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Disclaimer

This report has been prepared by New Zealand Forest Research Institute Limited (Scion) for Future Forests
Research Limited (FFR) subject to the terms and conditions of a Services Agreement dated 1 October 2008.

The opinions and information provided in this report have been provided in good faith and on the basis that
every endeavour has been made to be accurate and not misleading and to exercise reasonable care, skill
and judgement in providing such opinions and information.

Under the terms of the Services Agreement, Scion’s liability to FFR in relation to the services provided to
produce this report is limited to the value of those services. Neither Scion nor any of its employees,
contractors, agents or other persons acting on its behalf or under its control accept any responsibility to any
person or organisation in respect of any information or opinion provided in this report in excess of that
amount.

Disclaimer
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Although all reasonable care has been taken to ensure that the information contained in this document is
accurate, neither Interpine nor its respective officers, advisers or agents makes any representation or
warranty, express or implied as to the accuracy, completeness, currency or reliability of such information or
any other information provided whether in writing or orally to any recipient or its officers, advisers or agents.

Interpine and its respective officers, advisers, or agents do not accept: any responsibility arising in any way
for any errors in or omissions from any information contained in this document or for any lack of accuracy,
completeness, currency or reliability of any information made available to any recipient, its officers, advisers,
or agents; or any liability for any director or consequential loss, damage or injury suffered or incurred by the
recipient, or any other person as a result of or arising out of that person placing any reliance on the
information or its accuracy, completeness, currency or reliability.



EXECUTIVE SUMMARY

The objective of this study was to investigate potential approaches for integrating aerial LIDAR
scanning data into the current forest yield information systems of a forest management company.
Once a favourable approach was identified a case study was to be implemented across a 4000ha
study area. This implementation should provide insight into the probable performance of the
system in a production environment. Estimating the sampling error of the estimates produced and
using the selected approach to predict forest growth were also key requirements of the project.

The literature review phase of this project identified that a k-nearest neighbour (KNN) approach
was deemed to be the most appropriate for this study. kNN has many favourable properties
including being free from distributional assumptions, robust, and suitable for integration into the
forest managers’ current forest yield information systems. The approach uses a measure of the
statistical proximity between a target area of forest, for which LiDAR information is available, to
assign the measurements from ground plots in a reference population that contains both LiDAR
data and on-ground measurements. 213 circular bounded on-ground plots were measured to
provide response variables for the modelling process. A LiDAR dataset was collected across the
study area to provide canopy metrics for both the reference and the target datasets.

The kNN approach was implemented across a 4000ha swath of Kaingaroa forest and the resulting
modelling approach meant that a surface mapping the distribution of several forest variables was
produced across the study area. Model evaluation suggested that the models produced performed
well. A completely independent validation dataset was produced from the forest managers’ pre-
existing stand assessments within the study area grown on to the date of LiDAR acquisition. The
validation dataset contained 43 individual stands of various ages. The kNN imputation values for
each stand were derived and compared to the validation dataset. This analysis showed that the
imputation stand estimates and the traditional stand assessment estimates for the stands in the
validation dataset were very similar for total recoverable volume (m3/ha) and top height (m). The
correspondence for basal area (m2/ha) and stocking (sph) were somewhat worse but accurate for
model outputs derived from a small number of plots and fit for the intended use of these statistics
in a forest management context. This work indicated that key stand parameters can be accurately
calculated for a large number of stands using a small number of ground plots (213) when LiDAR
data is available and the kNN approach is followed.

Calculating sampling error for the estimates derived was a key technical challenge for this project.
To achieve accurate estimates of sampling error the spatial correlation in the reference plots must
be accounted for and procedures were implemented to achieve this. Sampling error was calculated
for all stands in the study area and the measures of the confidence interval produced were
encouragingly small. For stands in the validation dataset the estimates of sampling error were
smaller than those achieved using traditional inventory in most cases. Very little evidence of bias or
problems with the implementation of the kNN approach were found during this process. Processing
time for the sampling error calculation at the whole study area level was extended and an
alternative approach may be required for a larger scale application of the approach.

The KNN technique was used in conjunction with the forest manager’s yield prediction systems to
produce estimates of future stand volumes for stands in the study area. A comparison with the
yield tables provided by the forest manager for stands in the validation dataset indicated that these
yield predictions were broadly accurate. Product mix was also produced for all stands in the study
area using the kNN technique. A comparison with the stands in the validation dataset revealed that
this was also broadly accurate. The derivation of future yield and log product mix are meant as a
proof of concept for the use of the kNN technique in this study. Some flaws in these estimates
were encountered but nothing that is deemed insurmountable during a practical implementation of
the approach.
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In conclusion the case study reported on herein was a highly successful practical implementation
of the integration of LIiDAR data for use in forest resource assessment. Key challenges that may
have hindered the uptake of LIDAR technology, including integration with current yield prediction
frameworks and calculation of sampling error, have been addressed. Considerable steps have also
been made towards the development of a fully functional production system that should now be the
next goal for this approach.




INTRODUCTION

Project Scope and Objectives

The purpose of this project was to implement an inventory methodology that could take advantage
of the remotely sensed information available from airborne Light Detection and Ranging (LiDAR)
scanning data collected over a trial area in Kaingaroa forest, New Zealand. A key objective of the
project was to provide a solution that fits within the forest manager’s current yield prediction system
and to provide practical outputs that can be utilised by the forest manager.

Background Information

The following section details some of the key information collated as part of a literature review for
this project and is aimed at guiding the research work undertaken and to provide context for the
methodology implemented in the case study.

LiDAR in Forest Inventory

The application of light detection and ranging (LIiDAR) to forest management has been studied
since the late 1970s. Airborne LIDAR has been developed into a tool that can potentially produce
direct and indirect measurement of trees and forests which has considerable implications for forest
resource assessment. There are many examples of the use of LIDAR to derive timber volume
estimates (Naesset, 1997, Means et al., 2000 and Parker and Evans, 2004 etc.) and some
examples of operationalization of the technology in Scandinavian countries and Australia (e.g.
Musk 2011, Rombouts et al. 2008). To date in New Zealand the use of aerial LiDAR scanning for
forest resource assessment purposes remains firmly in the research sphere. A number of the
characteristics of LIDAR data allow generation of additional information suitable for stand and
landscape-level management. Numerous studies have shown that LIDAR metrics can be related to
both total standing and recoverable volume and other forest parameters that are of interest to
forest managers (e.g. Watt et al., 2011, Naesset, 1997).

There are a number of statistical techniques available for incorporation of remote sensing data into
forest inventory information systems. Specifically regression techniques and nearest neighbour
imputation are reviewed in the following sections.

Regression Techniques

Regression and ratio sampling, like stratification, were developed to increase the precision and
efficiency of sampling when applied in a forest inventory context. This is achieved through the use
of an auxiliary variable that is measured on each sample unit in addition to the variable of interest
(Freese, 1962). Regression or ratio sampling can only be used when the population mean or total
for the auxiliary variable are known without error. This is different to double sampling where the
true population mean of the auxiliary variable is not known (Husch et al., 2003) and needs to be
estimated from a sample. To successfully utilise regression or ratio sampling a strong relationship
between the auxiliary variable and the variable of interest is required. Ratio sampling can be used
instead of regression estimation where this relationship has a y intercept of zero (Avery and
Burkhart, 1994). The precision benefit gained through using regression estimation is proportional to
the strength of the correlation between the variable of interest and the auxiliary variable.
Impressive improvements in precision are possible with regression estimation when the correlation
is close to one (Cochran 1977, Avery and Burkhart, 1994).




Although regression techniques clearly offer significant benefits to foresters working with remote
sensing technologies in many cases there are a number of limitations to regression techniques that
indicate that a different approach might be favourable. These factors include:

e The need for a minimum sample size within each area of interest when using regression
estimation is a key limitation of this technique. In the majority of commercial forest
management scenarios in New Zealand resource information is required at the stand level.
To use regression estimation effectively a minimum of around 30 sample plots would be
required per stand if the stand was the area of interest. Regression estimation is an
excellent technique when increasing the precision of information at the forest level is of
interest. However, in these cases using auxiliary variables other than those derived from
LiDAR may be more cost effective.

o Regression techniques require an assumption of a normal distribution of co-variates.
Violation of this assumption can invalidate the predictions made using regression
approaches. This limits the type of data that can be used in a regression approach. For
example categorical and count data do not follow a normal distribution and so may be
inappropriate for use.

e There is no simple way of integrating LIDAR data using a regression modelling approach
into the current yield prediction systems that are currently used in New Zealand.

While popular in the research environment it is likely that these factors are limiting the uptake of
LiDAR technologies into a production environment such as that found in the New Zealand forest
industry.

Nearest Neighbour (kNN) imputation

Since its initial application to forest resource assessment in the early 1990s (Tomppo 1991, 1996)
k nearest neighbour (kNN) imputation has become extremely popular internationally with peer
reviewed publications on the topic originating from over twenty countries (McRoberts 2012). In
forest inventory kNN imputation is generally used to assign forest attributes for areas that have not
been inventoried often based on a two phase sampling design. The first phase consists of the
acquisition of easily measured auxiliary variables across an area of interest (e.g. LIDAR data or
other remotely sensed information). The second phase consists of detailed measurements of
variables of interest at specific locations within the study area (Moeur and Stage 1995, Fallkowski
et al. 2009). In a forestry specific setting the variables of interest will typically be forest level
parameters such as stand volume, stocking or product volumes per hectare at a reference age.
This produces two separate datasets, the first a reference dataset containing both variables of
interest and auxiliary variables, the second, a target dataset containing only auxiliary variables.
The objective of an imputation is to predict, or impute, the variables of interest across the area of
interest using the relationship between auxiliary data and variables of interest in the reference
dataset. To achieve this the reference dataset is used to characterise the relationship between the
auxiliary variables and the variable of interest. The variables of interest within the target dataset
are then estimated by imputing them from the (k) nearest neighbours where proximity is measured
in terms of statistical similarity (Fallkowski et al. 2009). One of the key functional advantages of the
kNN technique is the ability to extrapolate beyond regions of the forest that were part of the original
sampling design and therefore take advantage of the extensive auxiliary information available via
remote sensing techniques such as aerial LIDAR scanning. The reference observations used to
provide measurements of the variable of interest are known as donors and statistical proximity is
described using some metric of distance in covariate space. The number of donors used to impute
the target cell values is referred to as k, where k=1 the variable of interest is simply taken from the
nearest neighbour. Where k>1 then either a simple average or an average weighted according to
the statistical distance between the target and its donors may be used.

The distance metric selected plays an important role in a kNN imputation model and also
contributes to calculation performance. There are numerous distance metrics implemented in the
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and are worthy of a brief summary here. For all measures of nearness, with the exception of
random forests proximity matrix, nearness is defined using Euclidean distance weighted using
some form of weighting matrix. The “Raw” distance metric is calculated using distance based on
the untransformed, or raw, values of the auxiliary variables. By contrast “Euclidean” distance uses
normalised auxiliary variable values to define distance in multivariate predictor variable space.
Predictor variables are normalised by subtracting the mean and dividing by the standard deviation
of each predictor variable. The method “mahalanobis” (Mahalanobis 1938) uses the dimensional
components of Euclidean distance transformed by the inverse of the covariance matrix of the
predictor variables. The distance method “ICA” is similar to mahalanobis but based on independent
component analysis where distance is computed in a projected space defined by components that
are statistically independent and are assumed to have a non-Gaussian distribution (Hyvarinen &
Oja, 2000 as cited in Hudak et al., 2008). The most similar neighbour methods (msn and msn2)
provide a measure of distance computed in a projected canonical space where as for the method
gradient nearest neighbour (GNN) (Ohman and Gregory 2002) distance is computed using a
projected ordination of predictors based on canonical correspondence analysis.

Random forests proximity is calculated quite differently to the other proximity metrics mentioned
above. Observations are considered similar if they occupy the same terminal node in a suitable
constructed classification and regression tree. (See Breiman 2001 and Liaw and Wiener 2002 for
detail) Distance is then calculated as one minus the proportion of trees where a target observation
is in the same terminal node as a reference observation. (Crookston and Finlay 2008)

Each distance metric listed above have been used and investigated and implemented as part of
this study and the random forests distance was selected for application in the production of model
outputs. Random Forests distance has two notable advantages over the alternatives; it is non-
parametric and free from distributional assumptions and predictor variables can be a mixture of
categorical and continuous variables whereas the other distance methods require continuous
variables to define the search space axes (Crookston and Finlay 2008). Furthermore provisional
analysis on the model outputs indicated that models imputed using random forest distance were
the best performing and this is consistent with the findings of Hudak et al (2008) who noted that
kNN models using random forests distance produced the lowest values of model error and were
the most stable. A German research team (Latifi et al 2010) also compared the various distance
techniques implemented in yalmpute in a KNN imputation setting and found that the random forests
distance measure was superior to the others. Further detail on the random forest methodology is
therefore required and is reviewed in section 3.2.4.

Random Forests

The random forest method for describing statistical distance has been selected for use in this study
as it has a number of properties that are favourable for the intended use here. As a relatively
unusual approach in an imputation context some additional detail on the technique is warranted.
Developed by Breiman (2001) a random forest is the result of a machine learning algorithm which
randomly iterates through samples of the data it is exposed to generate a large group, or forest, of
classification and regression trees. The iterative nature of random forest provides a distinct
advantage over other imputation methods as bootstrapping of the data leads to more robust
predictions (Hudak et al. 2008). The inclusion of random subsets of predictor variables means that
problems associated with inter correlated predictor variables and over fitting are alleviated
(Breiman 2001) and that, if required, measures of variable importance can be generated (Hudak et
al. 2008).

Although strictly a classification tool the random forest method can be used to derive statistics that
are analogous to statistical distance which is calculated as one minus the proportion of shared
terminal nodes in the forest of classification trees. The random forest method can be summarised
as follows: Each continuous variable is discretised and reference observations are then classified
with respect to the other response variables and the predictor variables. The resulting classification
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trees are then concatenated to calculate the proportion of shared terminal nodes across all the
response variables for the purpose of identifying nearest neighbours (Hudak et al. 2008).

Sampling Error for kNN Estimates

In section O it was discussed how the k nearest neighbour (kNN) technique can be used to
calculate the average of any measured or calculated response variable across any arbitrary area of
interest (AOI) in the study area. Examples of response variables are basal area, total recoverable
volume and the volume of small sawlogs 3 years in the future. Examples of areas of interest are
stands, coupes, age classes, riparian strips or even the entire study area. In the simplest
implementation, we identify the target pixels in the area of interest. To each target pixel we assign
k reference plots. If we have N target pixels, each with k reference plots, then we have N*k
response variable values and can use the average of those N*k values as the best estimate of the
average for the AOIl. More complicated implementations first calculate a weighted average of the k
reference plot values for each of the N target pixels, then average across the N target pixels. The
weight is based on the similarity between the target and reference plot in terms of LIDAR metrics.

Having calculated the average for a response variable, a potential user of this approach might be
interested in knowing:

1. How does one calculate the sampling error of the KNN estimate for the AOI?

2. How big/small is that sampling error relative to the alternatives?

3. What are the practical issues in calculating sampling error?

This section addresses these questions.

Calculating Sampling Error for Areas of Interest

Supposing we have already calculated the response variable value for each of the N target pixels
that represent an AOI by using the average of the values for k nearest neighbours to the target
pixel. We could then calculate the sampling error using those N values in the same way that we
would if we had established a plot on top of each of the N target pixels. In other words we could
assume that the N values represent a simple random sample (SRS). But that would grossly under-
estimate the true sampling error. The problem is that we don’t really have N independent values to
work with. We have instead a much smaller number of reference plots, used to greater or lesser
degree, and sometimes not at all, in any one AOI.

McRoberts et al, 2007 provide a method for calculating the sampling error across the N target
pixels from a much smaller number of reference plots. The variance of the sum of the N target pixel
values includes both the sum of the target pixel variances and the sum of the co-variances
between each target pixel. If we analysed the data using an SRS approach then we would be
doing exactly the same thing except that in the SRS approach we assume that the co-variances
are zero.

When k > 1, then the variance of the value for a single target pixel can be calculated by treating the
k nearest neighbours as a sample from a super-population of possible nearest neighbour values.

The co-variance between any two target pixels is calculated from the variance for each of the two
pixels and the correlation between them. This correlation has two components. The first arises
when the two target pixels share the same reference plot; or plots if k > 1. If two target pixels share
the same reference pixels then their predicted values and prediction errors are highly correlated.
This component is a given and easy to calculate. The second component arises from the possibility
that the prediction errors from two reference plots, where the reference plots are close together,
might be correlated. This spatial correlation component is not a given and depends on the
characteristics of the study area and the placement of reference plots. One way to think about the
spatial correlation component is that if all of the reference plots having a specific set of LIDAR
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metrics come from the same part of the same stand then they are not providing independent
estimates for a target pixel with the same set of LIDAR metrics in a different stand. If one of those
reference plots over-predicts for another part of the study area then they probably all do to some
extent.

More detail on the method is provided in Appendix 1.




METHODOLOGY

The methodology detailed in the following sections was implemented as a case study for the use of
k nearest neighbour (kNN) imputation approach for predicting stand attributes from an aerial LiDAR
dataset and corresponding ground data.

Study Area

The study area for this project encompassed a 4000 hectare (ha) swath of Kaingaroa forest in the
Central North Island of New Zealand (Figure 1). Kaingaroa is New Zealand’s largest contiguous
plantation area occupying over 180000 ha of the volcanic pumice plateau south of Rotorua. The
primary forestry species in Kaingaroa is P. radiata (Pinus radiata D. Don) which occupies more
than 95% of the stocked area. P. radiata is grown on a ca. 28 year rotation. Typical regimes
include an initial stocking of around 1000 stems per hectare and thinning(s) down to a final
stocking of around 300 — 400 sph prior to harvest. Some stands are grown on a clearwood regime
and pruned to approximately 6m whereas others remain unpruned. The study area is exclusively
planted in P. radiata. The range of stand conditions present in the study area are summarised in
Table 1.

Table 1. The range of stand conditions in the study area.

Stockin Basal Area Top Height
Age (y) (oph) 9 (m2ha) p(m) 9 TRV (m¥ha)
1-33 220 -1026 7.8-59 5.5-46.5 1- 892

Ground Sampling

Response variables for the imputation approach developed in this study came from 213 field plots
located throughout the study area. The ground sampling design followed a “hybrid” approach that
utilised simple random sampling for the majority of plots with the remainder located with adjusted
sampling probability. A 400m grid with a randomised start point and orientation was overlaid onto
the study area and used to locate 183 field plots with one allocated at each grid intersection.
Subsequently rasters detailing the distribution of predictor variables used in previous regression
sampling work, and found to have a strong relationship with TRV, were produced and the
remaining 30 plots were placed into the study area targeting the range of these metrics that had
not been sampled by the original 183 plots. The purpose of this sampling exercise was to ensure
that the full range of the predictor variables was sampled by the ground sampling units. The grid
layout was used initially so that a simple random sampling (SRS) estimate could easily be derived
from the ground plots for comparison with other estimates.

The sampling unit for this project was a slope adjusted 0.06 ha circular bounded plot. Plots were
geolocated with a Trimble GeoXH 6000 — global positioning system (GPS). At least 300 points
were collected at the centre point of each plot which was post-differentially corrected to give on
average a sub-0.5m accuracy. Within each plot tree diameter at breast height (dbh) was measured
on all trees, and total tree height was measured on a sub-sample of plot trees. Sufficient tree
heights were measured to fit a diameter height regression for each plot which was used to predict
the heights of unmeasured trees. Overlapping feature tree description was also recorded on
mature trees according to the RADOS tree cruising dictionary (YTGEN User Group 2007). Using
these measurements plot level statistics were calculated to provide response variables in the
reference data set used for nearest neighbour imputation.




Study
area

Figure 1. Study area and field plot locations. The left panel shows the 4000 ha study area (outlined in
red) with installed plots shown as light yellow circles.

LiDAR Sampling

Candidate predictor variables used in this analysis were derived from airborne LiDAR scanning of
the study area. LIiDAR acquisition was carried out by Aerial Surveys Ltd. using a fixed wing aircraft
on the 28 June 2012. An Optech ALTM 3100EA scanner was used at a flying height of 950m
above mean ground level acquiring data with a designed pulse density per swath of a minimum 4
pulses per square metre, and a swath overlap of 50%. The point cloud data was then classified
into ground, first and, intermediate returns using automated routines tailored to the project
landcover and terrain. The subsequent steps were undertaken using TerraSolid LiDAR processing
software module TerraScan. Manual editing of the LIDAR point cloud data was undertaken to
increase the quality of the automatically classified ground and above ground point datasets. This
editing involved visually checking over the data and changing the classification of points into and
out of the ground point dataset.

The Cloudmetrics function in the FUSION LiDAR analysis software product (Macgaughy 2010) was
used to produce various statistical parameters describing the LIDAR dataset in terms of point
elevations and intensity. These metrics (




Table 2) which were spatially concurrent with the ground plots served as candidates for the
predictor variables used in this analysis. These variables would be used in both the target and the
reference dataset and would need to be calculated independently for subsequent LIDAR datasets.




Table 2. The metrics used as candidate predictor variables

Metric Description KS glected
aingaroa
Total return count above 0.50 Number of returns above 0.5 height
Elev minimum Minimum height
Elev maximum Maximum height X
Elev mean Mean height
Elev mode Modal height
Elev stddev Standard deviation of heights X
Elev variance Variance of heights
Elev CV Coefficient of variation of heights
Elev 1Q 75th percentile minus 25th percentile of heights
Elev skewness Skewness of heights
Elev kurtosis Kurtosis of heights
Elev AAD Average absolute dfawatlon from mean of
heights
Elev L1 - L4 L-moment 1 to 4 of heights
Elev L CV L-moment coefficient of variation of heights
Elev L skewness L-moment skewness of heights
Elev L kurtosis L-moment kurtosis of heights
Elev P01 — P99 Heights 1 to 99" percentile
Return 1 - 9 count above 0.50 Count of return 1 — rﬁgi]g;tg points above 0.5m
Other return count above 0.50 Count of other returns above 0.5 height
PErERmESD f|2rs(t)6eturns e Percentage first returns above 2m height
SEMEEEEE gllorg,turns e Percentage all returns above 2m height
(All returns above 2.00) / (All returns above 2m height) / (Total first
(Total first returns) * 100 returns) * 100
First returns above 2.00 First returns above 2m height
All returns above 2.00 All returns above 2m height
FOTERTELD frlrzztar:turns gk Percentage first returns above mean height X
PETEETEED f:;zt dr:turns e Percentage first returns above modal height X
Percentage;l(lager:turns e Percentage all returns above mean height
Percentage;lcl)(rjzturns e Percentage all returns above modal height

(All returns above mean) /
(Total first returns) * 100

(All returns above mean height) / (Total first
returns) * 100

(All returns above mode) /
(Total first returns) * 100

(All returns above modal height) / (Total first
returns) * 100

First returns above mean

Number of first returns above mean height

First returns above mode

Number of first returns above modal height

All returns above mean

Number of returns above mean height

All returns above mode

Number of returns above modal height

Total first returns

Total number of 1st returns

Total all returns

Total number of returns

Elev MAD median

Median of the absolute deviations from the
overall median

Elev MAD mode

Median of the absolute deviations from the




Metric Description Ksa ?Legc;fga
overall mode
Canopy relief ratio ({moan helght - minimum helght) maximum
Elev quadratic mean Generalized means for the 2nd power
Elev cubic mean Generalized means for the 3rd power
Int minimum Minimum intensity
Int maximum Maximum intensity
Int mean Mean intensity
Int mode Modal intensity
Int stddev Standard deviation of intensity
Int variance Variance of intensity
Int CV Coefficient of variation of intensities X
Int1Q 75th percentile_minus_ _25th percentile of
intensities
Int skewness Skewness of intensities
Int kurtosis Kurtosis of intensities X
Int AAD Average absoluitr?tgr?:iit?éisn from mean of
IntL1 - L4 L-moment 1-4 of intensities X
IntL CV L-moment coefficient of variation of intensities
Int L skewness L-moment skewness of intensities
Int L kurtosis L-moment kurtosis of intensities
Int P01 — P99 Intensities 1% — 99" percentile
Surface slope Surface slope (degrees)
Surface aspect Surface1 gsgect (de_grees e_lzimuth, 0 Qegrees at
o’clock, increasing clockwise)
Profile curvature * 100 Profile curvature * 100 (in direction of slope)
Plan curvature * 100 Plan curvature * 100 (perpendicular to slope)
Solar radiation index Solar radiation index
Age Crop age at time of LIDAR acquisition

Model Development

All imputation and model development was implemented in the R statistical software package (R
development core team 2012) and made use of the yalmpute package (Crookston and Finlay
2008) as well as the randomForest and RODBC (Ripley 2002) packages.

Variable Selection

With many candidate predictor variables it may be beneficial to select the optimal predictors
appropriately for a given response. Numerous variable selection procedures designed at thinning
LiDAR metrics to only those which are most valuable are documented in the research literature
and several approaches were implemented during this study. Implemented approaches including
the varSelRF R package (Diaz-Uriarte 2012) were used for variable selection. varSelRF selects
important predictor variables through an iterative, backwards aggressive variable elimination
process which is designed to minimise the RF out-of-bag (oob) error rate without creating bias in
the final model (Fallkowski et al. 2010). The technique implemented by varSelRF uses a genetic
algorithm based on the principle of evolution by natural selection. Variable selection by varSelRF
was found to be extremely volatile when used with the random forests distance metric. This result

p— __/“‘"



is consistent with the findings documented elsewhere (Lafiti et al. 2010) and resulted in alternative
variable selection approaches being favoured. Packalen et al. 2012 described a comparison of
several variable selection techniques and found that a simulated annealing approach aimed at
minimising model error was the most accurate method of variable selection for kNN imputation of
forest variables with remotely sensed data. Variable selection via simulated annealing (VSSA) as
implemented in this study sought to minimise model root mean square difference (RMSD) by
repeatedly solving the kNN imputation model. Following the technique of Packalen et al. (2012) a
randomised local search method known as simulated annealing (Kirkpatrick et al 1983, Aarts and
Lenstra 1997) was used. This technique is known to provide a good approximation of the global
optimum in a large search space whilst avoiding local optima by preventing moves to poorer
solutions. The technique is often analogised as similar to the annealing of metal with control
achieved by a parameter called temperature which can be gradually decreased according to a
cooling schedule (Packalen et al 2012). A variable selection by simulated annealing algorithm was
developed by the study authors for the purposes of this project.

kNN Imputation

Following variable selection imputation procedures were implemented using the various functions
of the yalmpute R Package (Crookston and Finley 2012). There are several imputation methods
available through yalmpute. In this case the random forest classification approach was used to
calculate statistical proximity as it has been shown to be a very robust approach proximity measure
in previous studies (Hudak et al 2008a, Hudak et al 2008b) and is free from distributional
assumptions (Crookston and Finley 2012). Under the random forest approach observations are
considered similar if they tend to end up in the same terminal node in a suitably constructed
collection of classification and regression trees (Breiman 2001, Liaw and Wiener 2002). The
distance metric used to define the k nearest neighbours is calculated as one minus the proportion
of trees where a target observation is in the same terminal node as a reference observation
(Crookston and Finley 2012).

For the imputation process the number (k) of reference observations to be used can be specified.
The kNN prediction for the continuous response variable is then calculated as the average of the k
nearest neighbours. Increasing k effectively moves the prediction towards the population mean
which is unrealistic for non-normal or skewed datasets. Increasing k also reduces the pure error
which is useful in describing the variability in the response values (Hudak 2008a).Numerous values
of k were implemented as part of this project (see Mcroberts. 2012 for a review of this). A random
forest tree ensemble was produced for distance calculation. The ensemble consisted of 1000
bootstrap replicates with only the candidate predictors selected by VSSA included.

A target dataset was derived from rasters of the predictor variables generated at a 30m x 30m
resolution. The yalmpute package was used to assign values of the response variable to all cells
across the landscape where predictor variables were available. This resulted in surfaces across
the entire study area for detailing the distribution of each of the response variables (Figure 2).




Figure 2. Rasters showing the distribution of response variables of a) TRV, b) top height, c)
basal area and d)stocking across the study area. These response pixels can be aggregated to
provide estimates for any area of interest.

Yield Table Development

A key strength of the kNN approach and one of the main drivers for the selection of this
methodology for use in this study is the ability to incorporate the statistical approach within
the forest manager’s current yield prediction systems. Under a kNN methodology once a
neighbour(s) is selected for a target cell any values calculated for the donor(s) can be
applied to the target cell. This means that a yield table derived for a reference cell can be
used to predict values at a specific point in time for a target cell. Yield tables for each
reference cell were produced and used to provide yield estimates, including log product
volumes, for target cells covering an age range of 15-30 years. The target pixel level yield
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tables can be aggregated at any area of interest to provide estimates of yield development.
Aggregates at the stand level can be compared with the validation dataset to provide a
measure of the accuracy of imputed yield table performance compared with traditional yield
tables. The attribution of future yields is demonstrated in Figure 3. TRV is used in this
example but any output of the yield prediction system, such as stocking or log product
volume at a specific age, could be used. In the scenario in the image below the target stand
contains three red pixels, one yellow pixel, and two purple pixels giving a TRV of
383.33m%ha at measurement date based on a weighted average of the reference values.
Similarly the yield tables for the donor reference plots can be amalgamated according to the
number of occurrences of each donor within an area of interest to produce a stand yield
table.

.n"l.ﬁi-r TRY
25 | 450
26 | 500
27 | 550
Reference o | 500
Dataset 29 S
Stand Yield
Stand ./ Table
Age TRV Age TRV
25 | 400 25 | 458
s 6 | A5 26 | 498
500 | TRY & 7 27 536
! Measurement dale 28 | 4735 28 573
= 383.33 20 | 75000 29 595
m\\ 26 530
—— 27 560
28 582
29 600 |

Figure 3. Yield table development under a kNN approach

Validation Dataset

A database of the forest managers’ stand assessments was made available to provide a
validation dataset for this project. The database was interrogated to extract all inventories
that fell within the LIiDAR swath and were yet to be harvested. Where an inventory was
partially within the LIDAR swath the plots outside the study area were excluded. The forest
managers yield prediction systems were used to project standing tree assessments to the
date of LiDAR acquisition to provide a comparison. To increase the age range of stands
available for validation, information was also acquired from silvicultural quality control check
type measurements which record stand characteristics but for which there is no way of
calculating the sampling error.

The validation dataset available for comparison is summarised in Table 3.




Table 3. A summary of the validation dataset available for the Kaingaroa case study. All figures
shown are at LiDAR acquisition date.

N Age range (y) TRV range Top Height Basal Area Stocking
9 gely (m®ha) Range (m) range (m°ha) | range (sph)
43 5-32 12-900 7.1-46 9.23-58.5 224-961




RESULTS

Variable Selection

Using the VSSA algorithm predictor variables were selected for inclusion in the model the variables
selected for inclusion are noted in




Table 2. In total, 19 of the 101 candidate predictor variables were selected for use in the Kaingaroa
case study.

Sampling Error Results

The method of McRoberts et al, 2007 was used to calculate sampling error for the entire study
area and for stands within the study area. Use of this method necessitated a prior analysis for
spatial correlation.

Spatial Correlation

In this context, spatial correlation is about the tendency for reference plots that are close together
to generate similar imputation errors. The reference plots in a closely spaced cluster of reference
plots will tend to all predict a little higher or lower than the average for all reference plots with the
same LiDAR characteristics. A target pixel having multiple nearest neighbours from the same
cluster will tend to have lower variation in the range of imputed response values and this lower
variation, if not allowed for, can result in an under-estimate of sampling error. The extreme case is
where two reference plots are exactly coincident, in which case their correlation is 1.

Spatial correlation can be visually assessed by plotting the variance of the differences between
imputation errors of pairs of reference plots against the distance between the plots, for all possible
pairs of reference plots. Figure 4 provides an example for several values of k (number of nearest
neighbours) where the response variable is total recoverable volume. A trend in which variation
increases with distance to a plateau would be taken as evidence of spatial correlation. Such a
trend is not evident in Figure 4 at moderate distances but, with a good imagination, can be seen in
Figure 4 Semivariogram for Total Recoverable Volume over medium distances

where the same data is shown over a limited range of distances. Correlation is calculated from the

fitted curve (dashed line) in Figure 4 Semivariogram for Total Recoverable Volume over medium
distances

, as 1 — y/asymptote, where y is a value from the curve and asymptote is the asymptotic maximum
of the curve. The effective range of spatial correlation, i.e. the point at which the curve gets very
close to the asymptotic value and correlation gets very close to zero is a few hundred metres. To
put this in perspective, most of the plots were on a 400m grid and the spatial correlation is really
only material when additional plots were placed off the grid. The short range of spatial correlation
is consistent with the findings of McRoberts et al, 2007 and Magnussen et al, 2009. It is tempting to
conclude that spatial correlation could be ignored in production inventory systems if plot spacing is
kept above 400m. This might, in fact, be the case. However, it would be premature to arrive at
this conclusion on the basis of a single study.

Figure 6 shows that different response variables can have different patterns of spatial correlation;
including undetectable for top height with k=5.
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Figure 6. Semivariogram for several response variables for k=5 over short distances

The noise in Figure 4, Figure 4 Semivariogram for Total Recoverable Volume over medium distances

and Figure 6 creates uncertainty about the exact magnitude and range of spatial correlation.
Rather than dwelling on whether the patterns are real, it is more instructive to see what effect the
assumed spatial correlation has on estimates of sampling error. Figure 7 compares relative
sampling error calculated both with and without recognition of spatial correlation for total
recoverable volume. Each point represents a single stand in the study area. Relative error is the
standard error of the estimate of the stand mean divided by the stand mean total recoverable
volume (m%ha). The dotted lines in Figure 7 have a slope of 1. When spatial correlation of the
magnitude shown in Figure 4 Semivariogram for Total Recoverable Volume over medium distances

is incorporated in estimates of the sampling error then the sampling error is higher than when
spatial correlation is ignored; the solid lines in Figure 7. Over all stands, the solid lines in Figure 7
represent an increase’ in sampling error for total recoverable volume of 15%; i.e. a probable limit of
error (PLE) of 10% would increase to 11.5%.

The effect of incorporating spatial correlation in the estimates of sampling error depend upon the
response variable as well as the value of k. The equivalent increases for other response variables
are 19% for basal area, 4% for stocking and 12% for top height.

The effect of incorporating spatial correlation into estimates of sampling error are relatively
consistent across many stands with the notable exception of a single stand; see top left of k=2
panel in Figure 7. When k=2, the kNN estimate for that particular stand is dominated by two
reference plots that are only 9.7 m apart and assumed to be highly correlated. When k is higher
than two the influence of these two reference plots is less.

The results in the subsequent sections incorporate the effects of spatial correlation.
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Figure 7 Effect of spatial correlation on calculated sampling error
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Figure 8. Estimates of total recoverable volume for entire study area

Error! Reference source not found.Figure 8 provides several estimates of the average total
recoverable volume per hectare for the entire study area along with 95% confidence intervals on
the estimates of the mean for each. “Mean Reference” is the average of the 213 reference plots.
These were not all established with known probability so the average of all 213 does not represent
an unbiased estimate of the average for the study area. The value is provided for reference only.

Of the 213 reference plots, 187 were established systematically on a 400m grid. They can be used
in a conventional systematic or simple random sample estimator of the mean and the variance of
the mean; the “SRS” line and band in Figure 8. The SRS estimator is the least efficient estimator
of those examined because it makes no use of auxiliary data.

Using stand age as an auxiliary variable in a regression estimator decreases the size of the
confidence interval significantly; the “Regression on Age” line in Figure 8. This doesn’t make any
use of the LIDAR data. It could be improved by adding other known auxiliary variables but that
wasn’t considered necessary for this study.

The simplest way to use the LiDAR data for estimating average total recoverable volume over the
entire study area is to use a regression estimator with LIDAR metrics as the auxiliary variables.
This is also a fairly robust and efficient way to make use of the LiDAR data. The “Regression on
LiDAR” set in Figure 8 used this approach. The first 12 principal components of the available
LiDAR metrics were us