 SP3/MVU  11.06 OSP3/MVU  7.53 SP3/MVU  5.86
SP3/REG  11.09 OSP3/REG  7.54 SP3/REG 5.86
SRS/RAT  12.03 SRS/RAT 7.1 SRS/REG  6.07
SRS/REG  12.04 | SRS/REG  7.72 SRS/RAT  6.07
STR/MVU  16.30 STR/MVU  14.61 STR/MVU  13.18
SRS/MVU  23.25 SRS/MVU  20.81 SRS/MVU  19.32

OSP3/MVU  6.82 STR/RAT 455 STR/RAT  3.59
OSP3/REG  6.85 STR/REG  4.57 STR/REG  3.60
SP3/MVU  6.94 OSP3/MVU  4.69 SP3/MVU  3.77
SP3/REG 6.98 OSP3/REG  4.71 SP3/REG 3.77
n=4 STR/RAT  7.09 SP3/MVU  5.07 OSP3/MVU  4.03
STR/REG  7.12 SRS/RAT  5.07 OSP3/REG  4.04
SRS/RAT 7.82 SRS/REG  5.08 SRS/REG  4.17
SRS/REG  7.83 SP3/REG 5.09 SRS/RAT  4.17
STR/MVU  9.32 STR/MVU  7.82 STR/MVU  6.46
SRS/MVU  15.53 SRS/MVU  13.89 SRS/MVU  13.75

SP3/MVU  4.04| STR/RAT  2.96 STR/RAT  2.28
SP3/REG 4.05 STR/REG  2.98 STR/REG  2.28
OSP3/MVU  4.39 OSP3/MVU  3.14 OSP3/MVU  2.46
OSP3/REG  4.42 OSP3/REG  3.15 OSP3/REG 247
n=8 STR/RAT  4.69|[| SP3/MVU  3.29 SP3/MVU  2.59
STR/REG  4.71 SP3/REG 3.30 SP3/REG 2.61
SRS/RAT 4.9 SRS/RAT  3.45 SRS/REG  2.67
SRS/REG  5.00 || SRS/REG 3.5 SRS/RAT  2.67
STR/MVU  5.46 STR/MVU  4.12 STR/MVU  3.61
SRS/MVU  9.93 SRS/MVU  9.20 SRS/MVU  8.78

on these relationships.

To evaluate the magnitude of the sampling errors and choose a sample size,
it would be necessary to compare them to measurement and other error sources.
For example, Kinashi (1953) found a standard deviation of 0.44 cm in random
callipering of trees having a mean dbh of 20 cm. This is about 4.4% for a tree
basal area, or 0.88% for the mean of 25 trees. See also McEwen (1976). More
research on the precision of tree-ring data is needed.

Although the relative basal area errors are smaller for larger trees and
shorter time intervals, the basal area increments are also smaller. For the
best methods it was found that the relative increment errors are not strongly
dependent on mean tree or increment size. The averages (arithmetic means)
of the relative RMS errors for basal area increments are given in Table 4. It is
interesting that there are no large differences either between the 2-year and the
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6-year intervals, although some interaction between method and interval length
is again apparent.

Table 4: Relative RMS error of basal area increment estimates (%)

Method 2 years 6 years
STR/RAT 145 12.9
n=2 OSP3/MVU 14.5 13.7
SP3/MVU 15.8 13.9
STR/RAT 9.7 8.5
n=4 OSP3/MVU 9.2 9.1
SP3/MVU 10.5 9.2
STR/RAT 6.2 5.5
n=8 OSP3/MVU 5.8 6.2
SP3/MVU 7.3 6.2

Quantile-based estimation

For the quantiles method there is only one error value from each plot. RMS
errors were computed within each of the three tree-size groups. These are
compared in Table 5 with RMS errors for OSP?/MVU calculated by pooling
the square errors of the 100 replications. In the table, the first number of
each pair corresponds to the quantiles method, and the second to OSP3. The
diameter groups are the same as those in Tables 2 and 3.

Table 5: Mean tree basal area RMS errors (cm2) for the quantiles and
0SP3/MVU methods

Mean diameter groups
n Small Medium Large All
2-yr 2 22519.6 355324 64.133.8 444293
2-yr 4 158119 344215 27.621.8 26.918.9
2-yr 8 13.1 81 20.613.0 27.813.8 21.411.9

2

4

8

Interval

6-yr 67.358.6 96.283.9 63.4989 76.682.1
6-yr 35.840.8 52.952.6 75.866.6 57.354.3
6-yr 21.831.0 45.136.9 352449 35.138.0

The variability of the quantile RMS errors for the size groups is large, since
they are based on just 16 or 17 values. The OSP® method appears superior for
the 2-year intervals, but for the 6-year intervals the comparison is inconclusive.
With model-dependent methods there is a risk of bias causing spurious rela-
tionships between variables, which could be especially troublesome in growth
modelling applications. Therefore, on the basis of these results the quantile-
based method cannot be recommended.

It seems plausible, however, that related approaches, such as using BLUE
instead of ABLE estimators, could result in better performance. It was found
that with n = 8 and N < 30, for example, Hassainen’s spacings produce samples
with less than 8 distinct trees, so that taking into account the finite nature of the
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population would certainly improve the estimates in those instances. Methods
could be designed also aiming at minimizing the variance of estimators for the
mean instead of for the distribution parameters. Another possibility would be
to introduce randomization and develop a hybrid method, with a sampling plan
near-optimal under the assumed order statistics model and a model-independent
estimator.

Conclusions

To estimate past basal area, methods that exploit the correlation between cur-
rent and past diameters were much more efficient than unbiased estimation with
simple or stratified random sampling.

The best methods were a near-optimal stratification with ratio estimation,
and an “ordered systematic with probability proportional to prediction” (OSP3)
sampling plan with the Horwitz-Thompson estimator. Regression estimators
did not reduced the mean square errors. The OSP3 method is somewhat easier
to implement and is free of the theoretical bias of the ratio estimator, so that
it may be recommended in preference to the stratification approach.

A similar method without pre-ordering (SP3) was almost as good. It can
be approximated without the need for numbering and listing all the plot trees,
which would make it the preferred alternative in many circumstances.

A model-dependent approach based on order statistics of the Weibull distri-
bution seems reasonably precise, but not as good as OSP3. Further refinements
might make this and related methods an attractive option.

Definite decisions about sample sizes would require more information on
measurement and other non-sampling errors. Strategies for the joint estimation
of basal area and height also need to be investigated.
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