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Summary: Leaf area index (LAI) is a key forest canopy variable with close links to forest growth, health, and 
productivity. For forest managers knowledge of LAI offers the potential to identify site limitations and monitor 
forest response to targeted interventions such as fertilisation. Until recently vegetation indices (VIs) derived from 
multispectral imagery offered the only means of estimating LAI over large areas. These techniques are not well 
suited to coniferous forests where high LAI causes sensor saturation. 
 
Light Detection and Ranging (LiDAR) offers a new approach for estimating LAI in forest ecosystems. A variety of 
approaches have been successfully demonstrated but few have been trialled in New Zealand’s managed 
plantation forests. 
 
This technical note presents results from a study examining the correlation between ground measurements of 
LAI, vegetation indices derived from satellite imagery, and LiDAR metrics. LAI measurements were obtained 
from 20 plots located in Pinus radiata D. Don plantations in the central North Island, New Zealand. A variety of 
LiDAR metrics and vegetation indices were calculated for each plot. The correlations between measured LAI and 
the calculated variables were determined for each plot. 
 
The only VIs significantly correlated with LAI were the simple ratio (r(18)=0.48, P<0.05), and the normalised 
difference vegetation index (r(18)=0.46, P<0.05). There was evidence of sensor saturation in both indices, 
restricting their applicability to very young stands with LAI less than 2. None of the ratios utilising the novel red-
edge spectral band were significantly correlated with LAI. 
 
All but one of the LiDAR metrics were significantly correlated with LAI. The percentage of first returns above 
mean return height had the highest correlation coefficient (r(18)=0.85, P<0.001). Metrics which were strongly 
correlated with LAI in other studies did not perform well in our study, confirming that LiDAR-LAI relationships 
remain site and campaign specific. 
 
The LiDAR-LAI correlation coefficients in our study are some of the highest observed in this forest type. Future 
work will attempt to utilise the correlations between ground based LAI and remotely sensed variables to develop 
predictive models for LAI.
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Introduction 
 
Leaf area index (LAI) is a measure of leaf surface 
area per unit ground area and is closely linked to 
forest growth, health, and productivity1. LAI is 
strongly influenced by site fertility, water availability, 
and stand conditions2. Site interventions such as 
fertilisation, irrigation, site preparation, and 
silvicultural operations can produce large changes in 
LAI1. Fertilisation in particular can produce rapid and 
large changes in stand LAI with associated gains in 
stem increment2,3. 
 
For forest managers, LAI offers the potential to 
identify areas with low productivity and monitor the 
response to appropriate interventions3,4. In addition, 
LAI is valuable for use in emerging physiological and 
hybrid growth models which seek to incorporate 
potential light use into growth forecasts. 
 
Despite the fundamental importance of LAI to forest 
managers and scientists, usage has been limited by 
the difficulty of obtaining accurate and cost-effective 
LAI measurements. Direct assessment in coniferous 
forests requires destructive sampling of selected 
trees within a stand. Indirect assessment using 
optical techniques can rapidly measure effective LAI, 
which includes non-photosynthetic plant elements. 
These techniques offer a more practical option, and 
have been widely used in the research community5. 
However, measurement using indirect optical 
methods are restricted to sunrise, sunset, and on 
overcast days with no discernible difference in cloud 
layer brightness. These requirements place serious 
logistical constraints on the number of samples that 
can be obtained6. 
 
Remote sensing techniques linking spectral 
properties of vegetation with ground measurements 
have been used to estimate LAI over large areas for 
several decades. However, the vegetation indices 
(VIs) used in remote sensing techniques suffer from 
band saturation in areas with high LAI values such as 
conifer plantations1,3. Rapid advances in sensor 
technology have led to the development of new VIs 
targeting LAI and photosynthetic activity. 
 
Approximately one third of surveyed commercial 
forestry companies in New Zealand already 
purchased imagery capable of delivering some of 
these VIs; however bands outside of the visible 
wavelengths were not widely utilised7. Furthermore, 
multispectral imagery (albeit at coarser resolutions of 
30 m) from platforms such as Landsat 8 can be 
obtained for no fee. As such, there is the potential 
that VIs available from existing data streams could 
produce acceptable LAI estimates in certain settings 
with little extra cost. To date, assessments of the 
strength of association between many of the 
candidate VIs and LAI have largely been restricted to 
crop canopies8. 
 

LiDAR offers a novel approach for estimation of LAI 
over large areas. An emerging body of research has 
shown that LiDAR metrics can accurately predict LAI 
in coniferous forests. LiDAR-LAI estimates have also 
been shown to be less sensitive to saturation at high 
LAI levels9,10. 
 
To date, very limited research on LiDAR-LAI 
estimation has been conducted in New Zealand’s 
plantation forests. Results from early work done in 
this area demonstrated that simple LiDAR metrics 
provided accurate estimates of LAI (R2=0.8) for 
stands of Pinus radiata D. Don11. While useful as a 
proof of concept, this research relied on destructive 
measurement of LAI for model development, and 
hence was limited to a small area comprising a single 
age class. 
 
A large number of LiDAR metrics have been 
proposed for estimating LAI, with varying degrees of 
complexity and success12. Some of the best results 
have been achieved using a new class of canopy 
penetration metrics developed to target LAI 
estimation; however these are often constrained to a 
specific LiDAR campaign and forest type3,12. In 
general, it is accepted that the choice of height 
threshold (the elevation below which all returns are 
classified as ground returns) and plot radius have a 
large impact on model selection and performance6,12. 
This poses a challenge for larger LiDAR surveys, 
where altering plot radius and height threshold may 
require significant additional data processing. 
 
Research is currently being undertaken to investigate 
the feasibility of using satellite and LiDAR data for 
large scale estimation of LAI within New Zealand’s 
plantation forests. This technical report presents 
results from a pilot study using ground based 
measurements of effective LAI from 20 plots to 
identify correlations between LAI and LiDAR metrics. 
These correlations are compared to those obtained 
between LAI and a range of vegetation indices, 
including new vegetation indices utilising novel 
spectral bands. 
 

Methods 
 

Plot selection 
 
The data used were acquired from Kaingaroa forest 
which is located in the Central North Island of New 
Zealand (38.67S; 176.46E). For the pilot study, LAI 
was measured in 20 plots drawn from the network of 
plots established in the estate for use with remotely 
sensed data. Plot locations were determined using a 
systematic sampling approach where the nodes of a 
grid with random origin and orientation form plot 
centres. The instrumentation chosen for ground 
measurement of LAI required continuous observation 
of sky brightness from an open clearing close to each 
plot. Suitable clearings were identified using satellite 
imagery and adjacent plots were selected at random 
to form the study dataset.  
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Each circular plot bounded 600 m2, and the chosen 
plots covered a wide range of stand densities (200 – 
917 stems ha-1). Estimates of stand height ranged 
from 17 m to 39 m (mean of 18 m), while stand ages 
ranged from 10 to 26 (mean and median of 18). The 
maximum gradient of plots was 14%, but most were 
on relatively flat terrain.  
 

LAI measurements 
 
LAI measurements were acquired in late August 
2014 using the LAI-2200C Plant Canopy Analyser 
(LI-COR Biosciences Inc., Lincoln, NE, USA). This is 
a new optical instrument that allows LAI 
measurements to be obtained under clear skies, 
greatly increasing the number of suitable days for 
sampling. Clear sky measurement is achieved by 
removing the effects of scattered radiation originating 
from clear blue sky on estimates of canopy gap 
fraction used to calculate LAI13. Plot mean LAI was 
calculated from 18 measurements taken within each 
plot. Measurements were obtained on cloud free 
days using the recommended protocol13. Corrections 
for scattered light required knowledge of needle 
optical properties and solar position. Needle spectra 
were obtained from fresh needle samples measured 
using a spectroradiometer. Solar position was 

calculated from GPS time and location recorded 
during plot measurements. The outer sensor ring of 
the LAI-2200C was excluded from all LAI 
calculations. This ‘mask’ restricts the instrument’s 
view zenith angle to between 0-58°. This zenith 
range has been observed to produce stronger 
correlations with remotely sensed data, which is 
usually collected with small offsets from nadir6. 
 

LiDAR data 
 
Aerial LiDAR data were collected in early 2014 using 
an Optech Pegasus scanner. Calculation of LiDAR 
metrics was completed using the FUSION software 
package14. Penetration metrics successfully used in 
LiDAR-LAI estimation were identified from the 
literature and classified according to type. Metrics 
derived using variable height thresholds, altered plot 
radii, or pulse intensities were excluded. These 
metrics have been identified as poor candidates for 
generalised LiDAR-LAI models as they are often 
campaign specific, require repeated processing, and 
lack theoretical justification3,6,12. A subset of height 
related metrics which have been useful in other 
studies were also included in the analysis. Table 1 
shows the full list of LiDAR metrics selected for 
evaluation. 

 
 
 
Table 1. LiDAR metrics calculated for all plots. ‘In canopy’ hits were defined as all returns above 2.5 m. 

Metric acronym Description Source 

PFAM Percentage first returns above mean return height FUSION canopy metrics 

ELK Elevation L-moment kurtosis FUSION descriptive metrics 

ECV Elevation coefficient of variation FUSION descriptive metrics 

FG_AG First ground / all ground returns Summary data 

SGR Single ground returns Summary data 

P30 30th height percentile from all canopy returns Beets et al.11 

GT Ground / all returns Zhao & Popescu12 

RIGT In canopy + ground / all returns  Zhao & Popescu12 

LPM -2.56ln (In canopy + ground / all returns) Zhao & Popescu12 

LPI Ground / ground + all returns Peduzzi et al.3 

 
 
 
Table 2. Vegetation indices calculated from 5 m resolution RapidEye satellite imagery. Modified from Kross et al.8 

VI Acronym Vegetation index Equation 

NDVI Normalised difference vegetation index (RNIR − RRED) / (RNIR + RRED) 

SR Simple ratio RNIR / RRED 

GR Near-red green ratio RNIR / RGREEN 

VI Green red ratio RGREEN / RRED 

gNDVI Green NDVI (RNIR − RGREEN) / (RNIR + RGREEN) 

NDVIre Red edge normalised difference vegetation 
index 

(RNIR − RRED-EDGE) / (RNIR + RRED-EDGE) 

SRre Red edge simple ratio RNIR / RRED-EDGE 

MTVI2 Modified triangular vegetation index 1.5[1.2(RNIR − RGREEN) − 2.5(RRED − RGREEN)] / 
√[(2RNIR + 1)2 − (6RNIR − 5√(RRED)) − 0.5] 

RTVI Red edge triangular vegetation index 100(RNIR − RRED-EDGE) − 10(RNIR − RGREEN) 
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Satellite imagery 
 
Satellite imagery was acquired using the RapidEye 
satellite constellation during January 2014. The 
RapidEye constellation has a resolution of 5 m and is 
notable for collecting red-edge (690-730 nm) spectral 
data15. This portion of the spectrum is useful for 
assessing vegetation health and stress, and has 
been used to derive novel vegetation indices with 
close links to LAI8. A survey of the relevant literature 
was conducted to identify candidate vegetation 
indices. Table 2 shows the full list of vegetation 
indices chosen for analysis.  
 

Data analysis 
 
The satellite and LiDAR data were used to calculate 
the vegetation indices and LiDAR metrics for each 
plot.  
 
The Pearson’s product moment correlation coefficient 
(r) was calculated between vegetation indices and 
measured LAI. All correlations with measured LAI 
were tested for significance (α=0.05). The process 
was repeated for LiDAR metrics and measured LAI.  
 
Published results from other studies examining the 
relationship between LIDAR / VI metrics and LAI 
included both correlation coefficients (r) and 
coefficients of determination (R2). In the case of 
simple linear regression the two are mathematically 
related. However, r indicates both the magnitude and 
direction of the relationship, and comparison between 
r and R2 is not applicable where the coefficient of 
determination is obtained from multiple regression. 
Both are useful for evaluating the association 
between variables, and wherever we reported on 
other studies we included the coefficients as reported 
in the original work. 
 
All calculations and statistical analyses were 
performed using R statistical software16. 
 

Results and discussion 
 

Vegetation indices 
 
VIs were weakly correlated with LAI (Table 3), with 
only NDVI and SR producing significant correlations 
with measured LAI (P<0.05). Both ratios exploit the 
high fraction of visible red light absorbance in healthy 
foliage. NDVI in particular has been widely used to 
estimate LAI; however the strength of the relationship 
is sensitive to forest type, canopy closure, image 
quality, and background vegetation17. Higher 
correlations than those we obtained have been 
observed in pine forests, but only within stands of a 
single age class and even canopy closure18. The LAI 
range of the study plots (2-6) can cause saturation of 
the spectral bands and we identify this as the most 
likely cause of the weak correlation between NDVI 
and SR with LAI in our study1,3. 
 

The marked change in light absorbance across the 
red to near infrared (red-edge) spectral region is 
closely linked with chlorophyll content, and VIs 
utilising the red-edge have the potential to improve 
estimation of LAI8. However, in a study estimating the 
LAI of crop canopies from satellite imagery, Kross et 
al.8 found that NDVIre, SRre, and RTVI were no 
better than NDVI at predicting LAI. Our results 
suggest that NDVI (and the closely related SR) are 
also more highly correlated to LAI in forest canopies 
than the red-edge VIs. Indeed, NDVI and SR showed 
higher correlations with LAI than MTVI2, which was 
conceived to remove sensor saturation effects when 
observing green LAI. 
 
For forest managers interested in LAI, our results 
suggest that more complex VIs do not offer any 
advantage over the readily obtainable SR and NDVI. 
However, sensor saturation restricts the usefulness 
of spectral-LAI relationships to very young stands 
with LAI less than 2. 
 

LiDAR metrics 
 
In contrast to the spectral-LAI correlation analysis, all 
but one of the LiDAR metrics produced significant 
correlation coefficients (all P-values < 0.05) with 
measured LAI (Table 4). Indeed, the weakest 
correlations obtained from the LiDAR metrics were 
close to the best correlations obtained using VIs. The 
height related metrics PFAM, ELK, and ECV were 
highly correlated with LAI (all P-values <0.001).  
Beets et al.11 provide the only other examination of 
LiDAR-LAI models for New Zealand plantation 
forests. Using the 30th height percentile of returns 
(P30), in combination with percentage canopy cover, 
the authors developed models of LAI with an R2 of 
0.88 in 9 year old stands of P. radiata. Based on this 
result, we assessed the correlation between LAI and 
a variety of height percentiles from our data. Only the 
20th height percentile (P20) had a notable association 
with LAI (r(18)=0.66, P<0.01), while not directly 
comparable with Beets et al.’s11 results, the weak 
correlation did suggest height percentiles may not 
generalise well to multiple age classes. 
 
The remaining metrics we trialled all utilised ratios 
between return types as a proxy for canopy 
penetration. The development of these canopy 
penetration metrics has been motivated by the 
apparent connection to the Beer-Lambert law which 
describes light extinction through a plant canopy6,12. 
Zhao and Popescu12 found the relatively simple GT, 
RIGT, and LPM metrics to be strongly related to LAI 
in a mixed species forest (R2=0.80-0.83). While 
Peduzzi et al.3 found a strong negative correlation 
(r(107)=-0.75) between LPI and LAI in dense pine 
plantations. Despite the theoretical links to LAI 
through the Beer-Lambert law, the penetration 
metrics showed only modest correlation with LAI in 
our data. Interestingly, the LPI metric showed the 
weakest correlation, yet this metric was selected 
specifically because it had been successfully used to 
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develop LiDAR-LAI models in eastern USA Pinus 
taeda L. plantations3. 
 
We trialled other penetration metrics (not shown) with 
stronger theoretical links to the Beer-Lambert law6 
without success. Our results suggest that LiDAR-LAI 
relationships remain campaign and site specific, and 
attempts to relate canopy penetration of pulses to the 
Beer-Lambert law are not yet well developed. Testing 
the correlation between LAI and a large number of 
candidate metrics remains the most successful 
approach. 
 

Despite the lack of a sound theory linking metric 
selection to LAI, LiDAR shows good potential as a 
tool for large scale LAI estimation. Our results 
demonstrate that very simple LiDAR metrics, 
produced as standard software outputs, showed far 
higher correlations with LAI than vegetation indices 
utilising sophisticated sensor technologies and novel 
spectral domains. Interpreted as a predictive 
variable, the strength of the relationship between 
PFAM and LAI would be close to the best single 
variable LiDAR-LAI relationships observed in this 
forest type3.  
 

 

Table 3. Pearson correlation coefficients for the selected vegetation indices and ground measurements of LAI 
(n=20). Index descriptions are given in Table 2. Bold italic values were significant at α=0.05. 

 LAI NDVI SR GR VI gNDVI NDVIre SRre MTVI2 RTVI 

LAI 1 0.46 0.48 0.20 0.10 0.12 0.30 0.28 0.28 0.15 

NDVI  1 0.99 0.43 0.02 0.46 0.66 0.63 0.91 0.69 

SR   1 0.43 0.02 0.46 0.62 0.61 0.89 0.66 

GR    1 -0.84 0.93 0.50 0.50 0.47 0.50 

VI     1 -0.87 -0.17 -0.17 -0.08 -0.20 

gNDVI      1 0.46 0.45 0.50 0.51 

NDVIre       1 1 0.83 0.94 

SRre        1 0.82 0.94 

MTVI2         1 0.92 

RTVI          1 

 
Table 4. Pearson correlation coefficients for the selected LiDAR metrics and ground measurements of LAI (n=20). 
Metrics are described in Table 1. Bold italic values were significant at α=0.05. 

 
LAI PFAM ELK ECV FG_AG SGR P30 GT RIGT LPI LPM 

LAI 1 0.85 0.83 -0.84 -0.79 -0.78 0.56 -0.66 0.48 -0.37 -0.47 

PFAM 
 

1 0.89 -0.88 -0.93 -0.90 0.51 -0.73 0.43 -0.35 -0.43 

ELK 
  

1 -0.98 -0.85 -0.84 0.57 -0.72 0.39 -0.38 -0.41 

ECV 
   

1 0.88 0.88 -0.70 0.74 -0.38 0.40 0.40 

FG_AG 
    

1 0.94 -0.63 0.82 -0.45 0.45 0.48 

SGR 
     

1 -0.73 0.84 -0.37 0.49 0.41 

P30 
      

1 -0.68 0.16 -0.49 -0.24 

GT 
       

1 -0.61 0.80 0.70 

RIGT 
        

1 -0.77 -0.97 

LPI 
         

1 0.84 

LPM 
          

1 

 
 
 

 
Conclusions 
 
These results are promising for the development of 
LiDAR-LAI models, where covariance between 
predictors favours parsimony. However, selection of 
predictive variables for model development requires 
more sophisticated statistical methods than those 
undertaken here. 
 

Future work will focus on utilising appropriate 
statistical methods, with a larger dataset, to develop 
predictive LiDAR-LAI models suitable for use over 
large areas and a range of stand conditions.  
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