AK 850/1 AK 850/2 AK 850/3 AK 920

THE USE OF ROCKPHOSPHATE IN THE ESTABLISHMENT AND EARLY GROWTH OF RADIATA PINE

by

M.F. Skinner and E.D. Robertson

Report No. 19

December 1988

FRI/INDUSTRY RESEARCH COOPERATIVES

EXECUTIVE SUMMARY

This report summarises the age 7 results and should be read alongside National Forest Fertilising Cooperative Report No. 14 issued September 1987.

- * On podzolised sands and clays of Northland rock phosphate fertiliser applied at time-ofplanting has prevented phosphate from becoming growth limiting.
- * On podzolised sands, nitrogen (N) and potassium (K) are limiting growth; where trees were refertilised with N, P and K at age 3, the K deficiency has been overcome.
- * On the granular clays (high P fixation) of Coromandel (Tairua) at least 500 kg P/ha is required at time-of-planting to maintain foliar P in excess of 0.11%.
- * On the granular clays (high P fixation) of Coromandel (Tairua Forest), P fertilisation can be delayed until age 3.

TRIAL AK 850/1

ESTABLISHED

1980 Te Kao (Carter Holt Harvey) on Te Kopuru Sand (low P fixation).

TREATMENTS

- 1. Control
- 2. 145 kg P/ha as GPR
- 3. 115 kg P/ha as 1:1 mix super:GPR

Refertilised 1983 with NPK at 90:100:100 kg/ha.

RESULTS

1. <u>Growth</u>

Refer to Figures 1 and 2. By age 7 the treatment differences that had existed at age 6 were slightly (but not significantly) increased. The volume productivities are listed below.

		Volume (m ³ /l	ra)
	Control	GPR	GPR/Super
No refertilisation	45	72	67
Refertilisation	39	88	101

The response to refertilisation at this site for both GPR treatments is likely to be due to improvements in N and K nutrition (see table).

2. <u>Nutrition</u>

The results for foliar N, P and K are summarised below.

Treatment	Refert.	N (Concentration (%) P K		
Control	Yes	1.17	0.13	0.63	
	No	1.07	0.08	0.38	
GPR	Yes	1.20	0.14	0.68	
	No	1.16	0.11	0.37	
GPR/Super	Yes	1.22	0.15	0.64	
	No	1.18	0.11	0.39	

- * All treatments are now markedly N deficient.
- * P levels are at 0.11% for both GPR and GPR/Super treatments (the ability to sustain foliar P at or above 0.11% where N and K are not limiting is being tested in AK 920).
- * K levels are deficient where trees were not refertilised with K at age 3.

TRIAL A 850/2

ESTABLISHED

1980 Maramaku Block (NZ Forest Products) on Hukerenui/Wharakohe clay loam (medium P fixation).

TREATMENTS

- 1. Control
- 2. 145 kg P/ha as GPR
- 3. 115 kg P/ha as 1:1 mix GPR/Super

RESULTS

1. <u>Growth</u>

Refer to Figures 3 and 4. The relative growth differences at 7 were slightly greater compared with age 6. the volume productivities are listed below.

	Volume (m³/ha)				
	Control	Control GPR GPR/Sup			
No refertilisation	37	128	164		
Refertilisation	81	168	174		

The reduced growth of radiata pine fertilised with GPR alone appears to be related to nitrogen lack (see NFFC Report 14).

2. Nutrition

The results for foliar N, P and K are summarised below.

Treatment	Refert.	N	Concentration P	(%) K
Control	Yes	1.30	0.10	0.76
	No	1.70	0.07	0.58
GPR	Yes	1.40	0.12	0.90
	No	1.51	0.11	0.76
GPR/Super	Yes	1.41	0.11	0.81
	No	1.34	0.10	0.99

The improved growth in the GPR/Super treatment is reflected in a lower N status (1.3%) compared with the GPR treatment (1.5%). Foliar P had declined to 0.10% in the GPR/Super treatment. Foliar K values appear to be adequate.

AK 850/3

ESTABLISHED

1981 Tairua Forest on Whangamata ash (high P fixation).

TREATMENTS

- 1. Control
- 2. GPR (Xmas/Nauru) 100 kg P/ha
- 3. GPR (Xmas/Nauru) 500 kg P/ha
- 4. GPR (Sechura) 100 kg P/ha
- 5. GPR (Sechura) 500 kg P/ha
- 6. GPR (X/N)/Super 100 kg P/ha
- 7. GPR (X/N)/Super 500 kg P/ha

Refertilised age 3 with NPK at 90:100:100 kg/ha.

RESULTS

1. <u>Growth</u>

Refer to Figures 5 and 6. There were no differences in tree growth between the GPR treatments, and to the effect of refertilisation at age 3, as listed below for volume productivities.

		Volume (m ³ /ha)		
		No refertilisation Refertilis		
1.	Control	72	80	
2.	GPR (Xmas/Nauru) 100 kg P/ha	64	100	
3.	GPR (Xmas/Nauru) 500 kg P/ha	92	84	
4.	GPR (Sechura) 100 kg P/ha	70	82	
5.	GPR (Sechura) 500 kg P/ha	90	68	
6.	GPR (X/N)/Super 100 kg P/ha	85	85	
7.	GPR (X/N)/Super 500 kg P/ha	86	86	

2. Nutrition

The results for N and P at age 6 are summarised below.

Treatment	Refert.	Concentration (%) N P
Control	No Yes	1.36 0.09 1.40 0.12
X/N 100	No Yes	1.36 0.09 1.37 0.12
X/N 500	No Yes	1.38 0.11 1.37 0.12
Sech 100	No Yes	1.30 0.10 1.47 0.13
Sech 500	No Yes	1.38 0.13 1.39 0.13
GPR/Super 100	No Yes	1.36 0.10 1.39 0.13
GPR/Super 500	No Yes	1.40 0.12 1.33 0.13

Control trees are now markedly P deficient at age 6 (0.09% P). None of the 100 kg P/ha treatments could maintain foliar P above 0.11% (foliar P concentrations were slightly higher with the reactive rock, and with the GPR/Super mixes).

The 500 kg P/ha treatments were capable of maintaining foliar P in excess of 0.11%, the X/N GPR sustained foliar P at 0.11%, with Sechura GPR at 0.13%.

3. <u>Discussion</u>

The lack of growth difference between treatments, that is, controls now deficient in P at 0.09%, and fertilised trees in excess of 0.11%, is, in all likelihood, a reflection of the close stocking this experiment has been maintained at (for comparability with AK 850/1, and AK 850/2).

TRIAL AK 920 - Comparison of different types of GPR

ESTABLISHED

Te Kao on Ohia Sand, Carter Holt Industries.

TREATMENTS

- 1. Control
- 2. Christmas/Nauru at 100 kg P/ha (bedded area only)
- 3. Sechura at 100 kg P/ha (bedded area only)
- 4. X/N/Super at 100 kg P/ha (bedded area only)
- 5. Arad at 100 kg P/ha (bedded area only)

RESULTS

1. Growth

The growth results are presented in Figures 7 and 8. By age 5, control trees had produced $10 \text{ m}^3/\text{ha}$. Fertilised trees grew from $16-19 \text{ m}^3/\text{ha}$. All GPR types were comparable.

2. Nutrition

Treatment	N	P	K	Ca	Mg
Control Christmas/Nauru Sechura X/N/Super Arad	1.2 1.0 1.1 1.1	.08 .10 .11 .10	.29 .19 .24 .22 .30	.08 .13 .12 .14 .16	.12 .14 .16 .16 .18

Trees treated with Christmas/Nauru phosphate rock, and with Christmas/Nauru/Superphosphate exhibited foliar P below the threshold value of 0.11%. In contrast the Sechura and Arad treatments maintained foliar P at 0.11%. Foliar K levels were extremely low (equal or less than 0.3%).

This experiment was refertilised with N and K and 100 kg element/ha during late 1987 in order to place further stress on the phosphate rock treatments.

AK850/1 ROCK PHOSPHATE TRIAL TE KAO

AK850/1 ROCK PHOSPHATE TRIAL TE KA0 LSD P=0.05 AGE4 6.94m3/ha, AGE5 15.95m3/ha, AGE6 21.76m3/ha, AGE7 28.83m3/ha

AK850/2 ROCK PHOSPHATE TRIAL MAROMAKU

AGE (years)

FIGURE 4

MAROMAKU LSD P=0.05 AGE4 12.93m3/ha, AGE5 31.04m3/ha ,AGE8 52.09m3/ha, AGE7 75.78m3/ha AK850/2 ROCK PHOSPHATE TRIAL

AGE (years)

AK850/3 ROCK PHOSPHATE TRIAL TAIRUA

ω * * * CHRISTMAS/NGAURU AK850/3 ROCK PHOSPHATE TRIAL TAIRUA AGE ហ O O CONTROL TREATMENT 100 + 80 -60 -40 -0 20 -

(Em)

VOLUME

FIGURE 7

FIGURE 8

