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Summary: An understanding of how plantation productivity varies spatially is important for forest planning, 
management and projection of future plantation yields and returns. Site Index and 300 Index are productivity 
indices widely used to determine height and volume production, respectively, in Pinus radiata D. Don 
plantations. Although Site Index and 300 Index are routinely characterised at the stand level, little research has 
investigated if remotely sensed data sources can be used in combination with environmental surfaces to predict 
these metrics at fine spatial resolution.  
 
This study uses an extensive dataset obtained from P. radiata plantations in the central North Island, New 
Zealand. The objective of this research was to compare the precision of models of Site Index and 300 Index that 
included variables from aerially acquired Light Detection and Ranging (LiDAR), 5 m satellite imagery or 
environmental surfaces, and combinations of these three data sources. Models were constructed both with and 
without stand age as a variable as managers may not always have access to stand age. A total of 14 models 
were constructed for each productivity index using data from 433 plots. Precision and bias of these models was 
determined using an independent dataset of 60 plots. 
 
LiDAR was the most useful data source for precise and unbiased predictions for both Site Index and 300 Index. 
In the absence of LiDAR data, models constructed using variables derived from environmental surfaces and 
satellite imagery were found to be most precise for both Site Index and 300 Index. Predictions made using only 
environmental surfaces were less precise for both productivity metrics while predictions made using only satellite 
imagery were generally the least precise of any of the information sources. Stand age was found to be a very 
useful determinant of 300 Index and Site Index.  

 
Introduction 
 
Forest managers want to understand and quantify 
how environmental factors influence tree growth and 
site quality. Site quality is an important baseline for 
forest-level planning and can play a major role in 
formulating silviculture strategies, projecting future 
yields and determining the economic returns from a 
forest. Site quality can be most accurately inferred 
from characteristics of the trees.   
 
Site Index is the most common measure of forest site 
productivity. It expresses the height of dominant trees 
at a given age and is relatively unaffected by stand 
density. However, it does not accurately reflect 
volume productivity of a site.  

 
A national growth model has recently been 
developed based on the volume productivity index – 
300 Index – for Pinus radiata D Don within New 
Zealand. The 300 Index is calculated by adjusting 
field plot measurements for age, stand density, and 
silvicultural history to give the mean annual 
increment at age 30 for a reference silvicultural 
regime.  

 
Stand level estimates of 300 Index and Site Index are 
made by averaging plot values. However, the 
aggregated estimate may not be adequate to detect 
the local growing variations within stands that result 
from interactions between environmental factors. 
Consequently, spatial models that provide greater 
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definition of Site index and 300 Index have been 
developed using geographic information systems 
(GIS).  
 
These environmental layers (e.g. soil, climate and 
genetic factors) have been successfully used to 
develop spatial surfaces describing Site Index and 
300 Index for P. radiata [1]. This approach has 
considerable merit as forest managers generally 
have access to GIS and a number of potentially 
useful predictive variables. 

 
Another option is using LiDAR (Light detection and 
ranging) to characterise the forest canopy in three 
dimensions. LiDAR technology has been widely used 
to spatially quantify variation in tree height and crown 
dimensions at resolutions ranging from the stand 
level to individual tree level over the last 20 years. 
LiDAR has also been used to predict Site Index [2,3]. 
but the utility of LiDAR in predicting 300 Index has 
not been investigated.  

 
Satellite imagery, although less detailed than LiDAR, 
is a more cost effective means of predicting stand 
attributes such as tree height and volume across 
forest resources. However, the utility of satellite data 
in predicting productivity indices such as Site Index 
and 300 Index has never been investigated.  

 
Stand age –an important determinant of Site Index 
and 300 Index – is often not publicly available at a 
national scale. Consequently, there is considerable 
interest in determining the accuracy of productivity 
index models when stand age is not available.  
 
This work has compared the accuracy of models of 
Site Index and 300 Index that included variables from 
LiDAR, satellite imagery or environmental surfaces 
and combinations of these three data sources. 
Models were constructed either with or without age 
as a variable.   
 

Method  
 
2.1 Study site 
 
This study used data from the Kaingaroa Forest 
which is located in the Central North Island of New 
Zealand (Fig. 1). From a total of 493 plots, 60 plots 
were randomly selected and used for model 
validation. The remaining 433 plots were used for the 
model fitting process. 
 
2.2. Field Measurement 
 
Field plots (0.06 ha circles) were located within the 
forest at the intersections of a grid that had a 
randomised start point and orientation. Diameter at 
breast height (dbh) was measured for all trees in a 
plot. Tree height was measured for a subset of 

healthy, well-formed trees selected from across the 
dbh range. 

 
2.3 Derivation of Site Index 
 
Site Index for P. radiata in New Zealand is defined as 
the mean top height at age 20 years. Field data was 
used to fit a regression between dbh and height that 
was used to predict the heights of unmeasured trees 
within each plot. This information was used to 
calculate mean top height, defined as the average 
height of the primary leaders of the 100 largest 
diameter trees per hectare. Using an appropriate 
height-age function and the stand age, the mean top 
height was estimated at age 20 to estimate Site 
Index. 
 
2.4 Derivation of 300 Index 

 
The 300 index is estimated using numerous models 
including a stand-level basal area growth model, a 
height/age function, a mortality function, stand-
volume function and a thinning function. The models 
were used to estimate the 300 Index value for each 
field plot.  
 

 
 

Figure 1. Map showing the location of the plots used for 

fitting and validation of the tested models.  
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2.5 Predictive variables used in the modelling 
 
LiDAR data 
 
The aerial LiDAR survey was completed in early 
2014 using an Optech Pegasus scanner to collect a 
discrete, small footprint, dataset.  
 
RapidEye (RE) imagery 
 
The RE satellite system is a constellation of five 
satellites carrying identical sensors, all of which were 
launched at the end of 2008 [4]. RE imagery from 
January 16 and 28, 2014 were acquired over the 
study area. Spectral values, vegetation indices and 
texture metrics were extracted from the data for the 
plots used in this work. 
 
Environmental surfaces 
 
Environmental data for plot locations were obtained 
from biophysical GIS surfaces Key variables used in 
the analyses included mean annual and monthly air 
temperature, relative humidity, solar radiation, vapour 
pressure deficit and rainfall. Mean annual and 
seasonal root zone water storage, fractional available 
root zone water storage and the maximum available 
root zone water storage were determined for all plots. 
Soil fertility was represented by soil C:N ratio; a 
useful index of nitrogen mineralisation. 
 
2.6 Analyses 
 
Overview 
 
Separate models of Site Index and 300 Index were 
created from the categories of data as listed in Table 
1.  
 
 
 
 
 

Table 1. The categories of data used to in creating Site 

Index and 300 Index models. 

 
Data category Age 

included 
Age 

excluded 

RE spectral values   

RE vegetation indices (ratios)   

RE textural metrics   

All RE metrics   

Environmental surface variables   

All RE metrics and 
environmental surface variables 

  

LiDAR variables   * 

LiDAR variables, all RE metrics 
and environmental surface 
variables  

 * 

*Predicting Site Index or 300 Index using LiDAR 
information without age is not practical. 

 
Predictions of Site Index and 300 Index using LiDAR 
were made for each field plot 
 
Modelling 
 
All analyses were undertaken using the general 

linear model procedure (GLM) within SAS [5].  
 
The precision of the models was assessed using the 
coefficient of determination (R2) and root mean 
square error (RMSE). Bias was assessed through 
examination of plots between predicted and 
measured values.  
 
3. Results 
 
3.1 Model comparison – Site Index 
 
The LiDAR models including age were the most 
precise (Fig 2). The R2 for this model was 0.87 with 
RMSE of 1.66 m. Addition of environmental variables 
and metrics derived from satellite imagery to these 
models provided modest precision gains (Fig. 2).   
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Figure 2. Variation in the (a, b) coefficient of determination (R2) and (c, d) root mean square error (RMSE) of Site Index for 

models that (a, c) do not include age and (b, d) do include age as a predictive variable. Note that model precision is not given 
for use of LiDAR without age (panels a, c) as these models are not feasible.  
 

 
Models that used environmental variables were not 
as precise as the LiDAR models (Fig. 2) but there 
were substantial gains in precision when data from 
satellite imagery was added to data from 
environmental surfaces (Fig. 2). Average spring air 
temperature was the environmental variable with 
most influence on Site Index.  
 
The models created using metrics derived from 
satellite imagery had the lowest model precision (Fig. 
2). 
 
Inclusion of stand age as an explanatory variable 
improved the precision of all models.  
 
3.2 Model comparison – 300 Index 
 
The LiDAR models including age were the most 
precise (Fig. 3). The R2 for this model was 0.77 while 

the RMSE was 2.55 m3 ha-1 yr-1. Addition of 
environmental variables and metrics derived from 

satellite imagery to these models provided modest 
precision gains (Fig. 3).  
 
Models created from satellite imagery and 
environmental surfaces had similar precision and 
were less precise than the LiDAR models (Fig. 3). 
Average spring air temperature was the 
environmental variable with most influence on 300 
Index.  
 
Modest gains in precision occurred when metrics 
derived from satellite imagery were added to 
environmental variables (Fig. 3).  
 
Addition of age improved the precision of all models. 
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Figure 3. Variation in the (a, b) coefficient of determination (R2) and (c, d) root mean square error (RMSE) for models of 300 

Index that (a, c) do not explicitly include age and (b, d) do explicitly include age as a predictive variable. Note that model 

precision is not given for use of LiDAR without age (panels a, c) as these models are not feasible. 
 
 
3.3 Model bias-Site Index and 300 Index 
Plots of measured against predicted values for five 
models that included (i) all metrics derived from 
satellite imagery, (ii) environmental surface variables, 
(iii) variables derived from satellite imagery and 
environmental surfaces, (iv) LiDAR metrics and (v) all 
available variables) generally show the models to be 
relatively unbiased for both Site Index (Figs. 4a−e) 
and 300 Index (Figs. 4f−j).  
 

Discussion 
 
LiDAR provides the most precise predictions of Site 
Index and 300 Index. Models derived from variables 

extracted from environmental surfaces and satellite 
imagery were found to be of lower precision for both 
Site Index and 300 Index. The results clearly show 
the importance of age as a predictive variable for 
both Site Index and 300 Index.  
 
The use of LiDAR as a technology for predicting 
stand attributes is widely accepted within forestry. 
Since the first application of LiDAR in forestry almost 
three decades ago, LiDAR data have been used to 
accurately predict stand height and volume [6,7,8,9,10].  
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Figure 4. Relationship between measured and predicted (a−e) Site Index and (f−j) 300 Index with stand age, that include (a, f) 
variables derived from satellite imagery, (b, g) variables derived from environmental surfaces, (c, h) variables derived from 

satellite imagery and environmental surfaces, (d, i) Site Index predicted from LiDAR, (e, j) variables selected from all data 
sources. The 1:1 line is shown on all panels as a dashed line. 
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Given that canopy height is the dimension predicted 
with most precision by LiDAR, it is not surprising that 
recent research has shown that Site Index can be 
predicted with high precision by LiDAR in plantation  
species such as Eucalyptus urograndis [3 if stand age 
is available.  
 
Our results extend this research by showing for the 
first time that LiDAR can be used to precisely predict 
300 Index when stand age is available. Use of 
predicted Site Index, which was based on stand age 
and a LiDAR height based metric, was most useful 
for predictions. This result is consistent with previous 
research as most of the variation in volume in LiDAR 
based models is typically attributable to metrics 
describing LiDAR height percentiles [11]. 
 
Variables derived from satellite imagery provided 
moderately precise estimates of 300 Index and were 
the least precise for Site Index.  
  
Models created using environmental surfaces were 
the least precise of those developed for 300 Index 
and of intermediate precision for Site Index. The 
precision range for these models was similar to that 
of previous national New Zealand models of P. 
radiata Site Index and 300 Index created from 
environmental surfaces where the most precise 
model had a respective RMSE of 2.70 m and 3.65 m3 
ha-1 yr-1 (Palmer et al., 2009).  
 
Stand age was found to be a very useful determinant 
of Site Index and 300 Index. Without stand age 
LiDAR data is of little use in predictions of these 
productivity metrics as height percentiles cannot be 
adjusted to the age at which Site Index and 300 
Index are determined. Results show that, if age is not 
available, the combination of data derived from 
satellite imagery and environmental variables 
provides the most precise means of estimating both 
productivity indices.  
 
Our results have clearly shown that LiDAR is the 
most useful data source for predicting Site Index and 
300 Index when stand age is available. However, as 
LiDAR data is very expensive from an operational 
perspective, satellite imagery coupled with available 
environmental surfaces can be used as a cost-
effective alternative for assessing the spatial 
variability of Site Index and 300 Index across planted 
forests. This methodology is likely to be particularly 
useful for regional or national scale predictions of 
Site Index or 300 Index or under circumstances when 
stand age is not readily available.  
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