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EXECUTIVE SUMMARY

The maximum-likelihood parameter estimation procedures used in FRI’s
regional growth models involve the numerical optimisation of complicated
functions. This process can be costly and time-consuming, especially when
dealing with large data sets and testing many variations in the model for-
mulation. In 1988 we developed an automatic differentiation system, called
GRAD, that made it possible to use analytical derivatives in the optimisa-
tion instead of the more expensive finite differences approximations. This
resulted in considerable savings in time and money in the development of
the KGM3 and PPMS88 growth models on the VAX. It eventually made
practical the parameter estimation on microcomputers.

This is one of two papers describing this work presented in January 1991
at a “Workshop on Automatic Differentiation of Algorithms”, in Brecken-
ridge, Colorado, by invitation from the Society for Industrial and Applied
Mathematics (STAM). The second paper describes in greater detail the math-
ematical and computational techniques used in GRAD. Automatic Differen-
tiation deals with the computer generation of routines for calculating func-
tion derivatives, and is becoming increasingly important in optimization,
sensitivity analysis, numerical methods, and other applications in a variety
of disciplines, including Physics, Chemistry, Meteorology, Oceanography,
and Economics. It turned out that GRAD compares very favourably with
previously available systems. This work was also presented at a ~Workshop
on Symbolic Computing in Applied Mathematics”, held in Christchurch in
February 1991. The contents of these papers will be included in a book
based on the proceedings of the SIAM Workshop.




Experience with Automatic Differentiation in
estimating forest growth model parameters *

Oscar Garcia
Forest Research Institute
Rotorua, New Zealand

Abstract

The performance of automatic differentiation in fitting growth models
for intensively managed forest plantations is examined. The models con-
sist of a system of stochastic differential equations, and parameters are es-
timated by maximum- likelihood using a general-purpose variable-metric
optimization procedure. Compared to central difference approximations,
the use of automatically generated derivatives in the optimization reduced
computing time by a factor of 4 on a 80386/80387 microcomputer and by
a factor of 6 on a MicroVAX 3500. An automatic differentiation proce-
dure developed by the author was used, and found superior to JAKEF in
this type of problem. The results may be relevant to estimation in other
complex statistical models.

Introduction

Foresters can influence the development of a forest stand (a homogeneous patch
of forest) through a number of silvicultural treatments. Stand density (trees
per hectare), can be controlled by the selection of an initial planting density,
and by thinnings, which are partial cuts where usually smaller and malformed
trees are removed. Density affects the total volume production, the incidence
of competition-induced mortality, and the size and timber quality of individual
trees. Timber quality can also be improved by pruning lower branches, possibly
at some cost in reduced growth. Other management decisions may involve the
application of fertilizers and pesticides, different planting or regeneration tech-
niques, the development and use of genetically improved seed, and the timing
of the final cut. Mathematical growth models capable of predicting treatment
effects are essential for rational forest management, especially in intensively
managed production forests.

*Presented at the SIAM Workshop on Automatic Differentiation of Algorithms, Brecken-
ridge, Colorado, January 6-8, 1991.



Over the past decade, 10 regional growth models for radiata pine and one
for Douglas-fir have been developed in New Zealand using a methodology based
on stochastic differential equations and maximum-likelihood parameter estima-
tion [Garc88a]. These models can predict the behavior of stands subject to a
wide range of initial densities, timing and intensity of thinnings, and in some
instances pruning, fertilizing, and genetic improvement. Recently, automatic
differentiation has been found useful in accelerating parameter estimation.

The nature of the models and estimation procedures is described briefly in
the next section. More details can be found in [Garc79, Garc84, Garc89], and
a more general discussion of growth modelling in [Garc88b]. [Bard74] is an
excellent source for estimation theory and methods. Following this, results of
comparisons between the use of difference approximations and of automatically
generated analytic derivatives are presented, and the implications discussed.

These results may be relevant to the fitting of complex statistical models in
other fields.

Models and estimation

The state of a forest stand is assumed to be adequately described by 3 to 5
state variables: mean diameter, stand height, trees per hectare, and, in some
models, measures of ground cover and/or nutrient concentrations. Treatments
cause instantaneous changes in the state variables. Between treatments, the
state trajectories are modelled by a system of differential equations.

The differential equations are linear on power transformations of the state
variables, and can be written as

dxC le!

'—Elt— = Ax"~ +b,
defining

xC = exp[CInx].

x is the state vector, and A, b, and C are matrices and vectors of parameters
to be estimated. Some of these are actually functions, containing unknown
parameters, of a site productivity index specific to each stand. Some models
include additional functions of state variables multiplying the right-hand-side
[Garc89].

The data consists of a few consecutive measurements, at irregular intervals,
on a large number of sample plots established in different stands. In order to de-
vise a rational estimation procedure, the data variability is modelled as a pertur-
bation of the differential equations by a Wiener stochastic process. The resulting
stochastic differential equations can be integrated analytically to compute the
likelihood function, that is, the probability of the model generating the observed



data as a function of the parameters. The maximum- likelihood estimates are
those values of the parameters that maximize the likelihood [Zack71, Bard74].

The differential equation parameters are estimated by maximum likelihood
in two stages. The height growth is treated as a self-contained subsystem, since
it can be assumed that the development in stand top height is approximately
independent of the other state variables. Therefore, one of the equations involves
only the heights, and its parameters are estimated first, together with the site
index for each stand. Once these are available, the rest of the parameters are
estimated using the likelihood function for the whole system. In addition to
the Wiener perturbations, the height growth model also includes other random
variables representing measurement errors.

For each data set, there are typically many parameter estimation runs, with
variations of the basic model involving different numbers of state variables,
the fixing at zero of various subsets of the parameters, the use of multiplier
functions, and other detail changes. It is also advisable to repeat the procedure
with different starting points to guard against the possibility of local optima.

Computational procedures

The fitting of the height growth model, although simpler than the full model in
being univariate, involves the optimization of functions of hundreds of variables,
i. e. the different site indices and sometimes nuisance parameters (variances) for
each sample plot. A full Newton algorithm, with modifications to ensure conver-
gence, has been implemented for this purpose [Garc83]. Although very large, the
Hessian is sparse, with a special structure exploited by partitioning techniques.
Analytic first and second derivatives are used, computed by a hand-coded im-
plementation of the automatic differentiation approach discussed below. The
procedure has proven to be very reliable and efficient.

For the rest of the parameters, the likelihood function is maximized (or
rather, minus the logarithm of the likelihood is minimized) using a general- pur-
pose variable-metric optimization routine. The smaller number of variables (9-
20), and the experimental nature of the code, subject to frequent detail changes
, did not justify the development of a specialized procedure as in the case of the
height model. After some unsuccessful experiences with a difference approxima-
tion implementation of Fletcher and Powell’s algorithm [Lill70], and with Nelder
and Mead’s simplex procedure ([ONei71], see [Garc79]), Hatfield Polytechnic’s
OPVM routine has performed well [Bigg71, Bigg73, NOC76].

OPVM is a Fortran subroutine using a quasi-Newton or variable-metric un-
constrained optimization method. It can use analytic first derivatives, or ap-
proximate them with central differences in the auxiliary subroutine OPNDI.
Other more recent optimization routines have not been tested because they lack
an essential feature of OPVM: if the function evaluation routine cannot compute
the value at a given point, it can set a flag, and OPVM then reduces the step



length and tries again. This is necessary because often trial points cause float-
ing point exceptions, typically from out of range arguments in exponentials and
other functions. In addition, some parameter values result in complex eigenval-
ues for the /bfA matrix, unacceptable on physical grounds. The alternative of
supplying step bounds is generally unsatisfactory.

The likelihood function to be optimized in these models is fairly complex.
As much of the computation as possible is done in a pre-processing step, stor-
ing data transformations in an array. Still, the function evaluation subroutines
called by the optimization procedure contain some 130 to 180 Fortran state-
ments. This size, together with the expected modifications to the programs,
made impractical the coding of analytic derivatives. Therefore, the OPND1
difference approximations were used.

Each function evaluation includes a loop over hundreds, or even thousands
of observations. An approximation of the gradient by central differences re-
quires a number of function evaluations equal to twice the number of variables
(parameters). With the use of more complex model forms and larger data sets,
the necessity of many lengthy over-night runs on mainframe computers (Digi-
tal VAX) increased costs and slowed down progress considerably. In 1988, an
automatic differentiation procedure was developed in an attempt to improve
computing turn-around.

The differentiation procedure, described in a companion paper [Garc9l],
takes as input a Fortran subroutine that computes the value of a function, and
produces as output another Fortran subroutine that computes the derivatives
with respect to specified variables. Using the powerful APL language it was
possible to implement the system within a very short time. The use of analytic
derivatives produced by these computer-generated subroutines greatly reduced
computing times, and made it feasible to perform the parameter estimation on
microcomputers [Garc89].

Tests and results

The use of analytic derivatives and difference approximations has been compared
on three parameter estimation problems (Table 1). Problem A is one of the
simpler models, with a moderate amount of data [Garc84]. Problem B is a
more complex model with multiplier functions [Garc89), typical of those that
motivated the automatic differentiation approach. The runs with A and B
started from reasonable estimates, with those for A derived from the solution
of B, and vice-versa. Problem C tested a more general form for the covariance
of the Wiener process, with additional parameters to be estimated [Garc79,
Garc84]. The starting point for C was the parameters estimated with the simpler
covariance, and the optimization procedure stopped with only small change in
the log-likelihood and failing the convergence test, showing the problem to be
ill-conditioned (over- parametrized).



Table 1: Parameter estimation runs

Problem A B C B, VAX
Variables (parameters) 9 16 18 16
Observations 339 2093 1655 2093
Gradient subroutine generation (min) 6 10 14 -
Difference approximations
Function calls 70 301 147 348
Gradient calls 45 184 32 210
Time (minutes) 10.8 890.7 89.9 614.8
Analytic derivatives
Function calls 72 352 145 384
Gradient calls 45 211 33 221
Time (minutes) 2.7 2285 21.8 99.3
Difference approximations run-time
/ analytic derivatives run-time 4.0 3.9 4.1 6.2

The computations were performed in double precision on an AT-compatible
20 MHz 80386 microcomputer with an 80387 coprocessor and Microsoft Fortran
4.10. Problem B was also run on a MicroVAX 3500 with VAX Fortran. The
problems are reasonably well scaled, with variables and objective value not very
far from one. The step size for the finite differences was set to 10=2 for runs A
and B, and to 104 for C. Previous experience has shown that the step size is
not critical, and that these values are satisfactory.

The third line in Table 1 shows the time taken by the automatic differen-
tiation procedure. This does not include the minor manual editing required to
change the subroutine header and assign the gradient. The finite differences
run on problem B stopped without reducing all gradient components below the
value of 1073 specified in the convergence criterion, although it was very close.
The speed-up factors from using analytic derivatives are given in the last row of
Table 1. Some additional improvement could be obtained by modifying the op-
timization routine to make use of the function values computed by the analytic
gradients subroutine.

There was no evidence of any improvement in reliability from using analytic
derivatives, except perhaps for the difference in satisfying stringent convergence
tests just mentioned. The optimization paths in problems A and C were very
similar, but in problem B the difference approximations achieved larger reduc-
tions of the objective in fewer iterations (Figure 1).

Table 2 shows what Griewank ([Grie88]) calls the work ratio, the ratio of
the time required to compute the (analytic) gradient to the time required to
compute one function evaluation. Problem D is a model similar to A, but with
more free parameters, and with the data set of C. The computations for D
were done on a 12 MHz AT-compatible 80286 microcomputer, with the 80287
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Figure 1: Optimization progress for problem B

Table 2: Ratio of gradient to function evaluation times (work ratio)

Problem Variables Observations Work ratio
A 9 339 3.0
B 16 2093 5.6
C 18 1655 6.4
B, VAX 16 2093 3.7
D 18 1655 5.2
D, data subset 18 100 5.2
Same, JAKEF 18 100 8.0




coprocessor circuitry modified to run at 12 MHz, and Microsoft Fortran 4.10.

The author’s automatic differentiation procedure uses what is essentially a
forward approach [Grie88, Garc91]. Griewank proved that the reverse mode of
differentiation is asymptotically superior to the forward form as the number of
variables increases, at least if the possibility of exploiting sparsity is ignored.
Therefore, a procedure based on the reverse mode, JAKEF [Hils90], was tried.
Unfortunately, the reverse mode requires storage that grows with the number of
statements executed in the function evaluation, which in these problems is large
due to the loop over the observations. In the 640 K bytes of memory available
in a microcomputer under DOS, JAKEF was unable to handle problems of
practical size, with 200 or more observations. In addition, a test with a subset
of 100 observations showed that the code generated by JAKEF was substantially
slower (Table 2).

Discussion and conclusions

I have not tested alternatives to the direct maximization of the likelihood with
a variable-metric algorithm. An attractive possibility are the extensions of
Fisher’s method of scoring [Zack71] discussed by Bard [Bard74] under the name
of the Gauss Method. These provide an explicit approximation to the Hes-
sian that can be used in the likelihood optimization. Although more difficult
to implement, these techniques might be more efficient. The relative perfor-
mance of analytic derivatives vs difference approximations, however, is likely to
be similar. The same is true for alternative estimation criteria, for example,
the maximization of the product of the likelihood and a prior distribution in
Bayesian approaches.

The gains from Automatic Differentiation may differ with other optimization
procedures. In particular, some implementations of difference approximations
start using forward differences, and switch to central differences near the opti-
mum. It is also possible that a derivative-free optimization algorithm, such as
Brent’s [Bren73] modification of Powell’s method, might perform well in this
application.

As mentioned before, the speed-up in the estimation of growth model param-
eters achieved through automatic differentiation was well worthwhile, reducing
computing costs and improving turn-around when running on mainframes.

With the increased availability of inexpensive and powerful microcomputers,
the preparatory work required by current automatic differentiation procedures
is probably not warranted for the casual user, or for one-off or small optimiza-
tion problems. For large problems that need to be solved repeatedly, however,
automatic differentiation can be very useful.

The larger saving in computing time on VAX computers shown here agrees
with our previous experience [Garc89]. A possible reason might be differences
in the Fortran compilers optimization of the code generated by GRAD.



The forward mode of differentiation may be preferable to the reverse mode in
this type of problem. The storage requirements of the reverse approaches can be
prohibitive. The superior speed achieved with the author’s forward procedure,
compared to the reverse method implemented in JAKEF, can be attributed to
the exploitation of sparsity, and to the production of stand- alone code, without
calls to run-time routines or other overheads.
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