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Summary:  
 
Estimation of LAI using remote sensing techniques offers the potential for large scale LAI assessment 
which may be used to identify diseased and infertile areas of forests for targeted interventions.  Previous 
work to estimate LAI from LiDAR has shown improved results over spectral-based methods. In this tech 
note we summarise work done to improve LiDAR-based estimates of LAI in New Zealand’s radiata pine 
plantations. A large number of candidate LiDAR metrics were tested across a wide range of plot 
parameters using two different modelling approaches. 
 
Here we show that the use of non-standard LiDAR metrics and plot parameters greatly improved 
accuracy of LAI estimates. LiDAR data extracted from a variable plot radius equal to 100% or 150% of 
canopy height were optimal, with mean squared error (MSE) of 0.32 – 0.35 for the best models. 
However, a fixed radius of 20 – 26 m from plot centre also produced strong relationships between LAI 
and LiDAR (MSE for top models of 0.41 – 0.43).  
 
Above a minimum level of plot radius the ratio metrics emerged as the strongest predictors of LAI. This 
class of metrics computes ratios of returns by type above and below a specified height threshold. The 
choice of height threshold strongly impacted model performance and complexity. In our study, the 
optimal height threshold was between 5 – 6 m above ground. Models utilising ratio metrics constructed 
at these height thresholds produced the most accurate models, and ratio metrics were selected and 
ranked well above other metrics in this region. An alternative approach using a variable height threshold 
showed that a height threshold equal to 20% of canopy height for individual plots was also effective in 
ratio metrics, and is likely to perform better where plot height is highly variable. 
 
Elastic-net regularised regression models produced the best models of LAI from LiDAR, with reduced 
complexity at the optimal combination of LiDAR plot radius, and ratio metric height threshold. Models 
based on Random Forests did not improve on the elastic-net approach. The scoring of metric importance 
from the Random Forests algorithm largely agreed with metric selection in elastic-net, and highlighted 
the importance of ratio metrics for LiDAR-LAI estimation. 
 
Based on the results of this study we make general recommendations for those seeking to estimate LAI 
from LiDAR in New Zealand’s radiata forests, such as the choice of LiDAR plot parameters and 
candidate metrics. The success demonstrated using this approach opens up future opportunities to 
explore the use of LiDAR-LAI to detect gradients of fertility and disease across large areas. 
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Introduction 
 
Leaf area index (LAI) is a measure of leaf or needle 
surface area per unit ground surface area1. The link 
between photosynthesis and LAI makes it a key forest 
physiological trait with close links to forest health, 
productivity, and site fertility2. These properties also 
make measurement of LAI valuable to forest 
managers, with potential applications for disease 
identification, disease control, and targeted site 
interventions such as aerial fertilisation. Spectral 
indices with theoretical links to photosynthesis, for 
example the normalised difference vegetation index 
(NDVI), have been used to successfully predict LAI 
across large areas of grassland. However, these 
techniques do not perform well in forested areas 
where sensor saturation (LAI > 4), understory 
interference, and processing difficulties limit the 
usefulness of these approaches3–5. 
 
The advent of LiDAR has provided a new set of tools 
for LAI estimation in forest ecosystems. In contrast to 
spectral methods, LiDAR-LAI estimation relies on the 
derivation of empirical relationships between ground 
based LAI measurements and LiDAR metrics, often 
with only tentative links to LAI-related canopy 
properties6. While this approach has often been used 
successfully, the lack of a solid theoretical link to LAI 
has resulted in a proliferation of approaches which are 
largely study specific. In the context of New Zealand 
forestry, very little work has been done to develop 
methods for LiDAR-LAI estimation in plantations of 
Pinus radiata (D. Don). In a previous GCFF tech note 
(TN008), we compared standard LiDAR metrics and a 
broad range of spectral indices to determine the best 
approach for LAI estimation in New Zealand’s radiata 
forests. As anticipated, the LiDAR metrics showed 
much greater measures of association with LAI 
measurements taken from 21 plots across Kaingaroa 
forest. However, predictive models of LAI using 
standard LiDAR metrics from a larger sample (n = 134) 
of plots in Kaingaroa showed only modest agreement 
(R2 = 0.61). These estimates were still considerably 
better than those from satellite imagery, but were 
weaker than some international examples of LiDAR-
LAI. We attribute this result to the fact that initial efforts 
did not attempt to develop New Zealand specific 
methods for LiDAR-LAI estimation, and relied only on 
standard LiDAR metrics and methods. 
 
In this tech note we describe an improved approach to 
LiDAR-LAI estimation in New Zealand’s radiata forest 
type. This approach is based on a comprehensive 
evaluation of the optimal methodology for this forest 
type. In particular, three key research areas were 
addressed: (1) evaluation of a large number of LAI 
specific LiDAR metrics proposed in the literature, (2) 
determination of the optimal parameters for the 
construction of these metrics, (3) trialling the use of 
both linear and non-linear approaches to capture the 
true form of any relationship between LiDAR metrics 
and LAI. 
 

Methods 
 
Field data 
 
LAI measurements were acquired using the LICOR 
LAI-2200C7 in 134 plots across Kaingaroa forest. All 
plots were coincident with 0.06 ha inventory plots. 
Measured stand ages ranged from 10 – 36 years, and 
mean top height (MTH) ranged from 14 – 43 m. Plot 
LAI was determined as the average of 18 – 25 
measurements taken within the boundaries of the 
inventory plots. Measurements targeted a 95% 
confidence level that the plot mean LAI was within 
10% of true LAI. The LAI measurements and post-
processing were conducted using the protocol 
described by Pearse et al.8. 
 

LiDAR metrics  
 
Several classes of LiDAR metrics have been proposed 
for LiDAR-LAI estimation. Our analysis included an 
extensive assessment of these metrics, here we 
present only a brief outline of our approach. As a first 
step, the list of useful metrics for LiDAR-LAI estimation 
were divided into the following classes: 
 

Standard height metrics 
 
This class includes standard height percentiles and 
descriptive statistics. These metrics depend only on 
the choice of a plot radius from which to extract LiDAR 
data and compute the relevant statistics. Optical LAI 
instrumentation (including the LAI-2200C) will view 
canopy elements beyond the boundaries of a small 
inventory plot. As a result, the choice of LiDAR plot 
radius impacts the strength of LiDAR-LAI 
relationships6,9. For example, Zhao & Popescu6 found 
a fixed radius of around 25 m was best. Solberg et al.9  
abandoned use of a fixed radius, and found improved 
LiDAR-LAI relationships when the plot radius was set 
as a multiple of dominant tree height within the plot.  
 

Ratio metrics 
 
These metrics compute the ratio of returns (often 
separated by type) above and below a chosen height 
threshold. For example, canopy cover may be 
estimated as the fraction of first returns above DBH 
(1.4 m) to the total number of first returns. This class 
of metrics has been widely used for LiDAR-LAI 
estimation6,10,11. However, the optimal choice of a fixed 
height threshold to separate returns is not well 
established, and varies widely in the literature. 
 

Complex metrics 
 
These metrics are typically computed using more 
complex approaches such as division of the plot into 
smaller sub-pixels for metric computation. Metrics of 
this type have been used successfully in some 
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settings, and are often based on tentative links to LAI 
theory12,13. 
 
 

LiDAR parameters for metric calculation 
 
To identify the optimum combination of LiDAR 
parameters the following settings were trialled when 
generating the aforementioned metrics:  

(1) All metrics were computed using LiDAR data 
extracted at fixed plot radii ranging between 8 
– 30 m in 2 m increments from each plot 
centre. 

(2) The mean top height for each plot was used 
as the basis for variable plot radii, with LiDAR 
data extracted at multiples of MTH ranging 
from 25 – 200% of MTH in 25% increments 
and used to generate all metrics. 

(3) For ratio metrics, which require a height 
threshold to be chosen, each ratio was 
computed using height thresholds ranging 
from 0.5 m – 10 m above ground in 0.5 m 
increments. 

(4) For our study we also introduce the novel 
concept of constructing ratio metrics using a 
variable height threshold. In this approach 
metrics such as canopy cover are computed 
as the ratio of returns above and below a 
height threshold determined as some fraction 
of maximum canopy height in each plot. This 
approach allows the height threshold to vary 
with tree height, whereas a fixed height 
threshold would be applied to all plots, 
regardless of tree height. We trialled variable 
height thresholds equal to 10% - 60% of the 
maximum canopy height within plots. 

 

LiDAR data 
 
Aerial LiDAR data were collected in early 2014 using 
an Optech Pegasus scanner. A maximum of four 
returns per pulse were captured. Calculation of LiDAR 
metrics was accomplished using a custom set of 
processing tools developed for the task. These tools 
extracted and processed LiDAR data at all fixed and 
variable radii specified, and for ratio metrics all fixed 
and variable height thresholds. These data were 
subset according to radius and height threshold and 
used to develop LiDAR-LAI models. 
 

Modelling LAI from LiDAR 
 
Much of the previous research on LiDAR-LAI 
estimation has relied on ordinary least squares 
regression (OLS)12,14. However, given the large 
number of metrics we trialled, and the large number of 
parameters used to generate these metrics, OLS was 
unsuitable. To overcome this, we chose two 
approaches to estimate LAI from the candidate LiDAR 
metrics. First, we fitted models based on elastic-net 
regression15. Elastic-net is a form of regularised linear 
regression that selects important variables while 
offering built-in controls for over-fitting. The glmnet 
package16 in R 17 was used to fit elastic-net. Models 

were scored by mean squared error determined from 
10 fold cross-validation. 
 
For our second approach we used Random Forests18 
to model LAI from LiDAR. Random Forests 
is capable of capturing both linear and non-linear 
relationships. Importantly, while Random Forests 
does not provide variable selection, the algorithm 
provides a useful importance score for each of the 
variables used in the model (LiDAR metrics in our 
case). Models were fitted using the Party package for 
R19. MSE was calculated from the out-of-bag samples, 
and importance scores were computed using the 
conditional permutation importance measures 
described by20. By examining the variables selected in 
the best elastic-net models in conjunction with the 
Random Forests importance score, we were able to 
shortlist the best candidate metrics for LiDAR-LAI 
estimation in New Zealand’s radiata pine forests. In 
addition, because models were fitted at every 
combination of height threshold and plot radius, the 
optimum parameters could be identified as those 
which produced the highest model accuracy. 
 

Results 
 
Optimum radius and height threshold 
 
Results from models developed using elastic-net 
regression with metrics constructed from fixed radius 
LiDAR plots are shown in Figure 1. LiDAR data 
extracted from plots with a radius less than 18 m 
generally produced weaker models. The optimum 
range for plot radius was between 20 – 26 m. 
However, above 18 m plot radius the choice of fixed 
height threshold became relatively more important to 
model accuracy, with the optimum range occurring 
between 5 – 6 m. Use of a variable height threshold 
produced similar results to the fixed height threshold 
models, and accuracy was similarly impacted by plot 
radius. 
 
The top 5% of models (outlined, Figure 1) were nearly 
tied, with a MSE of 0.41 - 0.43. Closer examination of 
these models showed large differences in complexity, 
and metric selection. As height threshold increased 
towards the optimum value of 5 – 6 m the number of 
ratio metrics present in the models showed a large 
increase, while overall model complexity decreased. 
This pattern was not true for the variable height 
threshold models, where the top models were 
generally more complex. 
 
Use of a variable radius to extract LiDAR data (Figure 
2) improved on the accuracy of fixed radius LiDAR-LAI 
models. The top 5% of models had a MSE of between 
0.32 – 0.35. Results were more localised, with the best 
models produced when the radius was set at 100% or 
150% of maximum canopy height. Within these bands, 
height threshold was again more important, with the 
optimum values once again between 5 – 6 m. The use 
of a variable plot radius set at 100% of MTH, in 
conjunction with a variable height threshold set at 20% 
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of max canopy height produced the best model of all 
those trialled with MSE of 0.32. 
 
Repeating the model fitting process using Random 
Forests instead of elastic-net did not produce 
improved models of LAI. The best model for the fixed 
radius plots had identical MSE of 0.41. In contrast to 
elastic-net, variable radius plots did not produce better 
models, with the lowest MSE = 0.41. Random Forests 

models followed broadly similar trends in terms of the 
optimum radius and height threshold for fixed radius 
plots, confirming that larger radii of between 20 – 26 
m, and height thresholds of 5 – 6 m produce the 
strongest agreement between LiDAR metrics and LAI. 
The weaker model performance in variable radius 
plots made trends in radius and height threshold less 
useful for comparison. 
 

 
 

 
Figure 1: Results from elastic-net regression models of LAI from LiDAR metrics constructed using fixed plot radii. Ratio metrics 

were constructed using a range of fixed and variable height thresholds calculated as a percentage of maximum canopy height 
(CH). The top 5% of models by mean squared error are outlined in black and were nearly tied (MSE 0.41 – 0.43). 
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Figure 2: Results from elastic-net regression models of LAI from LiDAR metrics constructed using plot radii based on mean top 

height (MTH) within plots. Ratio metrics were constructed using a range of fixed heights, and variable height thresholds 
calculated as a percentage of maximum canopy height (CH). Models outlined in black are with 5% of the top model, with MSE 
ranging from 0.32 – 0.35. 

 

Metric importance 
 
Although Random Forests did not provide improved 
model performance, the variable importance scores 
provided additional insight into the relative importance 
of candidate metrics. The metrics with the highest 
importance scores broadly agreed with the metrics 
included in the best elastic-net regression models. 
Table 1 shows a summary of the top five metrics which 

were important in the best fixed and variable radius 
models, and which were present in nearly all top 5% 
models. It is noteworthy that four of the five metrics are 
classed as ratio metrics, and the only height metric 
(skew) measured return height distributional 
properties. Indeed, several other distributional metrics 
such as L-moments and measures of kurtosis and 
variance were occasionally present in some of the 
better models. Complex metrics were largely absent 
from the top models. 

 

Table 1: Key LiDAR metrics selected by elastic-net, and scored highly by Random Forests importance measures, in the top 5% 

of fixed and variable radius models. FIRST and LAST denote return types. First and last of many are returns marked as having 
additional echoes from the same pulse. Subscripts A and B denote returns above or below a specified height threshold. *AVM 
denotes returns above the vegetation mean, where the vegetation mean was computed as the mean height of all returns above 
the specified height threshold. 

Metric Class Source Definition 

% First above veg mean Ratio metric Novel 
𝐹𝐼𝑅𝑆𝑇𝐴𝑉𝑀∗

𝐹𝐼𝑅𝑆𝑇
 

Last cover index Ratio metric 
Korhonen et 
al.10 

𝐿𝐴𝑆𝑇𝐴

𝐿𝐴𝑆𝑇
 

Solberg’s cover index Ratio metric 
Solberg et 
al9,10  

𝑆𝐼𝑁𝐺𝐿𝐸𝐵 + 0.5(𝐹𝐼𝑅𝑆𝑇 𝑜𝑓 𝑚𝑎𝑛𝑦𝐵 + 𝐿𝐴𝑆𝑇 𝑜𝑓 𝑚𝑎𝑛𝑦𝐵)

𝑆𝐼𝑁𝐺𝐿𝐸𝐴 +  0.5 (𝐹𝐼𝑅𝑆𝑇 𝑜𝑓 𝑚𝑎𝑛𝑦𝐴 + 𝐿𝐴𝑆𝑇 𝑜𝑓 𝑚𝑎𝑛𝑦𝐴)
 

Morsdorf’s LAI proxy Ratio metric 
Morsdorf et 
al.11 

𝐹𝐼𝑅𝑆𝑇𝐴

𝐿𝐴𝑆𝑇𝐴

 

Skew Height metric N/A Skewness of all return heights 
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Metrics selection and importance were strongly 
impacted by the choice of LiDAR plot radius and 
height threshold. At smaller fixed and variable plot 
radii metrics were all fairly uniformly poor predictors. 
However, as the combination of radius and height 
threshold approached the optimum values shown in 
Figures 1-2 a clear pattern emerged. In these regions 
ratio metrics came to dominate the list of metrics 
selected, and achieved the highest variable 
importance scores. In many cases, the height metrics 
included in the top 5% of models were of marginal 
importance and model performance would have been 
largely unaffected with these metrics excluded. 
 

Discussion and recommendations 
 
Our findings show that LiDAR based estimates of LAI 
can be achieved in New Zealand’s radiata pine 
plantation forests. The error levels from the best 
models were competitive with many overseas 
examples6,11,14. The ‘default’ approach for our study 
would have been to construct ratio metrics using a 
height threshold equal to instrument height (1.4 m in 
our case), to extract LiDAR data at the inventory 
radius (14 m), and to include only the standard set of 
(predominantly) height metrics. Our results showed 
that these settings were poorly suited to our forest 
type, and these choices produced some of the poorest 
models examined. 
 
Our results broadly agreed with proposed theoretical 
links between optical LAI measurements and Airborne 
LiDAR. A variable radius may be desirable because 
optical theory relates the instrument’s view distance to 
maximum canopy height, and Solberg at al.9 found this 
approach to produce superior estimates of LAI from 
LiDAR. The view distance of the LAI-2200C is 
approximately equal to canopy height, depending on 
canopy density7. Interestingly, many of the best 
variable radius models were found at 100% of canopy 
height. Zhao and Popescu6  reasoned that ratio 
metrics that reflect the penetration of laser pulses 
through the canopy should be strong predictors of LAI, 
which is in turn strongly related to light extinction 
through the canopy. Our findings support this link, with 
ratio metrics forming the majority of important metrics. 
While there is no established theory behind the 
optimum height threshold for ratio metrics, our results 
agree with those of Zhao and Popescu6 who found 
values well above instrument height to be best. Higher 
thresholds may strengthen the link between canopy 
LAI and LiDAR metrics by more accurately excluding 
lower canopy and understory returns.  
 
The distribution of canopy heights in our data were 
concentrated between 25 – 35 m. For the majority of 
our plots 20% of canopy height would be 
approximately equal to 4 – 5 m. Indeed, 20% of the 
mean and median heights were equal to 5.8 and 5.9 
m respectively. This suggests that where the height 
distribution is reasonably consistent a fixed height 
threshold set at approximately 20% of canopy height 

would suffice. A variable height threshold, while more 
complex to compute, offers the attractive property of 
producing useful ratio metrics regardless of the plot 
height distribution. 
 

Recommendations for LiDAR-LAI 
 
The observed theoretical links do not provide a 
method for direct LiDAR-LAI estimation, and models 
developed for radiata pine within New Zealand, as for 
most forest types, are likely to be campaign specific. 
Based on our study results, we propose the following 
set of guidelines for developing models of LAI from 
LiDAR data: 

(1) LiDAR data extracted from plot radii 
coincident with instrument view distance are 
likely to produce better estimates of LAI. 

(2) Where a variable plot radius is not practical, 
we recommend trialling data extracted using a 
fixed radius of between 20 – 26 m. 

(3) Construction and inclusion of ratio metrics is 
strongly recommended. Distributional height 
metrics (e.g. skew, kurtosis, L-moments) 
should be preferred when selecting from 
standard height metrics available from many 
software tools. 

(4) Determining the optimum height threshold for 
ratio metrics greatly improves the predictive 
power of these metrics. If technically feasible, 
a variable height threshold of 20% is 
recommended. Otherwise, we recommend 
trialling fixed height thresholds a few metres 
either side of 20% * mean or median canopy 
height in the plots. 

(5) Modelling efforts should include controls for 
overfitting. We also observed strong 
correlations between candidate metrics, and 
this should be accounted for when developing 
LiDAR-LAI models. 

 
Conclusion 
 
LiDAR based estimation of LAI can be accomplished 
in New Zealand’s radiata pine forests with acceptable 
levels of prediction error. However, the optimum 
parameters for metric construction differ from those 
used elsewhere, and this must be accounted for. 
Future work will examine the ability of predictive 
models to detect fertility gradients and deficiencies 
after controlling for environmental factors. There is 
also scope to assess the use of cost-effective 
equipment such as digital hemispherical canopy 
photography for obtaining the ground LAI 
measurements required to calibrate LiDAR-LAI 
models. 
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