

PO Box 1127 Rotorua 3040 Ph: + 64 7 921 1883 Fax: + 64 7 921 1020 Email: info@ffr.co.nz Web: www.ffr.co.nz

Programme: Harvesting

Task No: 1.1 Milestone Number: 6.1 Report No. H029

2016 Cable-Assist Workshop – Improving Operations

Authors: Rien Visser & Hunter Harrill University of Canterbury School of Forestry

Date: 1 July 2016

Leadership in forest and environmental management, innovation and research

Disclaimer

This report has been prepared by University of Canterbury School of Forestry for Future Forests Research Limited (FFR) subject to the terms and conditions of a Services Agreement dated 10 June 2015. The opinions and information provided in this report have been provided in good faith and on the basis that every endeavour has been made to be accurate and not misleading and to exercise reasonable care, skill and judgement in providing such opinions and information. Under the terms of the Services Agreement, University of Canterbury School of Forestry's liability to FFR in relation to the services provided to produce this report is limited to the value of those services. Neither University of Canterbury School of Forestry nor any of its employees, contractors, agents or other persons acting on its behalf or under its control accept any responsibility to any person or organisation in respect of any information or opinion provided in this report in excess of that amount.

EXECUTIVE SUMMARY

Cable-assist harvesting systems increase the operating range of ground-based operations on steep slopes. The overall goal of this development is to provide not only safer, but also more cost effective, harvesting systems.

The objective of this project was to develop a set of training notes that can be used for an in-field workshop for machine operators, contractors as well as company planners and safety managers. It provides a combination of technical information, discussion points, and easy-to-use tools that can improve our understanding of cable-assist harvesting systems.

The early development and implementation of these workshops was supported by both Rayonier New Zealand Ltd. and Hancock Forest Management (NZ) Ltd. A series of nine workshops have been held to date (June 2016) and these provided the opportunity to continually update and improve the content of the workshop material.

While all of the workshops to date have been led by the University of Canterbury, School of Forestry, these workshop notes are being made available to the wider forest industry, through Future Forests Research Limited (FFR), so that other forestry companies can implement their own training programmes. FFR asks that forestry companies acknowledge the University of Canterbury, School of Forestry for preparing this workshop material.

INTRODUCTION TO 2016 CABLE-ASSIST WORKSHOP

Goal: To provide tools and techniques to practically assess the operational conditions and improve safety for steep terrain cable-assist systems.

Schedule: During this workshop the participants will carry out a series of tasks that are designed to support the teaching materials covered in the 2016 UC Cable-Assist workshop. It will take approximately 3 hours to complete.

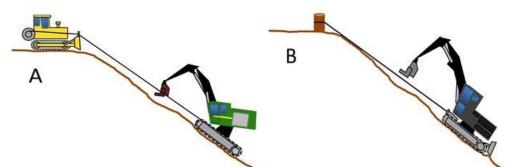
Modules

- 1. Introductions and Overview of Operation (30 min)
- 2. Review of the Harvest Plan & Measuring Slope (30 min)
- 3. Soil Strength and Traction Efficiency (20 min)
- 4. Hazard Assessment Work Sheet (20 min)
- 5. Setting up the Anchor Machine (20 min)
- 6. Wire rope inspection (20 min)
- 7. End Connector inspection (20 min)
- 8. Operating experience/techniques open discussion (20 min)

Materials

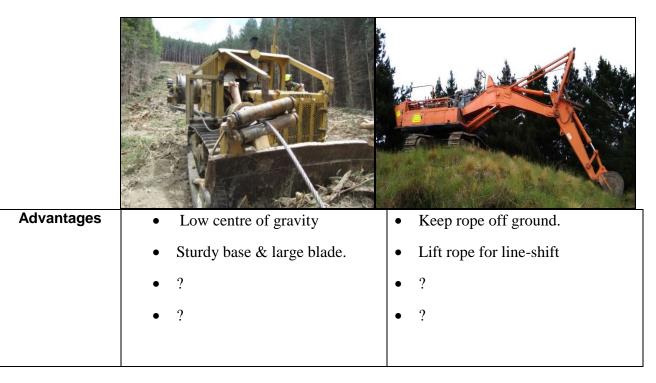
- Field visit handbook
- Map of harvest area & company guidelines
- Clinometer, calculator, ruler, measuring tape
- Gloves, wire brush, masking tape, cleaning cloth, digital calipers.

1. OVERVIEW OF OPERATION


Introductions – people in attendance:

Operator / contractor to describe system:

Carrier Base: Wheeled versus Tracked



Winch System: 'Dynamic' (A) versus 'Passive' (B) - Advantages and Disadvantages

Advantages	 Readily connected to, and disconnected from, any felling or bunching machine Winch assist machine is mobile and can readily be moved Power requirements for winching and working tasks are split between two machines 	 Single machine 'system' Less rope wear as it is not moving across the ground Does not require access to back line/top of hill
Disadvantages	 System requires two machines, and a communication between them for effective winch operation Requires access to the back line/top of hill for winch machine Potential for more rope abrasion, but also for cutting in to the ground and or stumps used to re-direct the rope, as rope moves 	 Higher capital cost felling machine Winch is integrated so cannot be used with other felling machine Requires suitable anchors such as stumps, deadmen or mobile tail hold machine

Anchoring System: Dozer versus Excavator versus Stump

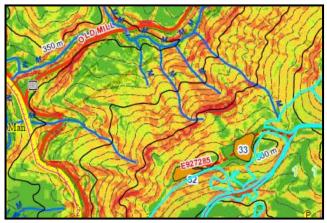
Single rope versus double rope systems

Double rope: 'back-up' rope adds additional security?

Single rope: reduces operating complexity and cost

Discussion - Company Position on Implementation

- Overall position on cable-assist systems in forest?
- Productivity and cost expectations for contractors operating cable-assist?
- Main concerns about current operations?


2. HARVEST PLAN & MEASURING SLOPE

Harvest Plan

In groups of 3 – discuss the Harvest Plan (Map):

Company –

 What decision making process helps decide if, and where, a contractor with cable-assist is either desired or required for a harvest area?

Segment of a Map showing slope categories

Contractor –

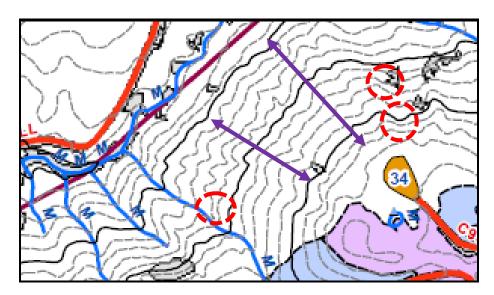
- What decision making process helps decide actual cable-assist operating areas (and or limits)?
- How do you decide anchor locations and operating corridors?
- Do you identify areas where manual falling is preferred / required over mechanised falling?

Discuss – what, if any, information is most useful on a harvest plan map to make informed decisions about where to operate / limits?

Task – In groups of 3, on the map identify the next anchor location and the extraction corridors.

Slope Refresher:

Degrees (deg or °): circle is 360 equal units, or 90 degree in right angle - continuous scalar variable preferred by schools (& harvest planners!).


Percent (%): ratio of 'rise' over 'run' - preferred by engineers as easily implemented in map reading & surveying.

- See conversion table in Appendix 1

<u>'Dominant' hill slope</u> – average slope over the full length of the main slope (i.e. exclude the hill top and valley). This has traditionally been used to provide a good overview of what type of system might be appropriate.

- < 30% (17 deg) = readily traversed by wheeled machines
- < 40% (22 deg) = readily traversed by tracked machines
- < 50% (27 deg) = able to be traversed by suitable machines with an experienced operator on good soil conditions
- < 70% (35 deg) = able to be traversed by purposed built steep terrain machines with an experienced operator on strong stable soils with no obstacles.

<u>Machine 'Micro' slope</u> – identifies the slope over a shorter segment. A suggested useful length is 8 to 10m – being double the length of a machine. While it is possible to measure slope over this distance in the field using a clinometer, on the map realistically you are limited to approx. to 25 to 50m (depending on contour intervals and map scale).

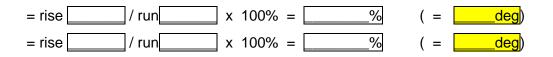
The purple lines would be good estimate for the dominant slope (approx. 60%, 30 deg), whereas the red circles are the micro-slope areas with the steepest terrain (130%, 55 deg!).

Task – what is the slope of the terrain at the current setting? Compare Map slope to actual terrain slope.

Dominant Slope – using slope categories

If the map uses colour to designated slope categories, what is the slope of the terrain at the current setting? Note that the category gives you a slope range (min and max).

'Dominant' Slope – using map contours


(1) draw two lines from the top to the bottom of the 'main' slope - start and end at a contour line

(2) count the number of contours along the line and multiply this by the contour interval (likely to be either 5m or 10m, but check!) - this equals the rise.

(3) Use your ruler to measure the length of the line (in mm). Multiply this by the map scale to get actual length.

(4) Divide this value by 1000 to convert to metres – this equals the run.

(5) Divide rise by run and multiply by 100 to get slope in percent (%) and look up the conversion chart to also record the degree slope.

Dominant Slope – using a clinometer

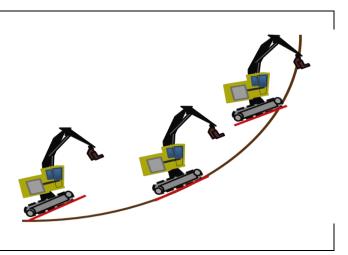
(1) from the edge of the landing / road identify the end of the dominant slope - find a shrub / tree that is approximately your height.

(2) Using the clinometer, measure the slope to that point.

(3) repeat the measure approx. 30 degrees either side.

(Note: over 100m, 1m height = 1% or 0.6 deg – i.e. not that much!)

Dominant Slope 1 =	%	=	deg
Dominant Slope 2 =	%	=	deg


Discuss –

- How well do the three measures of dominant slope match up? What are likely sources of 'error'?
- Should operating slope limits relate to 'dominant' or 'micro' scope measurements?
- At this site, based on these slope measures, how do you perceive the roll-over risk for the machine?

Managing Machine Slopes

Study¹ showed that machine slope is not terrain slope – on lower slopes it is often higher. <u>However</u>, the study also showed that operators can influence machine slope especially on steep segments of the slope. <u>Question to operators</u>, what can you do to

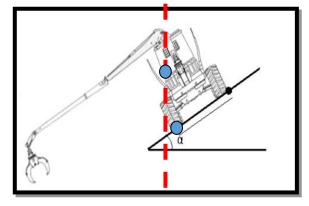
maintain safe machine slope when on small steep segments of the terrain?

¹ Visser R. and Berkett H. (2012).

3. SOIL STRENGTH & TRACTION EFFICIENCY

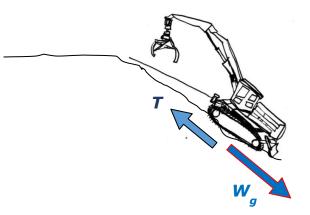
Approve Code of Practice (ACOP) 2012

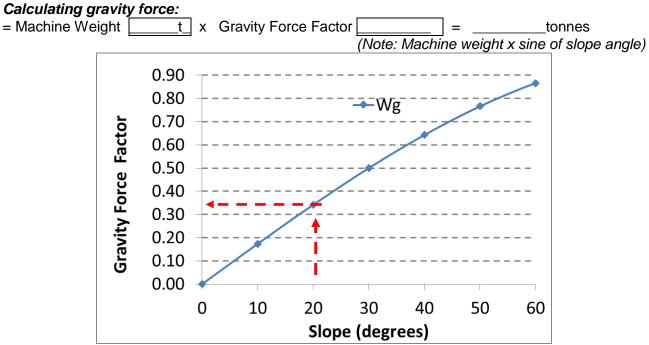
6.1.7 Mobile plant shall be equipped with a braking mechanism capable of holding itself and its load on any slope on which it is operated.


6.2.2 Where the stability of mobile plant is compromised by slope, weather or ground conditions then a specific hazard management plan shall be developed, implemented, and monitored.

6.2.3 Mobile plant shall not be operated on slopes that exceed the maximums in accordance with the manufacturer's specifications (or their agent).

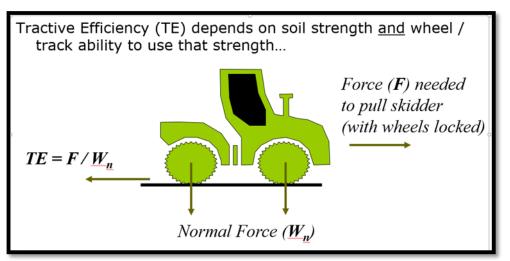
How can machines be compromised?


Reminder – Machine Limits – machine can be compromised by either rollover or loss of traction


<u>Machine rollover:</u> When the centre of gravity of the machine is below the lowest machine contact point with the ground \rightarrow

Note: a machine travelling directly uphill with the boom out the front will not rollover on slope >55 deg, HOWEVER, a machine on a sideslope with the boom out at full length with load can tip over <10 deg.

Loss of Traction: When gravity force (Wg) on machine is greater than traction force (T) ...



Using the slope chart – locate your slope (deg) on the bottom axis, move straight up until you hit the line, then go straight across to read off the gravity factor. For the red line shown, for a machine on a 20 deg slope, the gravity force will be 0.35 x machine weight.

Calculating traction force: (use calculators)

Traction Force = Normal Force (=Machine weight x Cos Slope Angle) x Traction Efficiency Normal Force = Machine weight t x Cos (Slope Angle) = t Normal Force - the amount of weight actually acting 'into' the ground this will get smaller as you increase the slope angle.

So tractive efficiency is the ratio of the force it takes to pull a machine with the normal force.

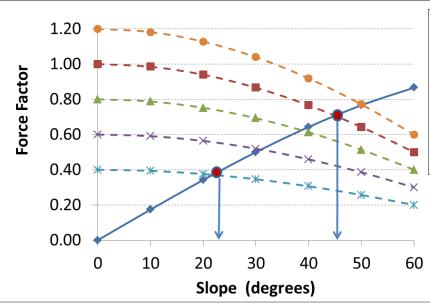
Tractive efficiency – four ways of measuring / estimating:

- 1. We can use a load cell and pull a machine with the wheels locked and we will get TE *for that machine at that site*.
- 2. We can use old text book tables:

Tractive Efficiency	Soft Ground	Strong Ground
Tires	20%	50%
Tires with Chains	30%	60%
Tracked machines	40%	80%

3. We can use operators manuals such as that published by EMS Ltd:

As a guide, ground condition affects the Tractive Effort as follows:


% 100 – 90 TE: Dry, load bearing ground.

% 90 – 70 TE: Brown earth under moderate climatic conditions.

% 70 – 50 TE: Soil with high clay content under wet conditions.

% 50 – 0 TE: Wet soft / boggy ground.

4. We can ask the operator to keep a record of the slope where the machine loses traction and use the chart below to indicate the Traction Efficiency - and provide a brief description of that soil for future reference.

Measure the slope when the machine slips, go straight up until you hit the blue (Gravity Force) line, then follow the curved line back to get Traction Efficiency (note: x 100 to get %)

Task: Assess soil condition

For the top 30 or 40cm characterise the strength of the soil?

- dry/moist/wet
- clay/silt/sand/gravel
- bedrock
- weak, strong?

Notes:

- Clay content clay at a low moisture is like glue to hold everything together, but a lot of clay makes it susceptible to either very dry or wet conditions.
- Gravel tends to make a soil much stronger, but large gravel might cause the tracks to not get a good grip on the soil along their full length.
- Bedrock strong, but machines tend to slip on bedrock so there is a real risk
- Sand a sandy soil, or even a gravel, without clay will be very friable and have low TE
- 'Ideal' an ideal soil for strength has a good mixture of gravel, sand and clay.
- ?
- •

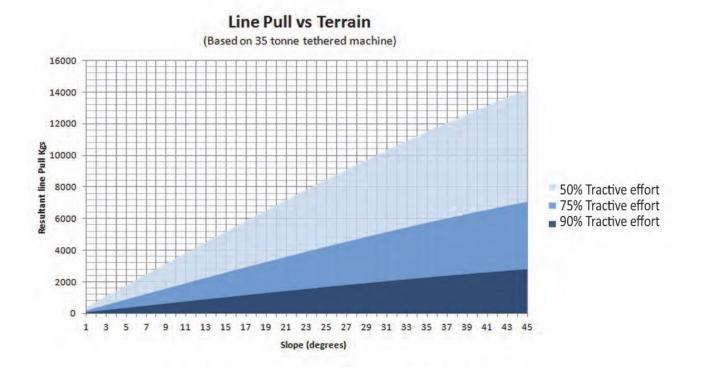
?

• ?

Discuss - What can add to the tractive efficiency to help keep a machine on the slope?

- Putting tracks on stumps / strong root systems.
- Using the boom to either pull or push the machine up the slope.
- Using the tracks to 'dig down' into a stronger soil layer.
- What do the operators do when they start to slip?

Putting it together... Will this machine stay on this slope?


What is the Traction Force? Normal force x Traction Efficiency =

What was the gravity force? _____ (from page 9)

If gravity force greater than, or close to the traction force - we need the cable-assist!

The force in the cable is added to the Traction Force. These two forces summed together need to be greater than the Gravity force for the machine to be stable!

The EMS provide the chart below – the chart below is intended to give an indication of the cable line pull required for a given slope and Traction Efficiency...

4. HAZARD ASSESSMENT WORK SHEET

ACOP 6.4.5 All winch-assisted mobile plant operations shall have a documented

safe working best practice, including as a minimum":

- Hazard management
- Machine and wire rope inspection and maintenance routines
- Operator fatigue plans
- Work alone procedures
- An emergency plan

Further to 6.4.5 it is suggested that the document should include:

- An operating plan including a map indicating slope & terrain features
- Slope/soil condition operating guidance
- Safe operating procedures
- Training requirements
- Daily prestart checks

Task

Your task is to complete a steep terrain hazard assessment form. Review the harvest plan map and identify and mark a higher risk area (noted as 'sub-area' on the form). If time permits, walk around that area.

Remember some of the key factors that need to be considered when performing a hazard assessment for operating on "steep terrain" whether cable-assisted or not:

- Slope & Length
- Terrain Stability / Classification
- Ground Roughness
- Soils
- Soil Depth
- Pre-Existing & Post-Harvest Debris
- Duration of Exposure
- Worker Isolation
- Hazardous Environmental Factors

STEEP SLOPE HAZARD ASSESSMENT TOOL PAGE 1							
	HAZARD IDEN	TIFICATION AND ASS		·			
DATE		LICENSE	e / Owner				
LICENSE / CP		SITE SUPERVISOR OR CO	ONTRACTOR				
Вьоск	_	SITE OF	SUB-AREA				
MACHINE STABILITY FACTOR	RISK LEVEL 1	RISK LEVEL 2	RISK LEVEL 3	Comments			
SLOPE & SLOPE LENGTH,	40 to 50% and Slope	40 to 50% and Slope	>50% and				
TRACKED MACHINES	Length <50 metres	Length >50 metres	Slope Length >10 metres				
Slope & Slope Length,	35 to 45% and	35 to 45% and	> 45% and				
WHEELED MACHINES	Slope Length <50m	Slope Length >50m	Slope Length >10m				
TERRAIN STABILITY / CLASSIFICATION	No Instability Indicators and slopes <50%	Instability Indicators and slopes <50%	Slopes >50%				
GROUND ROUGHNESS:	<30% of steep slope	30 to 50% of area	>50% of steep slope area				
BOULDERS, OUTCROPS,	area covered by	covered by roughness	covered by roughness				
HUMMOCKS, DEPRESSIONS	roughness features	features	features				
Soils	Well-drained (e.g. gravel, coarse sand)	Mod. well-drained (fine sand, silt); indicators of sub-surface flows	Poorly-drained or saturated (silt, clay), high water table				
SOIL DEPTH							
Pre-Existing And Post- Harvest Debris	Open understory, no windthrow	Moderate downed timber, understory, stumps <30 cm	Heavy downed timber, understory, stumps >30 cm				
HUMAN FACTORS : STATE OF MIND	implement, confidence, si	alertness, understanding of tress level, physical and mer AVOID complacency, fatigu	ntal workplace distractions,				
RISK RANKING	wengea and wenrestea,	in one complacency, junga	c, rushing.				
OPERATOR COMPETENCY	Does the operator have adequate training and experience to complete this						
RISK RANKING							
DURATION OF EXPOSURE		or be working on a specific s ad breaks, # of consecutive s					
RISK RANKING							
WORKER ISOLATION - TIME FOR ASSISTANCE TO REACH OPERATOR	< 15 minutes	15 to 30 minutes	> 30 minutes				
ENVIRONMENTAL FACTORS							
(WIND, HEAVY SNOW, ETC.)							
SITE FEATURES / CONSTRAINTS		•	•				
TREES, BENCHES, RETENTION STRATEGY, ETC.)							
	Risk Ranking :						
TIMBER HEIGHT (AVG.): Average Stem Diameter:		TIMBER S MAXIMUM STEM DIA					
OVERAL	OVERALL MACHINE STABILITY RISK RATING:						
3 or More "Risk	LEVEL 3" RATINGS RESU	lts In "No Go" Unless	Additional Measures A	re Taken (See Page 2).			
QUALIFIED ASSESSOR :		Signa	TURE :				

	STEEP SLOPE HAZARD ASSESSMENT TOOL PAGE 2						
PR	ACTICES AND (ONTROLS TO	LIMINATE OR MI	TIGATE H AZAF	DS		
CUTTING PERMIT:			Вьоск:		SITE OR SUB-AREA:		
	eller-Buncher	Skidder	Hoe-Chuck	Processo	r 🗆 Other:		
DESIGNATED NO GO	FOR MECHANI	CAL OPERATIO	NS				
Identify Designated Ma	chines / Name	Designated O	perators:				
Indicate those Mechanic	cal Ceatures Dr	escribed to Eng	ure Machine Stabi	ility			
Indicate those Mechanical Features Prescribed to Ensure Machine Stability Non-Tilting Cab Tilting Cab Zero Tail Swing Design Extended Tracks							
Picks / Grousers (describe height & spacing):							
□ Non-swivel Head □ Rotating Head □ Intermittent Saw □ Hot Saw □ Shave Stumps, As Required							
Head Cutting Capacit	y (Diameter):		Tree / Weig	ht Handling Ca	pacity:		
Allowable S	Allowable Stump Height: Target Bunch / Turn Size:						
Chains on 4 Wheels	🗆 Flota	tion Tires	Swing Grapple	e 🗆 Othe	r Devices:		
Mechanical Features to	Ensure Stabilit	у					
Approach Steep Slop	es From Below	🗆 Ope	rations During Day	light Hours On	y 🛛 Utilize Existing Benche	es	
Up trail, safe turn-are				-	, chine Trails (identify on map)		
All-season Operation	s 🗆 Sumi	mer Only [UVINTER Only	Maximum Sn	ow Depth:		
Communications Process	e.g. 2-way radio	, cell, etc.)	Man-check Frequency (who, how often)				
Poor Weather Shut-down	Conditions (des	ribe)	Available Assistance (machine, operator)				
Site-Specific Requireme	nts & Notes						
DATE:	SIGNATURE:		DATE:	SIGNA	TURE:		
DATE:	SIGNATURE:		DATE:	SIGNA	URE:		
QUALIFIED PERSON BUILDING P	PLAN:		d the associated Ste d verify its accuracy		SIGNATURE:		
DATE:	SIGNATURE:		DATE: d the associated Ste	SIGNA ep Slope Hazard	TURE:		

5. SETTING UP THE ANCHOR MACHINE

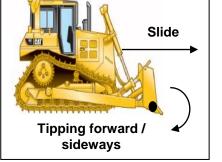
An anchor machine can fail by either sliding forward or tipping over. Of course a mechanical failure of the winch itself or the connecting components can also cause a sudden failure.

Anchor machine Holding Strength:

If no bucket, blade or tie-back is used, then the anchoring strength of the machine is the same as

calculated previously for Traction Force, that is the Normal Force x Traction Efficiency.

- Note, for most of our anchor machine sizes (30 tonne x 70% TE = 21 tonne) and cable forces (peak loads over 20 tonnes), the anchor machine alone is <u>not</u> sufficient and will <u>move</u> during operations.
- Note, putting the anchor on a slope. If the anchor machine is on a slope, then gravity will either add to the strength if uphill, or add to the overall force if downhill.


Attaching the winch rope to a stump anchor

By putting the blade or bucket in the ground, or by tying off to a stump, we increase the Holding Strength (– typically by the weight and shear strength of the soil 'enclosed')

Discuss –

- 1. What are the procedures and techniques for stabilising the anchor machine (i.e. placement of bucket or blade & techniques for side slopes)
- 2. What is the horizontal range of angle of departure from anchor machine?
- 3. Does the system have an emergency stop, how is it activated?
- 4. Check and discuss with the operator (and or contractor) the calibration of the winch settings/ tension monitor and their typical operational settings.
- 5. Does the system have an anchor movement / displacement safety mechanism and is it set up correctly?

6. WIRE ROPE INSPECTION

Inspection Criteria

Wire ropes are a critical component in cable-assisted systems, and care should be taken to inspect the rope(s) for wear and damage against a formal rejection criteria. For example, the NZ Best Practice Guidelines for Cable Logging suggest the following criteria to indicate when a rope should be immediately discarded:

- Severe surface wear and inter-strand nicking
- Drum crushing
- Bird caging
- Kinking
- Broken wires near fittings
- Broken wires, when over a length of 8 diameters the total number of visible broken wires exceeds 10% of the total number of wires.

For example:

26 mm diameter rope, 6X19 construction, total wires = $6 \times 19 = 114$ 8 diameters = $8 \times 26 = 208$, 10% of 114 = 11.4 If in a length of 208 mm, there are more than 11 visible broken wires, then discard.

In the absence of mechanical damage and excessive broken wires listed above, it is still necessary to frequently inspect and document the severity of the rate of wear of the rope. Normal wear can be categorised into three main modes of deterioration: Wire breaks (due to bending), Decrease in diameter (due to abrasion and/or high tension) and Corrosion (due to exposure). Even if the severity of individual modes of deterioration are relatively low they can combine with other modes to create an unsafe combined rating of severity (see table below)

sake ¯	Decrease diameter ^a 20 20 20 20 20	External corrosion 20 0 20	rating % 40 40 60	Safe to continue Safe to continue Safe to continue		
	20 20	0 20	40	Safe to continue		
	20	20				
			60	Safe to continue		
	20					
		20	80	Inspect more frequently		
	40	0	80	Inspect more frequently		
	80	0	80	Consider discard if reduction in diameter is mainly attributed to external wear		
	0	· 0	60	Inspect (particularly for broken wires) more frequently		
	20	0	80	Inspect more frequently (particularly for broken wires) and prepare for replacement		
7 60 0 0 60 broken wires) more frequently 8 60 20 0 80 (particularly for broken wires)						

Wire Breaks

Wire breaks are measured by counting the number of visible breaks over a lay length or specified diameter. Severity is determined by the % of broken wires until discard. For example, if the criterial for rejection for a 6X25fi + IWRC ordinary lay rope is 10 broken wires over a length of 6 diameters and the inspection finds two broken wires than the severity rating is (2/10) X 100 = 20%.

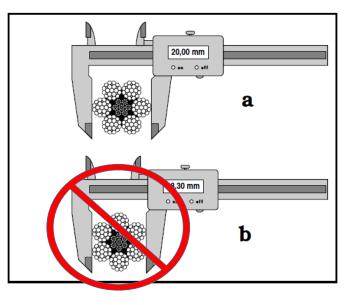
			Numb	er of visible b	oroken outer	r wires ^b	
Rope category	Total number of load-bearing wires in	and/o	s of rope wor r spooling on re breaks rand	Sections of rope specifing on a multi-layer drum ^c			
RCN	the outer layer of strands in the rope ^a	Class	ses M1 to M4	own ^d	All classes		
(see	п	Ordina	ary lay	Lang	g lay	Ordinary and Lang lay	
Annex G)		Over a length of 6d ^a	Over a length of 30d ^e	Over a length of 6d ^{re}	Over a length of 30d*	Over a length of 6d ^e	Over a length of 30./ ^e
01	<i>n</i> ≼ 50	2	4	1	2	4	в
02	51 <i>≤ n ≤</i> 75	3	6	2	3	6	12
03	76 ≤ n ≤ 100	4	8	2	4	8	16
04	101 <i>≤ n ≤</i> 120	5	10	2	5	10	20
05	121 ≤ <i>n</i> ≤ 140	6	11	3	6	12	22
06	141 <i>≤ n ≤</i> 160	6	13	3	6	12	26
07	161 <i>≤ n ≤</i> 180	7	14	4	7	14	28
08	181 <i>≤ n ≤</i> 200	8	16	4	8	16	32
09	201 <i>≤ n ≤</i> 220	9	18	4	9	18	36
10	221 <i>∈ n ∈</i> 240	10	19	5	10	20	38
11	24 <i>≤ n ≤</i> 260	10	21	5	10	20	42
12	$261 \leq n \leq 280$	11	22	6	11	22	44
13	281 ≤ <i>n</i> ≤ 300	12	24	6	12	24	43
	n > 300	0,04 × r	0,08 × n	0,02 × n	0,04 × n	0,08 × n	0,16×n

NOTE Ropes having outer strands of Seale construction where the number of wires in each strand is 19 or less (e.g. 6 × 19 Seale) are placed in this table two rows above that row in which the construction would normally be placed based on the number of load bearing wires in the outer layer of strands.

^a For the purposes of this International Standard, filler wires are not regarded as load-bearing wires and are not included in the values of n.

^b A broken wire has two ends (counted as one wire).

⁵ The values apply to deterioration that occurs at the cross-over zones and interference between wraps due to fleet angle effects (and not to those sections of rope which only work in sheaves and do not spool on the drum).


Twice the number of broken wires listed may be applied to ropes on mechanisms whose classification is known to be M5 to M8.

d = nominal diameter of rope.

Decrease in diameter

Decrease in diameter is calculated from four measurements at each inspection point. Using callipers two measurements are taken at right angles and then two more measurements are repeated but at least one lay length apart from the first two measurements. It is important that the diameter is measured correctly from strand crown to crown (A) and not from valley to valley of strands (B).

All four measurements are averaged to come up with a single diameter value for the point inspected. Severity is determined by the reduction in diameter as a percentage of reduction required for discard.

	Uniform decrease in diameter	Severity	rating
Rope type (expressed as % of nominal diameter)		Description	%
	Less than 6 %	-	0
Single-layer rope	6 % and over but less than 7 %	Slight	20
	7 % and over but less than 8 %	Medium	40
with fibre core	8 % and over but less than 9 %	High	60
	9 % and over but less than 10 %	Very high	80
	10 % and over	Discard	100
	Less than 3,5 %	-	0
	3,5 % and over but less than 4,5 %	Sligh:	20
Single-layer rope	4,5 % and over but less than 5,5 %	Medium	40
with steel core or parallel-closed rope	5,5 % and over but less than 6.5 %	High	60
	6,5 % and over but less than 7,5 %	Very high	80
	7,5 % and over	Discard	100
	Less thar 1 %	-	0
	1 % and over but ess than 2 %	Slight	20
	2 % and over but ess than 3 %	Medium	40
Rotation-resistant rope	3 % and over but less than 4 %	High	60
	4 % and over but less than 5 %	Very high	80
	5 % and over	Discard	100

Corrosion

Corrosion is assessed visually after cleaning the surface of the wire rope. Severity is determined by the following guidelines (ISO 4309):

Figure H.1 — Beginning of surface oxidation, can be wiped clean, superficial — Rating: 0 % towards discard

Figure H.2 — Wires rough to touch, general surface oxidation — Rating: 20 % towards discard

Figure H.3 — Surface of wire now greatly affected by oxidation — Rating: 60 % towards discard

Figure H.4 — Surface heavily pitted and wires quite slack, gaps between wires — Discard immediately

Task

For the section of rope that is readily accessible, inspect for any mechanical damage. Also, pick several spots along the rope including where it comes on and off the drum as inspection points for broken wires, diameter reduction and corrosion. Complete the provided wire rope inspection form (ISO 4309).

Steps:

- 1. Pick a spot along the wire rope for inspection.
- 2. Note the position in the rope (e.g. distance from terminal connection)
- 3. Measure and tape off a section of rope equal to 6 and 30 times the diameter of the rope.
- 4. Count the visible broken wires along both of these distances
- 5. Measure the diameter (twice at right angles) and again at least one lay apart from first two measurements
- 6. Record the average of the four diameter measurements in the inspection form
- 7. Inspect for corrosion along the length of 30 times the diameter
- 8. Note the severity level of each broken wires, diameter reduction and corrosion to establish a combined severity rating.
- 9. Find a new spot along the wire rope and repeat steps 2-8.

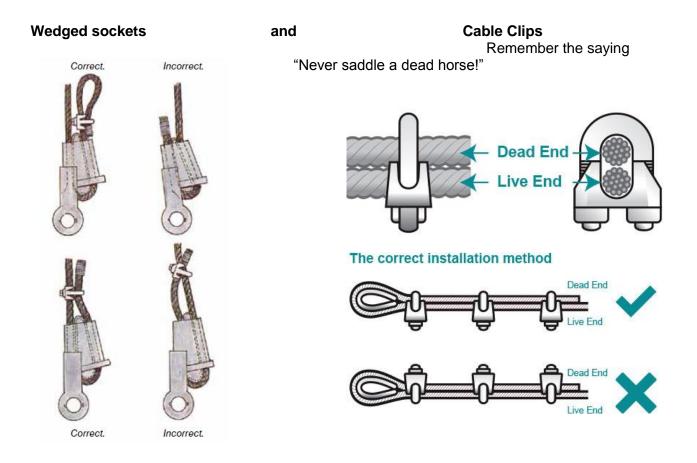
Discuss – actual / realistic 'strategy' for rope inspection and replacement?

Crane reference Rope application												
,												
Ropé d	letails											
				******								1
Nomina	al dian	neter			mm							
Constr	uction											
Core ^a :	IWRC	FC	WSC									ļ
Wire fi	nish ^a ;	Uncoat	ed Zir	nc/Gal.								ļ
Directio	on and	i type o	of lay ^a :	(Right) sZ	zZ Z (Lef	it) zS sS S	ŝ					
Permis	sible r	umber	of visi	ble broken out	er wires	in 6a	d and		in 30,	d	,	
Refere	nce di	ameter			mm							
Permis	sible c	lécreas	se in di	ameter from re	eference diam	eter		. mm				
Date in	staller	1 (yy/m	m/dd)		Da	te discarded (yy/mm/	dd)				
Visible	broke	n outer	wires		Diameter		Corro	osion		nage eformation	Position in rope	Overall assessment
Numb lengti		Sev rati	erity ng ^b	Measured diameter	Actual decrease from reference	Severity rating ^b	Seve ratir		Severity rating ^b	Nature		i.e. combined severity rating ^b at position
6d	30 <i>d</i>	6 <i>d</i>	30 <i>d</i>	mm	mm							indicated
					_							
Other observations/comments												
Perform	nance	to date	e (cycle	es/hours/days/	months/etc.)					÷*****		
Date of	f inspe	ction (yy/mm/	/dd)	******							
Name	(print)	ofcom	petent	person				Nar	ne (signature)		
a Ti	ck as a	applica	ble.									
^b De	Describe degree of deterioration as: slight, medium, high, very high, or discard.											

7. END CONNECTOR INSPECTION

Some common types of end connectors:

These connectors should be installed correctly and in good working condition. Make sure to inspect pressed eyes, thimbles, ferrules and other metal components for excessive abrasion and fatigue cracks. The following are best practice guidelines examples for correctly installing end connectors:


Split wedge ferrules

The strands of wire rope should protrude roughly 1/4" past thetop of the wedge button. Once the first load is applied, the wedge will seat firmly into the wedge button.

Loggers' eye splice

In accordance with NZACOP 2012, should be tucked three times on one side and two on the other.

Task

Your task is to identify and make a list of all the end connectors in the rigging system. Inspect them for wear and note their condition. Using the tables below what is the expected strength efficiency of each connector type and consider the strength reduction to the wire rope due to both end connectors and the diameter of sheave size.

End Connector Type	Condition	Correctly Installed	Efficiency (%)
Smallest sheave	Rope diam	eter ratio	Efficiency (%)
New SWL based on Efficiency %			

Wire Rope Strength Efficiency:

There is surprisingly <u>little</u> known about the actual strength of most of the connections / attachments / splices that are commonly used. The table below pulls together Strength Efficiency values (effectively strength of the connection relative to the cable breaking load) from various publications. These values are not from standardised tests and are provided as a starting reference. Most manuals will identify the need to ensure the end-connection and or splice is carried out to a high standard. Poor installation will lead to a large reduction in Strength Efficiency.

Attachment or Splice	Efficiency (% of rope strength)
Long splice	80
Sockets; Zinc, pressed or resin	100
Sockets; Wedged	70-90
Cable clips	80
Flemish/Farmer's eye w/pressed ferrule	92-95
Other eyes w/pressed ferrule	90-95
Spliced eye and thimble 9mm 13mm 16mm 19mm 22-35mm	88 86 84 82 80
Spliced eye without thimble	<80?
Swaged/pressed ferrule	80-90

Sheave/Rope Diameter Ratio	Efficiency (% of rope strength)
10 times	79%
12 times	83%
14 times	86%
16 times	88%
18 times	90%
20 times	91%
24 times	93%
30 times	95%

Factors of Safety:

In Forestry we typically use a Factor of Safety of 3 for all wire rope applications – often higher factors are used for shackles and blocks. Factors of Safety are used to account for unknown forces, unintentional overloading and some level of wear and tear over time.

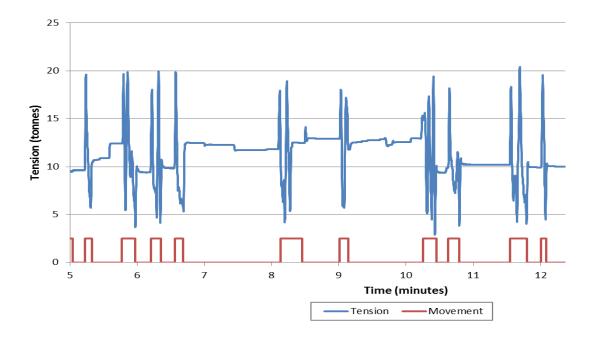
There is no clear guidance in any of our safety manuals as to how to incorporate these. Given that eye splices and pressed ferrules are <u>approved</u> in the ACOP, and they are typically rated at 90% of rope strength, it would be reasonable to assume that this is accounted for in the Factor of Safety. As such, our focus and or concern should be on connectors, sheave diameters, wear and tear that is likely to reduce the strength below 90%. We can then take it into account by adjusting our Safe Working Load (SWL).

Strength reductions

By way of example, if you have identified any component and or operating practice that warrants an adjustment of the SWL – then you can use the table below.

		SWL	
Efficiency	(Shaw's 6X25 Fi swaged)		
	28 mm	25 mm	22 mm
100%	21.1	18.4	14.1
90%	19.0	16.6	12.7
80%	16.9	14.7	11.3
70%	14.8	12.9	9.8
60%	12.7	11.0	8.4
50%	10.6	9.2	7.0

Discuss - How do we account for the weak link in our systems?


8. OPERATING EXPERIENCE/TECHNIQUES

Managing Tensions

ACOP 6.4.2

The tension on the wire rope shall be restricted to 33 percent of its breaking load at all times.

From studies to date, we know that the largest shock loads during normal operations occur when the machine starts to move. The average tension, but also then the maximum tension occurring during the shock loads depends on the setting.

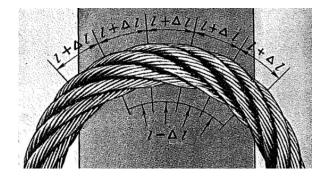
Discuss –

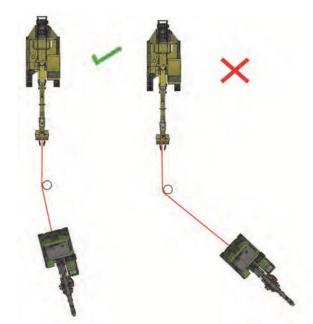
- 1. What tension monitoring system does the cable-assist machine have?
- 2. To what extent should the operator be aware of his cable tension?

Using trees to change cable angle

Using trees of stumps to redirect the direction of the cable is a common practice for NZ operators using cable-assist. It provides for the opportunity to harvest multiple corridors on the slope without needing to change anchor location. In many cases it also allows for the anchor to be on a flatter and more accessible location.

<u>However</u>, in neither the ACOP, nor in any company guidelines is it considered an approved practice.

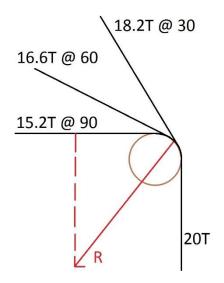

Some operating manuals, such as the EMS manual,


indicate that it is an accepted practice but only if we limit the change in angle.


What do we know about wrapping a rope around a stump?

- Can put a significant horizontal force into the stump as the angle increases (easy to calculate), which can increase the risk of sudden failure (pull over tree/ pull out stump).

Note: a 45 deg angle will put 7t of force on the stump when operating at 10t of line tension, or 14t for a 90 deg angle



 Using a curved, but flat surface (tree / stump) to redirect a rope will cause the rope to deform under loading (flatten out) which both increases local tension and accelerates wear.

As the angle increases, so does the friction on the cable. This can cause the rope to experience quite different tensions between the upper and lower segments.

Estimated force difference for a cable being pull around a stump or tree (J Palmer 2016).

Operating Practices

- Getting on & off steep landings/approaching the anchor?
- Entering gullies & traversing side slopes?
- Felling & handling large trees on steep slopes?

• Other?

APPENDIX 1 – SLOPE CONVERSION CHART

	Percent			
Degrees	(%)	Comment		
0	0	Flat - level surface		
7	12	Upper limit for forest haul roads - loaded		
9	16	Upper limit for forest haul roads - unloaded		
15	27			
16	29			
17	31	Old NZ ACOP limit for wheeled machines		
18	32			
19	34			
20	36			
21	38			
22	40	Old NZ ACOP limit for tracked machines		
23	42			
24	45			
25	47			
26	49	50% is now common limit for equipment designed to operate on		
27	51	steep slope – i.e. WorkSafe BC		
28	53			
29	55			
30	58	Angle of repose for loose soil / gravel (i.e. fill slope)		
31	60	Old ILO limit for tracked machines		
32	62			
33	65	Californian upper limit for ground-based machines		
34	67			
35	70	Approx. limit for European steep terrain harvesters		
36	73			
37	75			
38	78			
39	81			
40	84			
41	87			
42	90	Austrian Forest Service upper limit for cable-assist machines		
43	93			
44	97			
45	100	Rayonier Guide upper limit for cable assist machines		
46	104			
47	107			
48	111			
49	115			
50	119			