

LOG TRUCK AXLE LAYOUTS – 1989 (An Economic Comparison of Layouts under the new Weights and Dimensions Legislation)

Paul Taylor

Figure 1 : 8 x 4 Truck with 4 Axle Trailer. The new legislation favours 7 and 8 axle units.

ABSTRACT

This Report compares the costs of operating the more common logging truck configurations in New Zealand under the new weights and dimensions regulations. The new regulations allow increases in productivity of up to 15% on some configurations. The most efficient units for transporting logs on highway are those that can take full advantage of the allowable increases in GVW. These are basically 8 x 4 trucks with 3 or 4 axle trailers and Btrain units.

Since 1985 the estimated costs of operating trucks have increased by

approximately 8%. While standing <u>Running Costs</u> consist of : costs have remained largely unchanged, running costs, particularly Road User Charges, have increased significantly.

INTRODUCTION

Log transport operators in New Zealand have always used a multiplicity of different axle layouts, to suit the different log products carried and the intricacies of the weights and dimensions highway regulations and road user charges. LIRA has produced periodic reports (Gordon, 1980, Stulen, 1985) comthe relative costs of paring operating the different layouts. This report follows a similar approach, but particularly examines the effects of the new Weights and Dimensions Regulations being introduced.

TRUCK COSTS

The calculations in this Report are based on a typical late model truck. The purchase and resale values have been estimated using current market values and historical data respectively.

Tables 1 (a) and 2 (a) calculate the total costs incurred annually, including both standing and operating costs, for short and long log configurations respectively. The operating costs are based on 110,000 km annual distance travelled and the standing costs are calculated using the common average annual investment method (Goldsack, 1988).

Average Annual Investment:

 $AAI = (\underline{C - R}) \times (\underline{n + 1})$ + R 2n) (

where C = purchase price R = resale value n = life of vehicle (years)

Standing Costs consist of :

- depreciation
- registration and insurance
- interest
- overheads

- fuel and oil
- tyres
- wages
- repairs and maintenance
- road user charges

Accurate repairs and maintenance cost estimation is very difficult. Hence the costs used in this Report have been estimated at between 12 and 18 c/km depending on the configuration. This figure allows for the loss of production should repairs be necessary and the likely increase in repairs and maintenance due to the higher gross loadings allowable under the new weights and dimensions legislation.

WEIGHTS AND DIMENSIONS

The new regulations (which became law on February 1, 1989) make significant changes to many of the restrictions on weights and dimensions. Key changes affecting logging trucks are:

- an increase in maximum Gross Vehicle Weight (GVW), from 39 to 44 tonnes, for 8 x 4 trucks with 3 or 4 axle trailers.
- an increase in maximum GVW, from 39 to 42 tonnes, for 6 x 4 trucks with 3 or 4 axle trailers.
- an increase in maximum front axle gross weight to 6 tonne.
- changes in dimensions and axle configurations on large semitrailers (see page 3).

Tables 1(b) and 2(b) calculate the maximum legal payload each configuration will be able to carry on highway once the new weights and dimensions legislation is made law. These payloads exclude the 2.5% tolerance currently allowed The total annual payload is for. an accumulation of each configuration doing three trips a day for 235 days a year and carrying the maximum allowable payload each trip.

RESULTS AND DISCUSIONS

8 x 4 Trucks

The new weights and dimensions laws have given twin steer trucks and three or four axle trailers significant productivity some advantages. These advantages, coupled with lower Road User Charges, less tyre wear and potentially reduced repairs and maintenance costs make this configuration popular, particularly for chort log transport. Twin steer trucks often suffer from poor gradeability due to the weight and drag of an extra steering axle. This extra steering axle also detracts from overall fuel efficiency.

Bailey Bridge Trailers (3 axle semi-trailer)

The cost of transporting logs on a Bailey Bridge configuration is high. From an operational viewpoint, the versatility of these trailers is a major asset.

Under the new weights and dimensions legislation, large semitrailers have undergone radical change. To legally operate at 39 tonnes gross vehicle weight (GVW), a Bailey Bridge trailer must comply with the following:

- forward length of 8.5 m
- rear overhang of 3.2m
- one axle group only
- no steering axles or steering bogies

A recent innovation for transporting logs on large semi-trailers is the folding Bailey Bridge trailer. These trailers offer a ready-made solution to "in-bush" gradeability and manoeuvrability.

Another not so new development is the truck and trailer convertible unit, where the bolsters are mounted on ball-race turntables and locked into position depending on whether longs or shorts are being transported (eg Kemp, 1988). Truck and trailer convertible units are dependent on bush loaders to lift the trailer off whereas Bailey Bridge trailers and folding Bailey Bridge trailers are not.

6 x 4 Trucks and Tag Axles

An extra axle added behind the two driving axles has become a popular option on some 6 x 4 trucks. While this modification creates a substantial saving in Road User Charges and in some cases improves gradeability when running empty, its weight reduces pay capacity by approximately payload one tonne. It also puts added stress on the chassis and reduces the on highway GVW from 42 to 39 tonnes when the suspension medium is not fully compensating i.e. the drive axles may be walking beam suspension and the tag axle air bag suspension.

Logging Dollies

Logging dollies are popular with larger fleet operators because they give the tractor unit the versatility to do other jobs. The logging dolly, and 2 or 3 axle jinker configuration is not so cost efficient with a 39 tonne GVW rating. The question arises whether this configuration will be competitive economically due to potentially high maintenance costs at the higher off-highway gross loadings.

In general an accurate analysis of on-highway logging trucks working off-highway is difficult. While it is easy to subtract Road User Charges and allow for extra fuel and oil consumption, it is difficult to accurately calculate the repairs and maintenance costs associated with off-highway running. A strictly theoretical approach would suggest that two axle shorts and jinker trailers are the cost efficient most way to transport large loads off-highway. Experience tells us, however, that tyre costs, vehicle repair and maintenance costs and road maintenance costs associated with this type of configuration make it a less desirable option.

	220000	220000 47000	53239	96703	21961	5707	1289	5975	3000	4866	25506
1	220000	50000	53239	96703	21961	6071	1364	6357	3500	3500 4866	29499
P	230000	230000 40000	55631	55631 100745 20533	20533	4857	1129	5428	4500	3410	10030
			Table Sho	Table l (a) - Operating Costs Short Log Configurations	Operat Configu	ting Cc ration	sts -				

TOTAL TRUCK/ TRAILER	OPERATING COSTS PER	YEAR Ş	230735	217338	229243	210629	206779	217028	207954	218246	223560	206263
AR		ROAD USER CHGS.	19892	14749	$\frac{16117}{19892}$	19892	14749	$\frac{14205}{7102}$	14749	25506	29499	10030
ER YE/	ING COSTS	TYRES	1955	2683	3910	1955	2683	4865	2683	4866	4866	3410
OSTS F	RUNNING	R&M	2500	3500	3500	2500	3500	4500	3500	3000	3500	4500
TRAILER OPERATING COSTS PER YEAR	COSTS	I NTEREST	3560	4640	6357	3560	0494	6611	4640	5975	6357	5428
ER OPEI	STANDING CC	INSUR & REG.	829	1041	1493	829	1041	1528	1041	1289	1364	1129
TRAIL	STA	DEPRN.	3400	4432	6071	3400	4432	6314	4432	5707	6071	4857
'ING LAR	ROAD	USER CHARGES	47492	35186	21961	23292	20533	21961	20533	21961	21961	20533
RUCK OPERATING COSTS PER YEAR	RUNNING	COSTS	97813	97813	96703	100669	100669	96703	100745	96703	96703	100745
TRUCK COSTS	S'TANDING RUNNING	COSTS	53294	53294	53239	54532	54532	53239	55631	53239	53239	55631
IASE		TRAILER	28000	36500	22000 28000	28000	36500	52000	36500	47000	50000	40000
PURCHASE COST		TRUCK	220000	220000	220000	225000	225000	220000	230000	220000	220000	230000
	UNLOUCH	CONFIGURATION						******	まま			
		MELI	-	7	m	4	5	9	~	∞	6	10

						Literature terror						
GE COSTS ne)		ON HIGHWAY (CLASS I)	13.09	11.37	13.95	12.34	12.53	11.35	10.17	12.95	15.46	10.56
LOG CARTAGE COSTS (\$/Tonne)		ОЕЕ НІGНWAY	5.56	5.07	5.31	5.06	5.30	5.58	5.24	5.20	5.46	5.54
		TOTAL	25.0	27.1	23.3	24.2	23.4	27.1	29	23.9	20.5	27.7
٩D	CLASS I	TRAILER	12.8	16.3	$\frac{4.5}{10.8}$	12.8	15.6	$\frac{8.7}{9.3}$	18.6	14.9	11.5	17.3
PAYLOAD	CL	TRUCK	12.2	10.8	8	11.4	7.8	9.1	10.4	9.0	9.0	10.4
	OFF	HIGHWAY	31.2	35.1	34.3	35.2	34.4	33.1	35	34.9	33.5	33.7
КЕ		TRAILER	3.6	4.7	$\frac{3.2}{3.6}$	3.6	4.4	$\frac{4.3}{3.7}$	4.4	6.2	7.6	5.7
TARE		TRUCK	10.2	10.2	8.9	11.2	11.2	8.9	10.6	8.9	8.9	10.6
WEIGHT	NO	HIGHWAY (Class I)	38.8	42	39	39	39	<i>ttt</i>	<i>ttt</i>	39	37	44
GROSS WEIGHT		OFF HIGHWAY	45	50	50	50	50	50	50	50	50	50
		LOGGING CONFIGURATION										
		MHTI	-	7	~	4	Ś	9	~	∞	6	10

Table 1 (b) - Payload Analysis and Unit Cost -Short Log Configurations

AL CK/ LER	T1 MG PER	YEAR \$	214020	222909	213760	227 500	220761	209385	212347	198615
TOTAL TRUCK/ TRAILER	OPERATING COSTS PER	YE						205		
٨R	TS	ROAD USER CHGS.	21338	16111	14749	$\frac{16117}{19892}$	18084	16111	14749	14749
PER YE.	ING COSTS	TYRES	1955	1955	2683	2683	1955	1955	2683	2683
OSTS 1	RUNNING	R&M	1000	2500	3500	3500	2500	2500	3500	3500
TRAILER OPERATING COSTS PER YEAR	COSTS	I NTERES'T	3115	3280	4577	4958	3280	3280	4577	4 577
LER OPI	STANDING CC	INSUR & REG.	741	774	1029	1218	774	774	1029	1029
TRAIL	S'L'A	DEPRN.	2975	3132	4371	4735	3132	3132	4371	4371
TING	ROAD	USER CHARGES	35186	47492	35186	25773	38102	29874	26390	15947
TRUCK OPERATING COSTS PER YEAR	RUNNING	COSTS	94535	94535	94535	95448	97467	97391	99480	97391
TRUCK COST		COSTS	53130	53130	53130	53176	55467	54368	55568	54368
IASE	TRAILER		24500	25800	36000	39000	25800	25800	36000	36000
PURCHASE COST		TRUCK	220000	220000	220000	220000	230000	225000	230000	225000
	LOGGING CONFIGURATION									
		LTEM	-	2	3	4	5	9	2	~

Table 2 (a) - Operating Costs -Long Log Configurations

GROSS WEIGHT	GROSS WE	NE NE	IGHT	TARE	έE		PAYLOAD	AD		LOG CARTAGE COSTS (\$/Tonne)	GE COSTS
LOGGING OFF ON		NO				OFF	NO	ON HIGHWAY			
CONFIGURATION HIGHWAY HIGHWAY TRUCK	HIGHWAY	HIGHWAY		X	TRAILER HIGHWAY	HIGHWAY	TRUCK	TRAILER	TOTAL	OFF HIGHWAY	ON HIGHWAY
6 60 45 35.5 9.	35.5		9.	9.8	3.3	31.9	10.7	11.7	22.4	5.25	13.55
2 4 4 4 5 38 9.8	38		9.	~	3.4	31.8	12.7	12.1	24.8	5.32	12.74
3 6 6 6 1 50 42 9.8	42		9.	8	4.6	35.6	11.2	16.4	27.6	4.89	10.98
50 39 8.9	39		<u>%</u>	6	$\frac{2.4}{3.4}$	35.3	8.9	$\frac{4.2}{12.1}$	24.3	66.4	13.27
5 50 41.4 10.2	41.4		10.	2	3.4	36.4	14.8	13	27.8	4.80	11.26
6 5 39 10	39 1	-	10	0.8	3.4	35.8	12.7	12.1	24.8	4.85	11.97
50 44 10.	44 I		10.	0.2	9.4	35.2	12.8	16.4	29.2	5.17	10.31
50 39 10.	39 1	1	10.	0.8	9.4	34.6	7.2	16.4	23.6	5.16	11.93
				1							

Table 2 (b) - Payload Analysis and Unit Cost -Long Log Configurations

CHANGES SINCE 1985

Since 1985 (Stulen), total truck owning and operating costs have increased by approximately 8% overall. In this time standing costs have remained largely unchanged due to the strength of the New Zealand dollar and the stability of interest rates, while running costs, in particular Road User Charges, have been responsible for the majority of this increase. The new weights and dimensions legislation will allow certain configurations to be operated at 44 tonnes GVW. This will increase productivity for some configurations by as much as 15%. A percentage of the overall increase in operating costs will be a result of increased consumption of fuel, oil and spare parts generally.

The three most cost efficient configurations, in order of merit, for transporting short and long logs, on and off-highway, are in Tables 3(a) and 3(b).

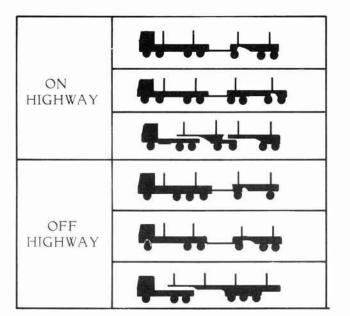


Table 3(a) - Short Log Transport

CONCLUSION

The most significant change to come from the new weights and dimensions legislation is the increase in maximum gross vehicle weight from 39 to 44 tonnes. This weight increase, which applies specifically to 8 x 4 trucks with 3 or 4 axle trailers and B-train units, has made these configurations the best option for transporting logs on highway.

REFERENCES

Goldsack, R. (1988) : "Costing Handbook for Log Truck Contractors", LIRA.

Gordon, R.D. (1980) : "Log Truck

	#
ON HIGHWAY	4
OFF HIGHWAY	
	4

Table 3(b) - Long Log Transport

Axle Layouts - (An Economic Comparison of 5-axle and 6-axle Layouts)". LIRA Project Report No. 10.

Kemp, O. (1988) : "Trucking Long and Short Logs with the Same Rig. LIRA Technical Release, Vol. 10 No. 1."

Stulen, J.A. (1985) : "Log Truck Axle Layouts - 1985 (An Economic Comparison of Log Transport Layouts)". LIRA Project Report No. 24.

For further information, contact:

N.Z. LOGGING INDUSTRY RESI	earch assoc. Inc.
P.O. Box 147,	
ROTORUA, NEW ZEALAND.	
Fax: (073) 462-886	Telephone (073) 87-168