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Growth of Pinus radiata shelterbelts in New Zealand

Monique MacKenzie, Leith Knowles and Mark Dean

Introduction

Shelterbelts are a common feature of the New Zealand landscape, particularly on
exposed lowland plains such as Manawatu, Wairarapa, Marlborough, Canterbury and
Southland. Surveys have confirmed that the most common species used is radiata
pine, either planted as the sole species, or as the primary shelter-providing species in
mixed species designs (Morey, 1988). Although shelterbelt management systems may
vary widely, a common theme in many shelterbelts is that they are managed for both
shelter, and timber production (Horvath et al, 1998) . At maturity (age 25-35 yrs)
these belts are often felled, and the logs are utilised for sawn timber, pulp, and other
industrial uses. Predicting the growth and yield of shelterbelts is therefore an
important element of any financial analysis of farming systems containing
shelterbelts.

Utilisation of shelterbelts for timber production was first described by Cockayne
(1914) in Canterbury. More recently Smail (1971), Tombleson (1986; 1988; 1989),
and Tombleson and Inglis (1988) have elaborated on the management requirements
such as pruning to produce higher quality sawn timber from shelterbelts. Current
research is aiming to construct an overall farm-level modelling system to evaluate
alternative shelterbelt systems, including a range of shelter planting intensities,
designs, and management systems (Horvath et al 1998). Predicting the growth of
radiata pine under different management systems, grown over a range of sites, is an
important component of this research.

Materials and Methods

Forest Research has maintained an active programme of installing and measuring
permanent sample plots (PSP’s) in shelterbelts throughout New Zealand since 1983.
These are usually designed to contain at least 15 sample trees in a linear plot. Each
tree is tagged, and measured annually or bi-annually for diameter at breast height. A
sample of trees covering the diameter range are also measured at the same time for
height, and crown height. Since 1995, a 100% sample has been measured for height
and crown height to strengthen the data set.

Plots have been installed into two types of shelterbelts:

a) Existing shelterbelts which reflect normal practice for the district ( termed ‘grow’
plots).

b) New shelterbelts which have been established as part of replicated research trials,
usually containing a range of either genetic material, cuttings vs seedlings, or
silvicultural treatment such as pruning (termed ‘research’ plots).
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The analysis reported here is confined to one and two row shelterbelts, with and
without pruning, and with and without supplementary species. Trimmed shelterbelts
were excluded from the analysis. Details of the PSP’s are contained in table 1.

Table 1: Sample plot details

I Region Number of plots Total no. of Total no. of
Observations | increment pairs
No of ‘grow’ plots No of ‘research’ plots
Northland 11 64 26
Auckland 2 6 6
Bay of 108 858 762
Plenty
Hawkes Bay 47 343 279
Taranaki 16 100 56
Manawatu 8 52 38
~ Wairarapa 21 135 86
[ Nelson 8 39 32
' Canterbury 25 178 101
Total 246 1771 1386

The development of a complete growth model requires the following functions and
sub-models to be derived from the data:

mean top height

Change in stocking (mortality)
basal area increment

diameter distribution

default starting values for diameter

Note that in table 1, the total number of observations were used in the formulation of
the mean top height curve, while the number of increments pairs were used in the
basal area increment function where the time between pairs of measurements was
required to be between 0.8 and 2.0 years. Due to the size of the data set, it was not
separated into model and validation sets.

General Modelling Approach:

Exploratory data analysis (EDA) was undertaken on chosen plots, all regional sets,
combined North and South Island sets, and an overall New Zealand set. This
exploratory work involved standard tools and also included the use of Generalized
Additive Models (GAMs). The shapes of the partial relationships suggested by the
GAM’s were then checked for biological feasibility and were then fitted using two
techniques: Nonlinear regression and Nonlinear mixed models. Invariably the mixed
models were fitted using different error structures to detect the presence of serial
correlation that is often present when stands are repeatedly measured.



Definition of Derived Variables:

Green Crown Length = (Mean Height - Crown Height)
Average Taper = (Mean Diameter at Breast Height -1.4) / Mean Height
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Part One: Mean Top Height Model

1.1 Abstract:

The change in mean top height over time was modelled using a Bertalanffy-Richards
curve fitted within a Nonlinear mixed modelling framework with autoregressive
errors. Different asymptote and rate parameters were obtained for the North and
South islands given that more localised regional models were not all found to be
necessary. The overall fit of the models appeared satisfactory with reasonable
deviations from the fitted curves.

1.2 Data Specifications:

The data consisted of 1775 observations collected over 259 plots nationwide.
Summary statistics describing the data are listed in the table below:

Variable N Mean Std Dev Minimum | Maximum
North Island 1558

Age 8.306 4.434 2.050 27.000
Mean Top Height (m) 11.057 5.992 2.00 34.000
Height Count 14.307 4.795 3.000 38.000
Latitude 38.777 36.000 41.200
Longitude 175.902 174.200 176.700
South Island 217

Age 13.205 7.131 3.000 32.250
Mean Top Height (m) 12.074 5.866 3.000 28.000
Height Count 20.184 5.979 4.000 30.000
Latitude 43.047 41.700 44.300
Longitude 172.479 171.100 173.700

Table 1-1. Summary Statistics for the national data set used in the height age curve analysis.

The range of the data with respect to Stems per kilometre, Age and Mean top height is
also illustrated in figures 1-1, 1-2, and 1-3 below:
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Figure 1-1. Distribution of Mean Top Height measurements versus Stems per Kilometre.
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Figure 1-3. Distribution of Mean Top Height measurements (metres).



1.3 Exploratory Data Analysis:

' The initial analysis involved plotting mean top height over age for the data at three
levels. Firstly the relationship was looked at nationally, secondly the plots within the
North and South Islands were examined and finally the plots within each of nine
regions were explored. This was performed in order to determine the amount of
variation apparent at each level and subsequently which level the models would be
applied at. The scatterplots representing the growth information at each level are
pictured in figures 1-4, 1-5 and 1-6 below.

Mean Top Height

Age

Figure 1-4 Mean Top Height versus the Age (years) of the Shelterbelts for all plots in the
national data set.
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Figure 1-5. Mean top height versus Age (years) of the Shelterbelts for the North and South
Islands.
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Figure 1-6 Mean Top Height versus Age (years) for different regions across New Zealand.
Where AK=Auckland, BOP=Bay of Plenty, CY=Cantabury, HAWKBAY=Hawkes Bay,
MANA=Manawatu, NORTH=Northland, WAIRA=Wairarapa

Figures 1-4, 1-5 and 1-6 displayed great variability in Mean Top Height at all levels of
the data which appeared to increase with age. The relationship between Mean Top
Height and age differed in both shape and magnitude across islands and regions,
however this variability in shape and magnitude was not found to be statistically
significant across all regions(see section 1.5.1). This variability suggested that a
flexible function should be used to model the change in mean top height over time.

1.4 Modelling Methodology:

1.4.1 Previous Work:

The previous height age work for Shelterbelts resulted in a Bertalanffy-Richards
Model relating Mean Top Height and Age (Auclair et al, 1991):

Mean Top Height = a*(1-exp(-b*( Age-t())))**”c

where a is an asymptote parameter, b is a rate parameter, t0 is the age of zero size, c is the shape
parameter and age refers to height adjusted age.

This equation was fitted separately for the North and South Island (using a data set
only 15% of the size of the existing data set) which resulted in a different set of
parameters for each. A similar approach using dummy variables was also performed
for the current data set (see section 1.5.2).



1.4.2 Model Specification:

The specification of the model commenced by re-fitting the original Bertalanffy-
Richards model using standard Nonlinear regression for both the North and South
Islands with satisfactory results. The North Island model was based on considerably
more data than the South island (1558 observations and 219 plots compared to 217
observations and 40 plots respectively) which was reflected in the standard errors
around the parameter estimates.

North Island Results:

Mean Top Height
Residuals

Age Fitted Values

Figure 1-7. Re-fitted growth curve for the Figure 1-8. Residual Plot for the re-fitted
North Island data. model for the North Island data.

South Island Results:

Mean Top Height
Residuals

Figure 1-9. Re-fitted growth curve for the Figure 1-10. Residual Plot for the re-fitted
South Island data. model for the South Island data



The output for the re-fitted North and South island models:

Parameter | NI SI SE (NI) SE (SI)

a 34.5597 35.3098 1.2818 11.0592
b 0.1067 0.0535* 0.0117 0.0394
t0 -7.5437* -9.3118* 4.1278 17.2429
c 0.1810%* 0.3376%* 0.1196 0.6339

Table 1-2. Parameter Estimates and corresponding standard errors for the North Island (NI)
and South Island (SI) respectively, where *= not statistically significant at the 95% level.

Fit statistics for the re-fitted models:

North Island: Regression SS/Total SS = 98.20%
Residual Mean Square = 2.84407
South Island: Regression SS/Total SS = 97.98%
Residual Mean Square = 3.69933

The re-fitted Mean top Height-Age curves for both the North and South islands
differed in both their shape and magnitude (figs.1-7, 1-9) but did appear to reflect the
relationship between Mean Top Height and age for the respective sets. This was
suggested by their corresponding residual plots and fit statistics. For example, 90% of
the residuals were in the range [-2.81, 2.80] (m) for the North island, while 90% of the
residuals were in the range [-2.65, 3.85] (m) for the South Island.

Two of the four parameters for the north island model and three of the four parameters
for the south island model were not statistically significant at the 95% level. It was
considered this may have been due to the appropriateness of the nonlinear least
squares fitting procedure given that fitting the parameters using restricted maximum
likelihood (within a nonlinear mixed modelling framework) resulted in all parameters
being statistically significant (see section 1.5.2).

The form and subsequent performance of the re-fitted models was compared with
various alternatives. The Bertalanffy-Richards model was compared with a
Generalized Additive Model (GAM) and various other standard growth curves. The
GAM did not drastically improve the fit but improved the RMS to 2.797 and 3.6213
for the North and South Islands respectively and used equivalent degrees of freedom.
The resulting GAM growth curves are shown in figures 1-11 and 1-12.
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Figure 1-11. Growth curves produced using Figure 1-12. Growth curves produced using

GAM’s (bold points) and the Bertalanffy- GAM’s (bold points)and the Bertalanffy-
Richards (solid line) over the raw North Island  Richards (solid line) over the raw South Island
data. data..

Given that a GAM barely improved the fit of the Bertalanffy-Richards model (fitted
using Nonlinear regression) the Bertalanffy Richards model still seemed suitable.
Nevertheless the model form was further examined by fitting additional growth model
forms including the Schumacher, Weibull and the Von-Bertalanffy curves. It was
found that the Bertalanffy-Richards produced the best results overall (with reference
to their respective residual mean squares) with no convergence problems encountered.
Therefore it was decided that the Bertalanffy-Richards model would continue to be
used.

1.5 Nonlinear Mixed Models:

The fitting of the Bertalanffy-Richards model was also undertaken using Nonlinear
Mixed models. Nonlinear mixed models were used given that the presence of serial
correlation within the errors was considered highly likely (and was indeed found to
exist). Therefore, this alternative model framework which recognises and
incorporates this error information was fitted and compared with the Bertalanffy-
Richards model fitted using standard Nonlinear regression.

It was suggested that regional Mean Top Height equations models may be more
appropriate (data permitting) than models fitted to the North and South islands.
Therefore models at both the island and regional levels were fitted and evaluated.
Specific regional parameters were not all found to be statistically significantly
different from one another using either standard nonlinear regression or nonlinear
mixed models.

1.5.1 Regional Models:

A separate Bertalanffy-Richards model was fitted to Shelterbelts for each region using
standard Nonlinear regression and Nonlinear mixed models (with independent and
autoregressive errors of the first order (AR(1)) and the results for the parameters were
as follows:



Standard Nonlinear Regression:

Region a b t0 c N
Northland 29.85 0.1549 -23.02 0.0084* 64
Auckland 57.88 0.042 -0.7037 0.7454 6
Bay of Plenty 32.87 0.140 -25.87 0.007 858
Hawke’s Bay 27.95 0.1364 -29.53 0.0054 343
Wairarapa 19.48 0.200 -20.024 0.005 135
Nelson 19.818* 0.197* -9.10* 0.054* 39
Canterbury 44.798* 0.0264* 1.274%* 1.0119%* 178

Table 1-7. Parameter Estimates for Nonlinear regression for each region. Note: Taranaki and

Manawatu regions did not converge. * = not significant at the 95% level.

Nonlinear Mixed Models with independent errors

Region a b t0 c
Northland 27.8674 0.1544* -10.509* 0.0472*
Auckland 57.8866 0.0425 -0.7037 0.7454
Bay of Plenty 35.954 0.1159 -8.2667 0.1461%*
Hawke’s Bay 24.2797 0.1473 -22.5023* 0.0098*
Taranaki 20.7337* 0.1737* -5.6906* 0.0933*
Wairarapa 20.3412 0.1841 -10.7802* 0.0316*
Nelson 21.0683 0.1797 -5.867 0.1149
Canterbury 23.6074 0.0899 -0.7455%* 0.5689*

Table 1-8. Parameter Estimates for Nonlinear mixed model with independent errors for each
region. Note: The Manawatu region did not converge. * = not significant at the 95% level.

Nonlinear mixed model with AR(1) errors:

Region a b t0 C

Northland 26.7861 0.1565* -11.7022* 0.0366*
Bay of Plenty 35.1384 0.1209 -8.6309 0.1305*
Hawke’s Bay 24.0039 0.1486 -19.1459* 0.0154*
Taranaki 20.7337* 0.1736* -5.6906* 0.0933*
Wairarapa 20.3393 0.1838 -10.5137* 0.0334*
Canterbury 24.8039 0.0805 -1.1259* 0.5981*

Table 1-9. Parameter Estimates for Nonlinear mixed model with AR(1) errors for each region.

Note: Auckland and Nelson regions did not converge. * = not significant at the 95 % level.

Great variation was apparent in both the magnitude of the parameter estimates and

their significance in tables 1-7, 1-8 and 1-9 above which was thought to be largely due
to the limited amount of data within each region. This often resulted in convergence

problems and regional parameter estimates with large standard errors. As a
consequence of the variance around the parameter estimates, significant differences
were not always evident between regions. This led to the conclusion that models at

the island level were more appropriate. Perhaps given additional data regional models
may have been justified.




Overall, it was noted that the Nonlinear mixed models usually produced slightly
different parameter estimates to those obtained using Nonlinear regression. For
example, Nonlinear mixed models produced slightly higher asymptote parameter
estimates for the Bay of plenty, Wairarapa and Nelson regions and slightly lower
estimates for the Northland and Hawkes Bay regions. A large difference was seen in
the parameter estimates for the Canterbury region, however using Nonlinear
regression the asymptote parameter was not significant at the 95% level. On average
the Nonlinear mixed models found less parameters to be significant at the 95% level
which may be attributed to the alternative (more appropriate) fitting procedure.

1.5.2 North and South Island Models

Standard Nonlinear Regression:

The island specific models involved fitting the original Bertalanffy-Richards model
with dummy parameters (b1 and b2) in order to obtain different asymptote and rate
parameters for each island. The shape and tO parameters were fitted without dummy
parameters given the small differences in these parameters for the two islands and the
correlation amongst all four parameters. The model was as follows:

Mean Top Height = (a+b1*indic)*(1-exp(-(b+b2*indic)*(age-t0)))**1/c

where a, b, t0 and ¢ are Bertalanffy-Richards parameters, bl and b2 are the dummy parameters, and
indic = dummy variable which indicates the island the plot is situated in (O=North Island, 1=South
Island).

The dummy parameter approach results in the a parameter corresponding to the North
island asymptote, while the South island asymptote corresponds to the a+b1 value.
Similarly the rate parameter is simply b for the North island, while the South island
rate is equal to b+b2. This dummy parameter model was fitted using standard
Nonlinear regression and the results were as follows:

Parameter Estimate Standard Error

a 37.7544 1.7847
bl -11.2634 1.1576
b 0.0840 0.0103
b2 0.0005* 0.0026
t0 -3.3983 1.5526
c 0.3872 0.1095

Table 1-3. Parameter estimates and corresponding standard errors for the Dummy parameter
model fitted for the national data set. * = not significant at the 95% level.

The corresponding fit statistics for the model are:

Regression SS/Total SS
Residual Mean Square
It is worth noting that this approach failed to find the b2 variable to be significant at
the 95% level suggesting that the rate parameter was not significantly different
between the two islands (remembering that this parameter indicates the rate at which

= 98.14%
= 2.9973



the asymptote is approached rather than a growth rate itself) however this was not
seen when Nonlinear mixed models were used.

Nonlinear Mixed Models:

Using a Nonlinear mixed model involved fitting the following equation:
Mean Top Height = (a+ra+b1*indic)*(1-exp(-(b+b2*indic)*(age-t0)))**(1/c)

where a, b, t0, ¢ are model parameters, bl and b2 are dummy parameters, indic=indicates the location
of the plot (north island=0, south island=1) and ra indicates a random effect.

The random effect in the model is an estimate of the difference between the mean
parameter estimate and that of a particular plot. This is obtained for every plot and
reflects the variance of the distribution about parameter a. Parameter a was specified
as a random effect due to its variation both within and between islands. Parameter b
was also initially specified as a random effect however, when fitted it was not found
to significantly improve the fit of the model (when the AIC statistics were compared).
The equation written above was fitted assuming both independent errors and
autoregressive errors of the first order. The results were as follows:

Nonlinear mixed model with identity errors:

Parameter Estimate Standard Error

a 40.3587 1.7784
bl -15.1382 1.7549
b 0.0737 0.0063
b2 0.0141 0.0025
t0 -1.7729 0.4829
C 0.5074 0.0540

Table 1-4. Parameter estimates and corresponding standard errors for the Nonlinear mixed
model with dummy variables assuming independent errors.

Fit Statistics: -2 Res Log Likelihood = 4510.593, AIC = -2257.30

Nonlinear Mixed mode] with AR(1) errors:

Parameter Estimate Standard Error

a 43.0308 2.7426
bl -17.5237 2.5863
b 0.0640 0.0077
b2 0.0175 0.0036
t0 -1.1265 0.4797
c 0.5913 0.0657

Table 1-5. Parameter estimates and corresponding standard errors for the Nonlinear mixed
model with dummy variables assuming AR(1) errors.
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Fit Statistics: -2 Res Log Likelihood = 4259.548, AIC =-2132.77

The Nonlinear mixed model fitted with autoregressive errors of the first order resulted
in a better model fit and larger standard errors than those obtained assuming
independent errors around the parameter estimates. The larger standard errors are to
be expected given that serial correlation tends to bias the estimator of the variance-
covariance matrix and produce underestimates. Therefore, recognising the serial
correlation results in more realistic (and invariably larger) variance estimates around
the parameters. The Nonlinear mixed models consistently indicated greater (and thus
significant) differences in their asymptote and rate parameters between the two islands
with larger estimates for the shape parameters. In addition they invariably produced a
better fit which is indicated in their AIC statistics and in the resulting residuals (table
1-6).

Graphical Comparison of the Standard Nonlinear Regression and Nonlinear mixed
model Results:

Mean Top Height

0 5 10 15 20 25 30
Age

Figure 1-13. Growth Curves for the North island (larger asymptote) and South island (smaller
asymptote). The solid line represents the standard Nonlinear regression line, the broken line
represents the Nonlinear mixed model with AR(1) errors.

Summary of the Residuals for the Bertalanffy-Richards Models:

Model Minimum | Lower Quartile | Median Upper Quartile | Maximum
NLS -9.35 -0.83417 0.127185 | 0.97669 5.391645
Mixed (ID) -9.03005 -0.91101 0.054986 | 1.088994 5.58864
Mixed (AR1) | -9.144 -0.90277 0.052204 | 1.097232 5.479031

Table 1-6. Summary statistics for the residuals produced by the three Mean Top Height-Age
models. NLS= Nonlinear least squares model, Mixed(ID)=Nonlinear mixed model with

independent errors, and Mixed (AR1)=Nonlinear mixed model with AR(1) errors.
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Fit and Residual Plots for the Nonlinear Regression Model
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Figure 1-14. Predicted versus Observed values for Mean Top Height for the Standard Nonlinear

Regression model.

Residuals

Fitted Values

Figure 1-15. Residual Plot for the Nonlinear regression model where the outer horizontal lines
encompass 80 % of the residuals .



1.6 Conclusions

The Mean Top Height curves for each plot within each region, across region and
within North and South islands showed large differences in shape and magnitude. Of
the four model forms tested, the Bertalanffy-Richards form appeared to best
accommodate these differences. The Bertalanffy-Richards model was fitted to plots
within region and the parameter estimates across regions were compared. It was
found that in the absence of sufficient information in some regions (and hence large
standard errors around the parameters) significantly different parameters were not
obtained. Therefore the Mean Top Height/Age curves labelled ‘North Island’ and
‘South Island’ were fitted.

The Bertalanffy-Richards model was fitted to the North and South island data using
two Nonlinear modelling frameworks: Standard Nonlinear regression and Nonlinear
mixed models. It was found that the Nonlinear mixed models resulted in slightly
different parameter estimates which resulted in a better fit of the Bertalanffy-Richards
model. The Nonlinear mixed models also allowed the serial correlation inherent in
the data to be taken into account and correctly modelled via autoregressive errors of
the first order.
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Part Two: The Basal Area Increment Function

2.1 Abstract:

Various basal area increment models were formulated for shelterbelts with a range of
site conditions and pruning treatments. The form of the basal area increment models
were established using GAM’’s, fitted using Nonlinear regression and finally fitted as
Nonlinear mixed models. Model fitting was undertaken at the regional level with
satisfactory results.

2.2 Data Specifications:

Brief summary statistics for the variables implicated in the modelling are listed in
table 2-1, while illustrations of the data available with respect to certain variables are
shown in figures 2-1,2-2, and 2-3 below.

Variable Mean S.D Minimum | Maximum
Age (years) 8.970 4.889 2.080 28.810
Green Crown Length (m) | 6.848 4.723 1.400 28.100
Average Taper (cm/m) 2.696 0.539 0.539 5.000
Stems per kilometre 463.028 | 232.017 | 50.000 1067.000
Mean Height (m) 10.789 |5.933 1.800 29.400

Table 2-1. Data summary for variables used in the basal area increment modelling.
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Figure 2-1. Distribution of basal area increments versus Stems per Kilometre.
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Figure 2-2. Distribution of Basal area increments versus Age of the shelterbelt (years).
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Figure 2-3. Distribution of Basal area increments (mzlkm).

2.2 Exploratory Data Analysis

Exploratory Analysis initially involved scatterplots which investigated the relationship
between each explanatory variable and the response. This was performed at both the
national and regional levels and a sample of these (with smoothed local regression
models fitted) at the regional level are illustrated in figures 2-4, 2-5 and 2-6.
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Basal Area Increment

Age of the Shelterbelt

Figure 2-4. Scatterplots of Basal Area increment versus age with a local regression model fitted
for each region. AK= Auckland, BOP= Bay of Plenty, CY= Canterbury, HAWKBAY= Hawkes
Bay, MANA= Manawatu, NORTH= Northland and WAIRA= Wairarapa, NELSON=
Nelson/Marlborough.

Basal Area Increment

Green Crown Length

Figure 2-5. Scatterplots of Basal Area increment versus Green Crown length with a local
regression model fitted for each region. AK= Auckland, BOP= Bay of Plenty, CY= Canterbury,
HAWKBAY= Hawkes Bay, MANA= Manawatu, NORTH= Northland and WAIRA= Wairarapa,
NELSON= Nelson/Marlborough.
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Basal Area Increment

Average Taper

Figure 2-6. Scatterplots of Basal Area increment versus Average Taper with a local regression
models fitted for each region. AK= Auckland, BOP= Bay of Plenty, CY= Canterbury,
HAWKBAY= Hawkes Bay, MANA= Manawatu, NORTH= Northland and WAIRA= Wairarapa,
NELSON= Nelson/Marlborough.

Figure 2-4 shows that the basal area increment increased quickly until reaching
approximately age 15 and then levelled off soon after. This relationship varied in both
shape and magnitude between the regions. Figure 2-5 shows a similar shaped
relationship, between annual increment and green crown length. Again both the shape
and magnitude varied between regions. Note that the relationship suggested between
increment and green crown length for the Canterbury region may not be reliable given
the amount of data available. Figure 2-6 illustrates a moderately decreasing increment
with an increase in average taper.

In addition to various scatterplots, the relationships between each variable and basal
area increment were explored at the national level using Generalized Additive models.
This enabled both the shape and contribution of the relationship between each variable
and the response to be determined.

2.4 Generalized Additive Models: Bivariate GAM Fits:

Table 2-2 represents the results of the bivariate fits for each variable and the response.
It was found that the stems per kilometre variable explained the largest amount of
information which was closely followed by height variables. The variables appear in
descending order of the deviance explained.
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Variable Null Deviance Residual Deviance % Deviance Explained
Stems per Km 7080.541 5094.558 28.04846
Mean Height 6857.949 5174.432 24.5484
Mean Top height 6378.7 4892.235 23.30357
Green Crown length 7074.844 5428.285 23.27343
Average Taper 6857.949 5646.646 17.66276
Age 7080.541 5897.93 16.70227
Site Index 6885.617 5850.097 15.03888
Mean Crown Height 7074.844 6257.091 11.5586
Altitude 6481.508 5997.074 7.474094

Table 2-2. Results of Bivariate GAM fits for Basal Area Increment. % Deviance Explained is
indicative only where % Deviance Explained = 1-(Residual Deviance/Null Deviance)*100.

In addition to the variables listed in table 2-2, previous annual increment, crown
length per kilometre and basal area were also considered. For instance previous
annual increment was found to explain over 57% of the deviance however it was
considered that this variable would potentially bias the results. Crown length per
kilometre was also considered however it was found that fitting the two variables
separately (green crown length and stems per kilometre) resulted in a better fit. Basal
Area was not included as it is often not available to the user but is predicted by the
model. Green crown surface area for the stand was also considered as a potential
variable however information about the width of the crowns was not available and is

also not easily estimated.

The form of the Bivariate GAM Fits for each explanatory variable
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Figure 2-7. GAM plots for the bivariate fits. The x-axis represents the explanatory variable
while the y axis represents the fitted smooth function.

Figure 2-7 illustrates the relationships between each variable and the response when
fitted separately. Basal Area increment appears to be related similarly to green crown
length, stems per kilometre and mean height. For these variables basal area increment
appeared to be related in a sigmoidal-type fashion while the increment appeared to
peak at about 16 years and then decrease shortly after this point. This increment- age
relationship is slightly misleading (upon closer inspection) given that the data
containing the 25-30 year age information was almost entirely from the Canterbury
region. This lead to an apparent decrease in increment while the relationships within
region were of sigmoidal origin and appeared to approach an asymptote.

2.5 Distribution of the Basal Area Increment variable:

Before the increment models were formulated the distribution of the increment
variable was investigated. This was undertaken to ensure the assumption of normality
or the response (often assumed in regression) was reasonable. It was found that the
response was not strictly normally distributed which is illustrated by the density and
quantile plots in figures 2-5 and 2-6 and this non-normality was confirmed by the
Kolmogorov-Smirnov test.
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Figure 2-8. Density distribution of basal area increment (mzlkm).
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Figure 2-9. Quantile plot for basal area increment.

Figure 2-8 illustrates the skewed distribution of basal area increment while the non-
linear curve in figure 2-9 confirms the non-normality of the variable. Given that the
annual increment was found to be non-normal, basal area increment was square root
transformed. This resulted in an approximately normal distribution (see figures 2-10
and 2-11) however the transformed distribution was still considered non-normal
when the Kolmogorov-Smirnov test was undertaken.
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Figure 2-10. Density distribution for the square root transformed basal area increment.
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Figure 2-11. Quantile plot of square root transformed basal area increment.

Figures 2-10 and 2-11 show a more symmetrical distribution which corresponded to
an approximately linear quantile plot suggesting a normal distribution. Due to these
results, the form of the response was considered when the modelling was undertaken.
This involved fitting all of the formulated models with and without the transformed
response. It was found that only small differences resulted when either distributional
form of the response was used. This illustrates the robustness of the normality
assumption for the formulated models.

2.6 Detection of Collinearity / Concurvity

As a part of the modelling process, the correlation between all of the candidate
variables was investigated in order to avoid multicollinearity. As with linear
regression, when two explanatory variables are highly correlated (and both used in the
model to estimate the response) the resulting fit is often unstable and commonly
produces faulty coefficients and/or large standard errors around the parameter
estimates.

As expected, mean height and mean top height were very highly correlated
(correlation coefficient of 0.99) and while it was found that mean height explained
more variation than mean top height about the increment it was also too highly
correlated with age and green crown length to be included in the variable selection
procedure. It was also realised that green crown length and age were very highly
correlated (correlation coefficient of 0.90) however it was desirable to have both
variables in the model since dropping either variable had detrimental effects on model
performance(which are discussed later). Therefore given that mean height increases
with age (and this is the reason the two variables are correlated) an interaction type
term was included in the basal area increment modelling which consisted of mean
height/age.

2.7 Variable Selection
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Stepwise variable selection was performed using GAM’s and the Akaike’s
Information Criterion (AIC), however not all variables were available for selection.
For example, since mean crown height was used to formulate green crown length this
variable was not supplied for selection. Average taper was also omitted from the
formulation of one set of models but was included in another set of models for
comparison purposes. The variable selection procedure resulted in smooth terms for
all variables supplied (see Model 1) which suggested that each variable should be
related to both the untransformed and the square root transformed response in a
nonlinear fashion to obtain the best fit.

2.8 Model Specification

Model 1. Basal Area Increment = s(age)+s(green crown length)+s(stems per
km)+s(average taper)+s(site index)+s(altitude)+s(mean height/age)

(where s represents a smooth function fitted using a spline.)

Coefficients:

(Intercept) s (AGEBA) s (GRCRLEN) s (SPHLIVE) s (mnht/age) s(SI)
-9.103343 ~0.01532186 0.3530378 0.005900572 3.387307 -0.0004898435
s (ALTITUDE) s (AVTAPER)

-0.0002610189 1.631891

Partial Regression plots for Model 1:
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Figure 2-12. Partial regression plots for GAM: Model 1, where AGEBA=Age,
GRCRLEN=Green Crown Length, SPHLIVE=Stems per Km, AVTAPER=Average Taper,

SI=Site Index, mnhtage=Mean height/Age

Fit and residual plots for Model 1:

Predicted Increment

QObserved Increment

Figure 2-13. Plot of observed versus predicted values for Model 1.




Residuals

Predicted Increment

Figure 2-14. Residual plot for Model 1.

Fit statistics for Model 1:

AIC=1849.197, RMS = 1.45, Null deviance= 6102.423, Residual Deviance=1764.893
(Deviance Explained=71.07%)

Discussion:

The modified shape of the partial regression plots (figure 2-12) when compared to the
bivariate fits (figure 2-7) confirm (as expected) that the variables are not purely
additive but are related to one another to some extent. The pointwise standard error
bars around the curves also suggest that the relationships are non-linear in every case.
The fit and residual plots show a reasonable fit overall, however the model tends to
underpredict basal area increment at large observed values.

It was considered that average taper should not perhaps be included in the modelling
on the basis that average taper was a site effect which would be taken into account
when nonlinear mixed models were used (see section 2.3.2). In addition it was
thought that the site index estimates may be unreliable given that they were
formulated using height age curves derived from forest data and were not necessarily
based on shelterbelt information. Therefore two sets of models were formulated: one
model set contained both the average taper and/or site index variables, and the other
set did not. The model specification process for both sets of models involved a
Generalized additive model (GAM) to indicate the form of the partial additive
relationships between the response and the explanatory variables. This was followed
by the substitution of known functions for the smooth splines. The results for the first
set of models (absent of average taper information) were as follows:
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Model 2: Basal area Increment = s(Age)+s(Green Crown Length)+s(Stems per
Km)+s(mean height / age)

Coefficients:

(Intercept) s (AGEBA) s (GRCRLEN) s(SPHLIVE) s (mnhtage)
-2.056658 -0.1375251 0.304319 0.004517932 2.770525

Partial Regression plots for Model 2:
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Figure 2-15. Partial regression plots for Model 2, where AGEBA=Age, GRCRLEN=Green
Crown Length, SPHLIVE=Stems per Km, AVTAPER=Average Taper, SI=Site Index, and
mnhtage=Mean height/Age

<+ -

Predicted Increment

Observed Increment

Figure 2-16. Observed versus predicted values for Model 2.
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Residuals

Predicted Increment

Figure 2-17. Residual plot for Model 2

Fit statistics for Model 2:

AIC =2708.446, RMS = 1.93 , Null Deviance = 6703.323, Residual Deviance =
2642.758 (Deviance Explained = 60.57%)

Discussion:

The partial regression plots for the Generalized Additive Model (figure 2-15)
suggested a decreasing function for age, a sigmoidal-type model for green crown
length (note the absence of an inflection point) and a moderately increasing function
for stems per km and mean height/age. The results show that once again the model is
under-predicting the observed increment for the larger increment values (see figure 2-
16) which is also evident in the residual plot (see figure 2-17).

The fit statistics show that the previous GAM (Model 1, which included site index and
average taper) performed better given that it explained 10.5% more of the deviance in
the model. In addition the AIC statistic which is penalised for the number of variables
used in the model increased by 46% suggesting a substantially worse fit even after
considering that less variables were fitted in Model 2.

Linear functions were substituted for the age, stems per kilometre and mean
height/age variables, while a Von- Bertalanffy model was fitted for the green crown
length variable. Various nonlinear models were fitted for the age variable however
little benefit was found given the extra parameters required to be estimated. The
results were as follows:
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Model 2b: Basal Area Increment: a*age+(a2*(1-exp(-k*(green crown length-
t0))))+r*stems per km +s*(mean height/age)

Coefficients:

A ’ A2 K T0 R s
-0.132861720  4.171088135 0.094196092 6.863862458 0.004456547 3.066846023

Fit and Residual Plots for Model 2b:

Predicted Increment

Observed Increment

Figure 2-18. Observed versus predicted values for Model 2b.

Residual

Predicted Increment

Figure 2-19. Residual plot for Model 2b.

Fit Statistics for Model 2b:

RMS = 2.03, Regression SS/Total SS *100= 91.06%
Discussion:

Model 2b has also shown to underpredict the larger increment values however, the
performance of model 2b appeared to closely resemble the performance of the GAM
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(RMS of 2.03 (Model 2b) as compared to 1.93 for the GAM (Model 1)) despite the
substitution of three linear functions for smooth functions. The close performance of
models 2 and 2b was also indicated in the coefficients for models 2 and 2b. The
coefficients for age and stems per km were very similar when both modelling
approaches were used.

In addition to Models 1, 2 and 2b, it was considered that a model similar to that
formulated for Douglas Fir (Fight et al, 1995) may be useful for Pinus radiata
shelterbelts given that the relationships may have been similar. This was fitted and is
represented as model 3.

Model 3: Basal Area Increment = (a/1+b*age)*((1-exp(-c*stems per km*green crown

length)**d))

Coefficients:
A B C D
9.9052 -0.1879 0.00029 1.02322

Fit and Residual Plots for Model 3:

Predicted Increment

Observed Increment

Figure 2-20. Observed versus predicted values for Model 3.
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Residuals

Predicted Increment

Figure 2-21. Residual plot for Model 3.

Fit Statistics for Model 3:

RMS = 2.37, Regression SS/Total SS = 89.5%
Discussion:

The results obtained from Model 3 indicate no improvement on the previously
formulated additive model (Model 2b) despite the use of the similar variables and two
less parameters. The fit statistics were slightly less for Model 3 (when compared to
Model 2b) and no convergence problems were found with either model. Model 3
concludes the model set absent of the average taper variable.

Model set where average taper information is included:

Model 4: Basal area Increment = s(Age)+s(Green Crown Length)+s(Stems per
Km)+s(Average Taper)+s(Mean Height / Age)

Note: Site Index was initially included in model 4 however it was not significant at the 95% level.
Coefficients:

(Intercept) s (AGEBA) s(GRCRLEN) s(SPHLIVE) s(AVTAPER) s(Mnht/age)
-11.28 -0.008917368 0.3039957 0.005892332 2.003137 4.462683
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Partial Regression Plots for Model 4:
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Figure 2-22. Partial regression plots for model 4 where AGEBA=Age, GRCRLEN=Green Crown
Length, SPHLIVE=Stems per km, AVTAPER=Average Taper, mnhtage=Mean height / age.
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Fit and Residual Plots for Model 4:

Predicted Increment

Observed Increment

Figure 2-23. Observed versus predicted values for Model 4.
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Figure 2-24. Residual plot for Model 4.

Fit Statistics for Model 4:

AIC = 2263.758 RMS = 1.61, Null Deviance = 6703.323, Residual Deviance =
2196.133 (Deviance Explained = 67.23%)

Discussion:

The partial regression plots (figure 2-22) show similar relationships to those seen
previously in models one and two, while the fit illustrated in figures 2-23 and 2-24
appears similar to that seen in models 1, 2 and 3. The RMS for this model suggests a
slightly better fit (1.61 as opposed to 1.93 for Model 2) while the AIC dropped
substantially by about 19.6% when average taper information was included despite the
estimation of three additional parameters.

Before substitute functions for model 4 were sought, the form of the average taper
variable was modified. In the field the number of stems per kilometre is seen to affect
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the average taper of the shelterbelt. Therefore rather than consider the average taper
and stems per km variables separately, they were multiplied together and then related
to the response. In addition, given that the model tended to underpredict for the larger
increments it was thought that the proportion of the green crown length as a
proportion of the mean height may provide a better more relative measure of
productivity rather than an absolute value already used.

Model 5: Basal Area Increment = s(Age)+s(Green Crown
Length)+s(AverageTaper*Stems per km)+s(Green Crown Length/Mean Height)

+s(Mean Height/Age)
Coefficients:
(Intercept) s (AGEBA) s (GRCRLEN) s(av.sph) s(gcl/mnht) s(mnht/age)
-3.360108 -0.0776773 0.3069803 0.002008618 -0.6704519 3.46844

Partial Regression plots for Model 5:
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Figure 2-25. Partial Regression plots for Model 5 where AGEBA=Age, GRCRLEN=Green
Crown Length, avsph=Average taper/Stems per km, propecr=Crown Length/Mean height,
mnhtage=Mean height / age.
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Fit and Residual Plots for Model 5:

Predicted Increment

Observed Increment

Figure 2-26. Observed versus Predicted values for Model 5.

Residuals

Predicted Increment

Figure 2-27. Residual plot for Model 5.

Fit Statistics for Model 5:

AIC =2209.462 , RMS = 1.57, Null Deviance = 6703.323, Residual Deviance =
2143.354, (% VE = 68.02)

Discussion:

The partial regression plots in figure 2-25 show very similar relationships to previous
models as do the fit and residual plots in figure 2-26, 2-27. However, the fit appears
to have slightly improved. For example, the RMS dropped to 1.57 from 1.61 for
Model 4. This slightly improved fit was confirmed by the AIC statistic as it decreased
by a further 2.4%. Model 5 was substituted with linear functions for age, average
taper * stems per Km, green crown length/mean height and mean height/age with a
Von-Bertalanffy model fitted for Green crown length. Various non-linear functions
were also investigated for the crown length/mean height variable however the
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improvement in fit was negligible after the extra parameters necessary were estimated.
The results were as follows:

Model 5b: Basal Area Increment = a* age +(a2*(1-exp(-(k* green crown
length))))+(b* Average taper * stems per km)+(c*(green crown length / mean
height))+s*(mean height/age)

Note: The necessity for a tO parameter for the Von Bertalanffy equation for the green crown length

variable was also investigated and it was found that when a tO parameter was specified the parameter
was not significant at the 95% level.

Coefficients:

a a2 k b c s
-0.3706394 18.0917 0.07506513 0.002012649 -4.461563 1.044587

Fit and Residual Plots for Model 5b:

Predicted Increment

Observed Increment

Figure 2-28. Observed versus predicted values for Model 5b.

Residuals

Predicted Increment

Figure 2-29. Residual plot for Model 5b.
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Fit Statistics for Model 5b:

RMS = 1.689, Regression SS/Total SS = 92.5%
Discussion:

Model 5b did not perform as well as the GAM version (Model 5) and did not improve
on Model 4 (however a GAM was also used for Model 4). In this instance it was
difficult to find functions that significantly improved on the linear functions that
justified the extra parameters estimated. However, Model 5b has produced satisfactory
results, which are more closely fitting that models 2b and 3, which is not surprising
given average taper information is included in Model 5b.

2.9 Non-Linear Mixed Modelling Framework:

Given that serial correlation was thought to be present in the data and the fact that
nonlinear mixed models consider the data as a random sample of shelterbelts within a
population of shelterbelts (where the inference is about the population), nonlinear
mixed models were also used to estimate the coefficients in the two best fitting
models.

Nonlinear mixed models using both independent and non-independent error structures
were investigated for two basal area increment models. While it was realised that
sufficient data was available to derive separate coefficients for the North and South
Island it was desirable that regional estimates be derived if possible. This objective
was achieved for the two best performing increment models (Models 3 and 5b).

Mixed models absent of Average Taper information:

Model 2b:Basal Area Increment: a*age+((a2+ra2)*(1-exp(-k*(green crown length-
t0))))+r*stems per km+s(Mean height/age)

where ra2 is a random effect parameter.

Note: the t0 parameter exhibited the most variation and resulted in a better fit when a mixed model was
used however it was thought that a random effect for a2 was more appropriate.

National Model Coefficients:

Parameter | Nonlinear regression | Mixed Model (ID) Mixed Model (AR1)

a -0.132861720 -0.11801266 -0.07995123
a2 4.171088135 2.92047227 2.18486071
k 0.094196092 0.10117820 0.11369091
t0 6.863862458 8.79093029 8.88424121
r 0.004456547 0.00434502 0.00429864
S 3.066846023 3.50401090 3.13036098

Table 2-2. National model coefficients for Mixed Model 2b.
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Graphical Representation of Mixed Model 2b:
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Figure 2-30. Graphical Representation of Mixed Model 2b: where the green curve is the
standard nonlinear regression curve and the black curve is the mixed model with ar(1) errors.

Fit and Residual Plots for Mixed Model 2b:

Predicted Increment

o

Observed Increment

Figure 2-31. Observed versus predicted increment values for Mixed Model 2b with ar(1) errors.
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Residuals

Predicted Increment

Figure 2-32. Residual plot for Mixed Model 2b with ar(1) errors.

Fit Statistics for Mixed Model 2b

AIC =-2437.02 (ID), -2345.65 (AR1)
Discussion:

Table 2-2 shows that the mixed models produced very different coefficients to those
obtained using standard nonlinear regression however the resulting curves for the two
approaches appeared very similar (figure 2-30). A possible reason for these
differences may lie in the presence of serial correlation in the errors which is not
correctly handled using nonlinear least squares. The specification of autoregressive
errors (of the first order) improved the fit which was reflected in the AIC statistics,
however the absolute fit (for models absent of average taper information) was
improved upon with model 3. It is interesting to note that previously (when nonlinear
regression was performed) Model 2b showed a better fit than Model 3. This suggests
that Model 3 better represents any one shelterbelt given that mixed models indirectly
fit the model for each shelterbelt, instead of fitting a single model to a data scatter.

Model 3: Basal Area Increment = (a/1+b*Age)*(1-exp(-c* Stems per km* Green
crown length**d))

National Coefficients:

Parameter | Nonlinear regression | Mixed Model (ID) Mixed Model (AR1)

a 9.905231265 8.89376387 8.74102091
b -0.187952896 -0.15995905 -0.15447496
c 0.000294633 0.00026764 0.00027547
d 1.023215868 1.17500977 1.17056529

Table 2-3. National model coefficients for Mixed Model 3.
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Graphical Representation of Model 3:
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Figure 2-33. Graphical Representation of Model 3: where the green curve is standard nonlinear
regression and the black curve is the mixed model with independent errors.

Fit and Residual Plots for National Mixed Model 3:

Predicted increment

15
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Figure 2-34. Observed versus predicted values for National Mixed Model 3 with independent
errors.
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Residual

Predicted Increment

Figure 2-35. Residual plot for National Mixed Model 3 with independent errors.

Fit Statistics for National Mixed Model 3:

AIC =-2267.65 (ID), -2267.86(AR1)
Discussion:

The parameters estimated using the nonlinear mixed models were very similar to
those estimated using nonlinear least squares which may be attributed to the almost
undetectable levels of serial correlation inherent in the errors. Due to this low level of
serial correlation in the data, the AIC statistic illustrated a worse fit when ar(1) errors
were specified suggesting that an extra parameter was not justified. The overall fit of
Mixed model 3 (with independent errors) was more satisfactory than the mixed model
2b (as mentioned earlier) therefore regional estimates were obtained for the asymptote
parameter a, (by averaging the shelterbelt estimates within region) and the results of
which are as follows:

Regional Mixed Model 3:

Basal Area Increment = (a/l1+b*Age)*(1-exp(-c* Stems per km * Green crown
length)**d))

where the a parameter was unique for each region
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Regional Coefficients for Mixed model 3:

Region Asymptote parameter estimate
Auckland 12.1925

Bay of Plenty 9.9189

Canterbury 7.2015

Hawkes Bay 8.4485

Manawatu 8.5001

Nelson/Marlborough | 7.1987

Northland 8.8810

Taranaki 8.9325

Wairarapa 7.0912

Table 2-4. Regional Coefficients for Mixed Model 3.

Graphical Representation of Regional Mixed Mode] 3:

Basal Area Increment
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Figure 2-36. Graphical representation of Mixed Model 3 with regional parameter estimates,
where AK=Auckland, BOP=Bay of Plenty, North=Northland, TARA=Taranaki,
HKBAY=Hawkes Bay, MANA=Manawatu, WAIRA=Wairarapa, CY=Canterbury, NELSON=
Nelson/Marlborough.
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Fit and Residual Plots for Regional Mixed Model 3:

Predicted Increment

Observed Increment

Figure 2-37. Observed versus predicted values for Mixed model 3 with regional estimates.

Residual

Predicted Increment

Figure 2-38. Residual plot for Mixed Model 3 with regional estimates.
Discussion:

The regional estimates listed in table 2-4 show that both the Auckland and Bay of
Plenty regions exhibited estimates above the national average (9.90) while the
estimate for the Wairarapa region was the smallest nationally. As could be expected
the overall fit improved on the national model. This is illustrated in figures 2-37 and
2-38.

Mixed models using Average Taper information:

Model 5b was also fitted at the national and regional levels given the improved fit of
this particular model. The coefficients from the models at the two levels are
summarised in tables 2-5 and 2-6.
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Model 5b: Basal Area Increment = a* age +(a2*(1-exp(-(k* Green crown
length))))+(b* Average taper * stems per km)+c*(green crown length / mean
height)+s*(mean height/age)

where the a2 parameter was considered a random effect

Coefficients for National Mixed Model 5b:

Parameter | Nonlinear regression | Mixed Model (ID) Mixed Model (AR1)

a -0.3706394 -0.38193237 -0.37272184
a2 18.0917 16.48224354 16.23503012
k 0.07506512 0.10237264 0.10153370
b 0.00201265 0.00175047 0.00176338
c -4.46156271 -4.00160601 -4.04685101
S 1.04458712 0.39048901 0.45823943

Table 2-5. National Coefficients for Mixed Model 5b.

Fit and Residual Plots for National Mixed Model 5b:

Predicted Increment

Observed Increment

Figure 2-39. Observed versus predicted values for Mixed Model 5b with ar(1) errors.

Residual

Predicted Increment
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Figure 2-40. Residual plot for Mixed Model 5b with ar(1) errors.

Fit statistics for National Mixed Model 5b

AIC = -2223.96 (ID), -2222.73 (AR1)
Discussion:

The coefficients listed in table 2-5 show only small differences between those
estimated using nonlinear least squares and restricted maximum likelihood (nonlinear
mixed models) which may be attributed to the low level of serial correlation apparent
in the errors. As with mixed model 3, the specification of non-independent errors
only slightly changed the AIC statistic however for Model 5b the AIC increased
suggesting that the non-independent errors were necessary. As with Model 3, regional
estimates were obtained by averaging the plot estimates within each region and the
results are as follows:

Regional Mixed Model 5b:

Basal Area Increment = a* Age +(a2*(1-exp(-(k* Green crown length))))+(b*
Average taper * stems per km)+c*(green crown length / mean height)+s*(mean
height/age)

where parameter a2 was unique for each region

Regional Coefficients for Mixed Model 5b:

Region Asymptote parameter estimate
Auckland 18.7583
Bay of Plenty 16.9008
Canterbury 15.8120
Hawkes Bay 15.9667
Manawatu 15.4318
Nelson/Marlborough | 14.8446
Northland 16.0294
Taranaki 15.8897
Wairarapa 14.8813

Table 2-6. Regional coefficients for Mixed Model Sb.
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Basal Area Increment

Graphical Representation of the Mixed Model 5b with regional coefficients:
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Figure 2-41. Graphical representation of Mixed model 5b with regional coefficients where
AK=Auckland, BOP=Bay of Plenty, North=Northland, TARA=Taranaki, HKBAY=Hawkes Bay,
MANA=Manawatu, WAIRA=Wairarapa, CY= Canterbury, NELSON= Nelson/Marlborough.

Fit and Residual Plots for Mixed Model 5b with regional coefficients:
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Figure 2-42. Observed versus predicted values for Mixed Model 5b with regional estimates and

ar(1) errors.
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Residual

Predicted Increment

Figure 2-43. Residual Plot for Mixed Model 5b with regional estimates and ar(1) errors.
Discussion:

Once again, both the Auckland and Bay of Plenty regions produced estimates larger
than the national average while the Nelson/Marlborough region exhibited the smallest
asymptote estimate. The fit considerably improved when the regional estimates were
used and resulted in the best fitting model formulated using the national data set.

It was considered that the number of rows in a shelterbelt would have some significant
effects on the basal area increment modelling. However, while some nonlinear
models showed statistically significant differences in some parameters between the
one and two belt data, these differences appeared to be misleading and due to the
unbalanced nature of the two data sets. For example, the one row belt data suggested
a much smaller asymptote parameter (a2) for the relationship between green crown
and basal area increment however this asymptote parameter was not well supported by
the available data (see figure 2-44). In addition, the residuals produced by Models 3
and 5b did not appear to be related to the number of rows in a belt (see figure 2-45).

Basal Area Increment

Green Crown Length
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Figure 2-44. Green crown length versus basal area increment for shelterbelts with one row (left
hand column headed with 0) and two rows (right hand column headed with 1).

Residuals

T T T T T T T T T T
Predicted Values

Figure 2-45. Predicted and Residual values from Mixed model Sb with AR(1) errors for
shelterbelts with one row (left hand column headed with 0) and two rows (right hand column
headed with 1)

Given the unbalanced nature of the data for the one and two row belts, the models
were not adjusted for the number of rows in a belt.

2.10 Conclusions:

Two sets of basal area increment models were formulated using the national
shelterbelt data set, one set omitted and the other included average taper information.
The first set of models which excluded average taper information were fitted and
assessed and it was found that Model 3 performed the best. This was not apparent
when nonlinear regression was used but became evident when the coefficients were
more appropriately estimated using nonlinear mixed models. Not surprisingly, the set
of models which followed (which included the average taper variable) invariably
produced better results than those fitted without average taper information. These
models were also fitted using nonlinear least squares (nonlinear regression) and
restricted maximum likelihood (nonlinear mixed models). The results show that
Model 5b produced satisfactory results while the first order autoregressive errors
made little difference to the results. Overall, the prediction of basal area increment
using Model 5b is preferred, however all of the formulated models were found to
underpredict basal area increment for a small subset of larger observed values.

47



Part Three: Estimating Average Taper for the Basal Area Increment Model:
3.1 Abstract:

Predicting average taper was of interest given that the model implementation requires
both diameter and height information as starting values for a simulation run. The
prediction of either height or diameter (when one component is assumed to be known)
can be undertaken by estimating average taper from known variables eg. age and
spacing. Predicting average taper was performed for two data sets: data for trees
aged 2-10 and data for trees of all ages. It was thought that the modelling would
solely be undertaken using the younger data set (given that either height or diameter
information is more likely to be unavailable for younger trees), however if the user
decided to extend the range of the model to older trees a further model was
formulated. In all cases average taper was defined as quadratic mean diameter at
breast height (cm)/ Mean Height (m) -1.4.

3.2 Exploratory Data Analysis:

Exploratory analysis involved simple scatterplots of average taper versus age within
regions, and average taper versus spacing (metres) within the North and South islands
(due to the range of data available). The results are illustrated in fig’s 3-1 to 3.-4. The
plots are illustrated in different colours to more easily distinguish the two data sets.
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Figure 3-1. Scatterplot of Average taper versus age with a local regression model fitted for each
region for trees aged 2-10 years. Note: AK=Auckland, BOP=Bay of Plenty, CY=Canterbury,
HAWKBA Y=Hawkes Bay, WAIRA=Wairarapa, NORTH=Northland,
NELSON=Nelson/Marlborough and MANA=Manawatu,
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Figure 3-2. Scatterplot of Average taper versus age with a local regression model fitted for each
region trees of all ages (years) where AK=Auckland, BOP=Bay of Plenty, CY=Canterbury,
HAWKBAY=Hawkes Bay, WAIRA=Wairarapa, NORTH=Northland,
NELSON=Nelson/Marlborough and MANA=Manawatu,.
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Figure 3-3. Scatterplot of Average taper versus spacing with a local regression model fitted for
the North and South Islands for trees aged 2-10 years where n=North Island, s=South Island.
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Figure 3-4. Scatterplot of Average taper versus spacing with a local regression model fitted for
the North and South Islands for trees of all ages (years) where n=North Island, s=South Island.

Figure 3-1 shows that average taper decreased with age nonlinearly with great
variation in the shape of the relationship between regions. Figure 3-2 represents the
extended relationship which shows that while average taper decreased as the trees
grew older, at approximately age 15 the relationship levelled off.

Figures 3-3 and 3-4 illustrates that average taper increased until a spacing (distance in
metres between trees in a single row) of about 10 metres was reached after which it
levelled off (however little information was available for the wider spacings). Note:
There was little correlation between age and spacing for either the younger or older
data set (Pearson Correlation coefficients of 0.00063 and 0.067 respectively) which
allowed both variables to be fitted together with average taper for both data sets.

3.3 Predicting Average Taper using Generalized Additive Models:

Generalized Additive models were fitted separately for Average taper with age and
spacing (for both data sets) in order to establish the general shape of the relationships
and the relative potential for each explanatory variable to explain the response. It was
found that age offered more information about average taper given that it explained
46.7% and 21.8% of the null deviance (for the younger and older data sets
respectively) while spacing explained only 21% and 21.3% of the null deviance (for
the younger and older data sets respectively). The shape of the relationships between
age, spacing and average taper for both data sets are illustrated in figures 3-5 and 3-6.
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Fit statistics:

For trees aged 2-10:

AIC = 121.7872, RMS = 0.136, Null Deviance: 204.717, Residual Deviance:
119.332, Deviance explained: 41.7%

For trees of all ages:

AIC = 161.193, RMS = 0.116, Null Deviance = 402.144, Residual Deviance =
159.112, Deviance Explained = 60.43%.

3.3.2 Discussion:

The fit plots and the relevant statistics show that age and spacing seem to explain
average taper satisfactorily for both data sets. For the younger data set the relationship
between age and average taper is approximately linear while spacing seems to be
related to average taper in a sigmoidal fashion (however the data at the larger spacings
is limited).

For the older data set, average taper is related to both age and spacing in a nonlinear
fashion. The nonlinear relationship for the spacing variable was initially considered
spurious given the small amount of data at the larger spacings (Model 3-3) however,
upon closer examination a linear model was not found to be sufficient and a nonlinear
model was fitted (Model 3-4).

3.4 Nonlinear Regression Models:

Substitution for GAM’s: trees aged 2-10

Model 3-2. Average Taper = b* Age + a*(1-exp(-(k* Spacing)))

Coefficients:
Estimate std. Error
b -0.109909 0.00699327
a 3.676480 0.04506960
k 2.157300 0.09879680
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Fit and Residual Plots for Model 3-2:
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Figure 3-13. Observed versus predicted values for Model 3-2 for trees aged 2-10.
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Figure 3-14. Residual plot for Model 3-2 for trees aged 2-10.
Fit Statistics:
RMS =0.169 (GAM = 0.136)
Discussion:
Model 3-2 appeared to fit reasonably closely to Model 3-1 given the similarity in the

residual plots and the fit statistics. Model 3-2 however, appears to underpredict
average taper slightly more than Model 3-1 for the larger average taper values.
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Nonlinear Substitution for GAM’s: trees of all ages
Note: This model was designed to represent those relationships indicated in
the GAM Model 3-1, however at this stage it was thought that the limited data

at the larger spacings would not warrant a nonlinear function.

Model 3-3: Average taper = 1/ (a+b * age)+c * Spacing

Coefficients:
Value std. Error
a 0.2995740 0.003856800
b 0.0144718 0.000503345
c 0.1114670 0.005921770

Fit and Residual plots for Model 3-3:

Predicted Average Taper

Observed Average Taper

Figure 3-15. Observed versus fitted values for Model 3-3.
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Residuals
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Figure 3-16. Residual plot for model 3-3.
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Fit Statistics for Model 3-3:

RMS =0.138 (GAM = 0.116)
Discussion:

It is evident from the fit and residual plots that a small group of observations were not
well explained by Model 3-3 and it was found that these data points corresponded to
the larger spacing values. Therefore a further model was formulated which specified a
sigmoidal-type model for the spacing variable which was also considered biologically
reasonable.

Model 3-4: Average Taper =1/(a +b *Age)+a2*(1-exp(-(k*(Spacing-t0))))

Coefficients
Value Std. Error
a 0.3631840 0.0170397
b 0.0717659 0.0128065
a2 2.9727500 0.2890510
k 0.1092380 0.0245075
t0 -4.3941900 0.7170840

Fit and Residual plots for Model 3-4:

Predicted Average Taper
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Observed Average Taper

Figure 3-17. Observed versus fitted values for Model 3-4.
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Residuals
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Figure 3-18. Residual plot for Model 3-4.

Fit statistics for Model 3-4:

RMS =0.127, (GAM = 0.116)
Discussion:

The fit of Model 3-4 compared to Model 3-3 shows that even after the estimation of
two additional parameters(given the nonlinear relationship with spacing) the RMS of
the previous model still decreased by 7.5%. This improvement in fit is also reflected
in the fit and residual plots which show very reasonable predictions. Regional models
were also attempted for each region, however these were not alway achievable given
the different amounts of information available for each region.

3.5 Conclusions:

Average stem taper for the shelterbelt plots was analysed using Generalized Additive
models (GAM’s) which was followed by nonlinear regression. The absence of
sufficient numbers of repeated measures for the younger data set meant that nonlinear
mixed models were not suitable. The prediction of average taper using age and
spacing has achieved good results for both the younger data set (<10 years) and the
older data set (>10 years). However, the models for both data sets slightly
underpredicted for a subset of larger average taper values.
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Part Four: Obtaining Plot Asymptote estimates for the Basal Area Increment
models using Average Taper and Regional Asymptote Estimates.

4.1 Introduction:

Plot estimates for the asymptote parameter used in the basal area increment mixed

models 2b and 5b were available for all of the plots used in the modelling data set.

However plot estimates are often desired for additional young plots not previously

used in the modelling where a shelterbelt owner is interested in the performance of
trees on a particular site in relation to their regional estimate.

4.2 Exploratory Data Analysis:

It was considered that the difference between the plot asymptote estimates and the
relevant regional estimates for Model 3 and Model 5b might be adequately explained
by the average taper measurements for those plots. The relationship between the
regional estimates, plot estimates and average taper was investigated for plots up to
the age of 10 using simple scatterplots (figure 4-1) and then fitted using Generalized
Additive Models and Nonlinear Regression.

Plot Estimate

e
%
T
u:% ®
000
T 5

Average Taper

Figure 4-1. Scatter plots of plot estimates versus average taper within each region for mixed
model 2b.
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Figure 4-2. Scatter plots of plot estimates versus average taper within each region for mixed
model 5b.

Figures 4-1 and 4-2 show moderately increasing relationships between the plot
estimates and the average taper values for each plot. The relationship between spacing
and plot estimates was also investigated but was not found to be significant at the 95%
level. The shape of the relationship between average taper and the plot estimates was
also investigated using smoothers (figure 4-3).

4.3 Predicting plot estimates using GAM’s for Mixed Model 2b:

Model 4-1: Plot estimate = s (Regional Estimate) + s (Average Taper)
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Figure 4-3. Partial Regression plots for Regional estimates (REGEST) and Average Taper
(AVTAPER) for model 4-1.
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Predicted Plot Estimate

Residuals

Fit plots for Model 4-1:
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Figure 4-4. Observed versus predicted values for model 4-1.

Predicted Plot Estimate

Figure 4-5. Residual plot for Model 4-1.

Fit Statistics for Model 4-1:

RMS = 0.9764186 (52.14% Deviance Explained)
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4.4 Nonlinear Substitution for Model 4-1:

Model 4-2: Plot estimate = Regional estimate +( a * Average Taper *exp(k *Average
Taper))

Coefficients:

a k
0.0047096891 0.8685620245

Fit and Residual plots for Model 4-2:

Predicted Plot Estimate

Observed Plot Estimate

Figure 4-6. Observed versus predicted values for model 4-2.

Residuals

Predicted Plot Estimate

Figure 4-7. Residual plot for Model 4-2.

Fit statistics for Model 4-2:

RMS = 1.074222 (GAM = 0.9764186), Regression SS/Total SS = 98.78%
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Discussion:

The nonlinear model 4-2 appeared to fit similarly to Model 4-1 which was reflected in
the plots and fit statistics. Both the Generalized Additive models and the nonlinear
models seemed to fit satisfactorily.

partial for REGEST

4.5 Predicting plot estimates using GAM’s for Mixed Model 5b:

Model 4-3: Plot estimate = s (Regional Estimate) + s (Average Taper)
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Figure 4-8. Partial Regression plots for Regional estimates (REGEST) and Average Taper

Predicted Values

(AVTAPER) for model 4-3.

Fit plots for Model 4-3:
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Figure 4-9. Observed versus predicted values for model 4-3.
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Residual Plot for Model 4-3:

©o

Residuals

o®

Predicted Values

Figure 4-10. Residual plot for Model 4-3.

Fit Statistics for Model 4-3:

RMS = 1.158444 (42.49% Deviance Explained)
4.6 Nonlinear Substitution for Model 4-3;

Model 4-4: Plot estimate = Regional estimate +( a *Average Taper *exp(k *Average
Taper))

Coefficients:
a=0.0037937768, k = 0.9539926985

Fit and Residual plots for model 4-4:

Predicted Values

Observed Values

Figure 4-11. Observed versus predicted values for model 4-4.
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Residuals

Predicted Values

Figure 4-12. Residual plot for Model 4-4.

Fit Statistics for Model 4-4:

RMS = 1.30523(GAM =1.158444 ), Regression SS/Total SS = 99.52%
Discussion:

The nonlinear model 4-4 appeared to fit similarly to Model 4-3 which was reflected in
both the plots and fit statistics. It appeared that both the GAM and the nonlinear
models seemed to predict plot estimates satisfactorily.

Conclusions:

For the best performing basal area increment models (Models 3 and 5b) plot estimates
were obtained for the appropriate asymptote value. These are necessary to calibrate
the model for local use. The selected nonlinear model (Model 4-4) appeared to fit
similarly to the Generalized Additive model (Model 4-3) which was reflected in both
the plots and fit statistics and was found to predict plot estimates satisfactorily.
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Part Five: Modelling the rise in green crown

5.1 Introduction:

In order to make accurate basal area predictions the length of the green crown needs to
be estimated when crown height measurements are unavailable. The estimation of
crown height was attempted for the shelterbelt data however it was found that only
approximately 17.9% of the observations contained crown height information that was
not a result of pruning. In addition, given that the aim was to model the natural rise of
the crown, if a pruning operation was performed at the end of the annual period then
that data point was not included in the modelling.

After taking into consideration the requirements above, the data set was reduced to
only 28 observations, nevertheless the modelling was attempted. It was initially
thought that crown height at the end of an annual period would be related to the age of
the stand, the crown height at the beginning of the annual period and the spacing of
the shelterbelt at the beginning of the annual period. However, only the age variable
was found to offer a significant amount of information about crown height at the end

of the annual interval.
5.2 Annual Model for Crown Height:

Model 5-1: Crown Height at end of annual period = s(Age at beginning)

(Intercept) s (LAGAGE)
1.180552 0.3733498

GAM regression plot for Model 5-1:

s(LAGAGE)

[ITRTRLi T W N 1 !
T T T T T T

6 8 10 12 14 16 18
Mean Crown Height

Figure 5-1. Fitted smooth function for GAM model 5-1.
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Fit plot for Model 5-1:

Predicted Crown Height

Mean Crown Height

Figure 5-2. Observed versus predicted values for GAM model 5-1.

5.3 Conclusions:

Attempts were made to model crown height change over time in shelterbelts. The
results did not provide a convincing fit given the small amount of data used in the
modelling. While figure 5-1 suggested a sigmoidal relationship between mean crown
height and age, the asymptote shape was only supported by two data points and was
not considered reliable. Therefore due to insufficient data, the green crown height was
not able to be modelled and the growth model assumes no natural rise in the green
crown of shelterbelts.
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Part Six: Predicting Mortality

6.1 Introduction

Mortality in shelterbelts is most often associated with wind and the exposed nature of
the site, therefore a substantial amount of shelterbelt mortality may be considered to
be catastrophic. Most often the younger trees are seen to blow over and be related to
major weather events such as storms. This has proved difficult to model.

The mortality modelling for the shelterbelt data involved two approaches: Logistic
regression which modelled the proportion of the stocking lost annually (Approach 1)
and modelling the absolute stocking at the end of the interval given the stocking at the
beginning (Approach 2). The latter approach produced satisfactory results.

Previous Work

Previous work related to the mortality function for shelterbelts suggested that
mortality was uniform over time (Auclair et al, 1991) and is as follows:

dN | dt =-2.8N /1000

To investigate the effectiveness of this function it was refitted with the available data
and was found to perform unsatisfactorily with an R? value of 0.000739. An
alternative function was therefore sought.

6.2 Exploratory Data Analysis

The exploratory analysis initially involved a simple correlation analysis of all of the
available variables. This identified the following stand level variables as being
significantly correlated with mortality: Mean height, Mean top height, Mean crown
length, Basal area increment, Green Crown Length, Mean top diameter, Basal Area,
Site index, and age. Additional variables were also found to be highly correlated with
mortality but were found to be formulated using the variables already listed while
mean top height and mean height were also too highly correlated to be fitted together.
A high level of correlation was also found between the age, basal area, and mean top
diameter variables which also resulted in the latter two variables being excluded.

In addition to the correlation analysis, simple scatter plots were produced for the
candidate variables. The results are as follows:
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Figure 6-1. Scatterplots of the proportion of trees per kilometre that died during an annual

interval versus the candidate explanatory variables.

Figure 6-1 shows reasonably weak relationships between the proportion of trees per
kilometre that died annually and all of the candidate variables. It appears that the
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younger trees are more prone to mortality (which also corresponds to the smaller trees
with a shorter crown length) while mortality also appears to be weakly related to
altitude where it appears that the plots situated at higher altitudes exhibited higher
levels of mortality.

6.3 Variable Selection:

Variable selection involved fitting bivariate logistic GAMS to explain the probability
of mortality during an annual interval. This was then followed by a stepwise
regression using the AIC statistic. This provided information about which variables
were most closely related to mortality and the form of the individual relationships.

Fit Statistics for Bivariate Logistic GAM’s:

Variable Null Deviance |Residual Deviance |% VE

Basal Area Increment 90.10576 61.32579 31.94021
Age 90.10576 81.73738 9.287286
Mean Top Height 78.43806 70.75814 9.791063
Mean Height 89.08064 80.96304 9.112642
Altitude 86.37899 83.7714 3.018778
Basal Area 90.10576 81.10981 9.983768
Green Crown Length 88.11575 82.10622 6.82004 1
Stems per Km 90.10576 86.26794 4.259239
Site Index 89.56461 85.82086 4.179943

Table 6-1. Statistics for Bivariate GAM fits using a logit link and binomial error.

Tables 6-1 shows that the basal area increment variable for the previous annual
interval explained the most variation of all the available variables. Basal area, age,
mean top height, and mean height variables followed the increment variable in terms
of variation explained. While it was realised that using the previous increment was
perhaps a potential bias (given that it is often only available as a prediction to the
user) it was still considered, given that in the absence of climate information,
shelterbelt mortality seemed difficult to explain.

Therefore, the variables in tables 6-1 were selected for the mortality model by
stepwise selection (using the AIC criterion) and resulted in the following logistic
mortality model:

Model 6-1: logit(Probability of Mortality) = s(age) + s(mean top height) + s(altitude)
+ s(green crown length) + s(site index) + s(stems per kilometre) + s(basal area
increment for the previous year).

Model 6-1 was fitted and assessed using the standard statistics (AIC, - 2 log likelihood
etc) and the resulting predicted probabilities were then converted into the number of
dead stems per kilometre by simply multiplying the predicted probability of mortality
by the number of stems per kilometre present at the start of the interval.
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6.4 Results:

The results of the logistic regression modelling using both standard logistic regression
and Generalized additive models are listed below:

Coefficients:
Variable Coefficient - LR Coefficient - GAM
Basal Area Incr. -0.7357825 -0.7838508
Mean Top Height -0.06466 -0.3453091
Age -0.07749 0.2448011
Altitude 0.00161 0.002984032
Green Crown Length 0.14918 0.1741999
Site Index 0.03369 0.06941503
Stems per Km 0.000643 0.00074228

Table 6-2. Model Coefficients for Model 6-1 where LR= Logistic regression and GAM= logistic

Generalized Additive model .

Partial Regression plots for Logistic Regression Model 6-1:

111 (TR IN T !‘ i

«
~
o~
o o
Q
z £
g o b
E 2
3 R
g £
i H
¢
T
o
=] \“~
<l TR T T | }
0 5 10 15
BAING
4,--"—" W
.. 8 @
o e
1 0, N o w
u et Ny o g
- . °
< Tl ° =3
5 2
3 o 3
H ]
2
. g
< - N
@-W‘I@MMMLU‘U_U_WL.JU_

AGE

68

T T
200 300 400 500 600
ALTITUDE




partial for GRCALEN

partial for SPHLIVE

s(BAINC)

S(AGE)

© - . - o
o |
@ Eh
5
o 1]
o g_
o = T 1 i B lIlIll'IlrlIIIlHImIIIll Hllllh 1 1 J‘ 8" ”“’! ? 1 LRIL . §ill
[ 5 10 15 20 25 15 20 25 30
GRCRLEN st
5
2 |
E
‘g_
1l i1 " y |I‘I|| 1 e lHF]IH(]IIIIII]I!._!I___LU__
0 200 400 600 BOO 1000
SPHLIVE
Figure 6-2. Partial Regression plots for Model 6-1.
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Figure 6-3. Partial Regression plots for GAM Model 6-1.

Fit Plots for GAM Model 6-1:
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Figure 6-4. Observed versus Predicted Values for GAM Model 6-1.
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Figure 6-6. Residual plot for GAM Model 6-1.
Discussion:

The fit of the model as represented in figures 6-4 and 6-5 was found to be most
inadequate given the drastic overall underprediction of mortality. Since even the
GAM’s did not perform satisfactorily, this suggests the information that describes why
the trees die is simply not available. It was thought that the poor performance of the
model may be attributed to the fact that wind and/or exposure information (which is
often considered the main cause of mortality given the exposed places shelterbelts are
planted) was not included in the modelling process. The incorporation of such
information was considered, however it was realised that most users would not have
such information available to them.

Therefore an alternative approach was suggested and used to model mortality which
simply describes the absolute stocking per kilometre at the end of an annual interval

given the stocking and the age at the beginning of the interval.

Alternative Approach:

At the suggestion of Mr Andy Gordon (pers comm) the following model form which
has proven useful in growth models was tried.

Model 6-2: Stems per Km at end of interval = (1/(-k * ((1 / sqrt (age at the end of
the interval)) - 1 / (square root (Age))) + (1 / square root (Stems at the beginning of
the interval)))) ** 2;

Coefficients:

k = 0.0037518057
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Fit and Residual plots:
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Figure 6-5. Observed versus predicted values for Model 6-1.
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Figure 6-7. Residual plot for Model 6-1.

Fit Statistics for Model 6-2:

RMS = 225.78 %, Regression SS/Total SS = 99.9%

6.5 Conclusions:

Various models to predict mortality were fitted against the data set (including Logistic
additive models, Poisson additive models and nonlinear regression models). Because
mortality is erratic and was only found to be weakly related to the standard plot
measurements, a satisfactory estimate of mortality was found difficult to obtain. The
selected model based on a form previously used for growth demonstrated an
acceptable fit which was reflected in both the fit plots and the fit statistics.
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Part Seven: Estimating Diameter Distributions

7.1 Introduction:

A diameter distribution function was estimated so that for any given mean basal area
it was possible to show how that basal area was distributed across a stand. This
information is used in deriving log grades, for example, where the distribution
parameter could be significant.

7.2 Exploratory Data Analysis

The exploratory analysis involved extracting the individual diameter measurements
for each tree within each plot, converting them into basal area measurements and
examining their distributions. The shape of the basal area distributions at different
age classes are illustrated in figure 7-1 below.
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Figure 7-1. Basal Area distributions at different age classes for all of the shelterbelt data, where
1213 refers to trees aged between 12 and 13 and 2021 refers to trees aged between 20 and 21 etc.

Figure 7-1 shows that as the mean basal area increases so does the variation about the

mean. This commonly resulted in substantial right skewness in the older age class
distributions (which is also evident in figure 7-1).
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Data Specifications:

Age Class |No’ of observations [Mean Basal Area

10 19420 0.0278
1011 1755 0.0669
1112 1043 0.0561
1213 765 0.0940
1314 1176 0.0869
1415 587 0.1006
1516 717 0.0954
1617 364 0.1063
1718 475 0.1384
1819 455 0.1404
1920 193 0.1623
2021 271 0.1832
2122 172 0.1708
2223 469 0.2145
2324 330 0.2070
2425 287 0.2251
2526 194 0.1821
2630 539 0.2321

Table 7-1. Summary information for data used in estimating diameter distributions.

7.3 Comparing various distributions with the actual data

Before the fitting of any one particular distribution was carried out, the basal area data
was fitted with various distributions for each age class. This enabled the most
appropriate distribution to be chosen given the data available. The graphical results
are illustrated below while the distribution parameters are listed in Appendix 14.

Note: The green line represents the empirical distribution, the red line indicates a
normal distribution, the pink line represents a Lognormal distribution, the orange line
the exponential distribution and the blue line represents the Weibull distribution.
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Figure 7-2 . Basal Area Distribution for 10-11 year old trees.
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Figure 7-4. Basal Area Distribution for 12-13 year old trees.
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Figure 7-5. Basal Area Distribution for 13-14 year old trees.
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Figure 7-6. Basal Area Distribution for 14-15 year old trees.
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Figure 7-7. Basal Area Distribution for 15-16 year old trees.
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Figure 7-8 . Basal Area Distribution for 16-17 year old trees.
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Figure 7-12. Basal Area Distribution for 20-21 year old trees
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Figure 7-13. Basal Area Distribution for 21-22 year old trees.
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Figure 7-14.

Basal Area Distribution for 22-23 year old trees.
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Figure 7-15.

Basal Area Distribution for 23-24 year old trees.
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Figure 7-16.

Basal Area Distribution for 24-25 year old trees.
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Figure 7-17. Basal Area Distribution for 25-26 year old trees.
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Figure 7-18. Basal Area Distribution for 26-30 year old trees.

7.4 Distribution Results:

The figures above show that the empirical distribution was most closely matched by
the Lognormal distribution for the younger age groups (1213, 1314, 1516) similarly
matched by the Lognormal and the Weibull distributions for some of the intermediate
age classes (1112, 1415, 1617, 1718) and more closely matched by the Weibull
distribution for mostly the older age groups (1011, 1819, 1920, 2021, 2122, 2223,
2324, 2425, 2526, 2630). This was confirmed by the results of the fit and the
Kolmogorov-Smirnov tests.

Relevant parameters for the Normal, Lognormal, Exponential and Weibull
distributions were estimated using maximum likelihood for each age class and are
listed in Appendix 14. In addition, each estimated distribution was tested against the
data using the Kolmogorov-Smirnov test which identified which distributions were
well fitted.

In summary, the Lognormal satisfied the Kolmogorov-Smirnov test for age classes 13-
14 and 15-16 while the Weibull distribution satisfied the Kolmogorov-Smirnov test
for the older age classes: 20-21, 23-24, 25-26 and 26-30.

Given the distribution fit results and the fact that harvest usually involves older trees,
the Weibull distribution was chosen and fitted using three methods. Firstly the
parameters were estimated using maximum likelihood (Appendix 14), secondly they
were estimated in a standard way using moments and thirdly parameters were
obtained using a method recently published involving skewness information (Lindsay
et al, 1996). A summary of the pathways for the two methods of estimating moments
is as follows:
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7.5 Weibull Distribution Results:

Summary of the parameter estimate pathways

> |l ocation Parameter
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/' Variance
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Shape
Parameter
Scale
Parameter

Scale
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= |

Location
Parameter
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Note: The shadowed arrows and boxes represent those pathways relevant for ghe Len Zf’éw"’,? o
recently developed skewness method, and the single arrows and boxes represent those
for the standard method.

7.5.1 Weibull Estimation using Moments:

Estimation of Weibull parameters using moments was performed using two
approaches: a standard method and a technique using skewness information (Lindsay
et al, 1996). For all plots at all ages the two methods were carried out and compared.

The standard procedure required estimates of the mean, minimum, maximum and
subsequently the variance of the basal area distributions, while the new method also
required an estimate of skewness to estimate the three parameters: the location, scale
and shape parameters. Parameter estimates for the Weibull distribution were obtained
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for each age for each plot (using both techniques) and the variation within the
coefficients over time for selected plots was investigated. This was performed to
ascertain if different parameter values were necessary for each age class. A sample of
the parameter results and the resulting distributions from the two methods from a
selection of regions are illustrated below.

Auckland
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Figure 7-19. Distribution of the basal area within a stand situated in the Auckland region for
each age. The green line represents the observed distribution while the blue line represents the
distribution obtained using the standard moments method, while the red line indicates that
obtained using skewness information.

Figure 7-19 shows that the distribution obtained using the standard approach seemed
to fit more closely than that obtained using skewness information. Overall, the
predicted distribution underestimated the basal area of the stand for the older trees.
The results of the parameter estimates obtained for the shape and scale parameters
using the standard method are illustrated below.
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Figure 7-24. A Scatterplot representing the change in the scale parameter over time within a

stand situated in Canterbury.

Figure 7-23 and 7-24 also show that scale parameter increased with the mean in basal
area however once again the shape parameter only changed fractionally over time.

Hawkes Bay:
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Figure 7-25. Distribution of the basal area within a stand situated in the Hawkes Bay region for
each age. The green line represents the observed distribution while the blue line represents the

distribution obtained using the standard moments method, while the red line indicates that
obtained using skewness information.
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Figure 7-26. A Scatterplot representing the change in the shape parameter over time within a
stand situated in Hawkes Bay.
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Figure 7-27. A Scatterplot representing the change in the scale parameter over time within a
stand situated in Hawkes Bay.

Figure 7-25 shows that the distribution estimated using skewness information
produced worse fitting results at all ages than those obtained using the standard
method. In addition, the shape parameter estimated for each age (using the standard
approach) (figure 7-26) within each plot showed little variation suggesting that there
may be no need for separate shape parameters for each age. Given the small amount
of variation in the shape parameter only one was estimated for all ages.

Given that little variation in the shape parameter was seen within plots across ages,
one shape parameter was deemed sufficient for all ages. This required variance
estimates (using both approaches) which also involved estimates of the minimum and
maximuim.
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Estimation of Variance for Weibull parameter estimation using Moments:

The variance is required to estimate the Weibull parameters using moments and it was
considered that the variance would be related to many different predictors (age,
maximum, minimum, mean, stems per kilometre and basal area). This was
investigated visually and is represented using scatterplots below:
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Figure 7-28. Scatter plots representing the relationship between variance and commonly used
explanatory variables.

As expected the variance appeared to be related to all of the variables above (only
weakly for stems per kilometre perhaps). However, since the mean basal area is
predicted from the model and age and basal area were too highly correlated to be fitted
together only the minimum, maximum and stocking variables were used to predict
variance.

As shown in the earlier chapters, the variables were first fitted with GAM’s and then

with nonlinear or linear functions suggested by the GAM’s. The results are as
follows:
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Estimation of variance for each age given age, minimum value, maximum value and
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GAM Model 7-1: Variance = s(age)+ s(minimum) + s(maximum) + s(spacing)

Partial Regression plots for Model 7-1:
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Figure 7-29. Partial Regression plot for GAM estimating the Variance.

Fit plot for Model 7-1:
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Figure 7-30. Observed versus predicted values for GAM predicting variance.

Fit Statistics:

Null Deviance = 0.3849797, Residual Deviance = 0.0193596, Deviance Explained
=94.97%
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Given the satisfactory fit of the model, the maximum and minimum were estimated
(since they will not always be available to the user) and the predicted values used to
estimate the variance.

S(AGEHA)

S(SPACING)

Estimation of the minimum value for each age given age, mean basal area, and
spacing.

GAM: Model 7-2: Minimum basal area = s(age) + s(basal area) + s(Spacing)

Partial Regression plots for Model 7-2:
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Figure 7-31. Partial Regression plots for model 7-2.
Fit Statistics:

Null Deviance = 20.38433, Residual Deviance = 4.657806, Deviance Explained:
77.2%

Nonlinear model for Minimum:

Model 7-3: Minimum value = a *Age + a2* (1-exp(-k* Mean Basal Area))+ f *
Spacing

Coefficients:

a=-0.002132557, a2 = 0.144616063, k = 7.300088319, f = 0.001502470
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Fit Statistics:
RMS = 0.00189796, Regression SS/Total SS = 85.8%

Estimating the Maximum Value using GAM’s:

GAM : Maximum Value = s(Age) + s(Mean Basal Area) + s(Spacing)

Partial Regression plots:
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Figure 7-32. Partial regression plots for GAM predicting the maximum value (Model 7-3).
Fit Statistics:
Null Deviance = 436.225, Residual Deviance = 22.17412, Deviance Explained: 94.9%

Nonlinear model for maximum:

Model 7-4: Maximum value = (a /(1+exp(f- g ¥*Age)))+d* Spacing +e* Mean Basal
Area

Coefficients:
a = 0.08065080, f = 22.60628254, g = 1.17548118, d =-0.00211949, ¢ = 1.62365160.
Fit Statistics

RMS = 0.00080371, Regression SS/Total SS =96.7%
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Nonlinear estimation of Variance using fitted values of Maximum and Minimum
values:

Model 7-5: Variance = exp(a + j* Predicted Maximum)+g* Spacing +(1-exp(-exp(a2
- h* Predicted minimum value)))

Coefficients:
a=-6.78088189, j = 4.42528076, g = -0.00045303, a2 = -9.73392685,
h = -44.16808035

Fit Statistics:

RMS = 0.00000268607, Regression SS/Total SS = 99.9%

Estimating the shape parameter using the standard moments:

Predicted Variance = (((Mean - predicted
minimum)**2)/(gamma(gamma(1+1/c))))*(gamma(l+2/c) -
(gamma(gamma(1+1/c))))

Coefficients:
¢ =1.285201339
Fit Statistics:

RMS = 0.00000069664, Regression SS/Total SS = 94.12%

Estimating the shape parameter using skewness information:

Skewness = (gamma(1+3/c3)- 3 *(gamma (1+1/c3) *gamma (14+2/c3)) +(2*(gamma
(1+1/¢3))* (gamma(1+1/c3))*(gamma(l+1/c3))) / ((gamma(1+2/c3)- (gamma(l+1/c
3)) * (gamma(1+1/c3)))**0.5)

Coefficients:
c3=2.318017223

RMS = 0.490270, Regression SS/Total SS =1.1%
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7.6 Results of fitting the Weibull distribution using moments (standard approach) and
estimates of minimum, maximum, and variance.
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Figure 7-33. Observed and predicted basal area values for plots at all ages. Note: the green line
is the observed distribution across all ages, the red line is the estimated distribution using the real
mean and the estimated shape parameter.
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Figure 7-34. Quantile-quantile plot for the observed and predicted distributions for all plots at
all ages.
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Comparison of Empirical cdfs of Predicted and Observed Distributions
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Figure 7-35. Cumulative density function of the predicted and observed distributions
Discussion:

The observed and predicted distributions for all of the data at all ages were compared
using a distribution plot (figure 7-33), QQ- Plot (figure 7-34) and the Kolmogorov-
Smirnov test. Figure 7-34 illustrates approximate linearity indicating that both the
observed and predicted distributions were of a similar shape. While the cumulative
distributions for both the predicted and observed also appeared similar (figure 7-35).

Figure 7-35 also highlighted the inadequacies of the fit given that the predicted
distribution ceased at a value of approximately 0.7 while the actual distribution
continued past this point. This underprediction of basal area was also evident in the
density plot (figure 7-33) which was large enough for the Kolmogorov-Smirnov test to
find the predicted and observed distributions to be significantly different from one
another.

Conclusions:

The shape of the basal area distributions of shelterbelts at different ages was explored
and various diameter distributions were fitted and compared. It was found that the
Weibull distribution was most suitable for the older trees therefore this distribution
was fitted using two methods. While both methods involved fitting the Weibull
distribution using moments, one of the methods also used skewness information in the
estimation of the shape parameter. This recently developed method was only found to
improve the fit of the distribution in a small number of cases (and decrease the fit in
others) therefore the standard approach was adopted. This standard approach
involved the estimation of the minimum, maximum basal area values for shelterbelts
in order to arrive at estimates for the location, scale and shape parameters. These
estimates were obtained for each age for each shelterbelt, however it was found that
one shape parameter for shelterbelts of all ages was sufficient. The results for the
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shelterbelts at all ages showed a reasonable fit with a tendency for underprediction of
basal area for a subset of values.
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Part Eight: Predicting basal area remaining after a thinning

8.1 Introduction:

The sample plot data set available for shelterbelts contained very few shelterbelts
which had been thinned during the measurement period. To obtain such data, a
dummy thinning exercise was performed in order to quantify the percentage of basal
area that is removed when a percentage of the stems are thinned. While it is likely that
most shelterbelts will be unthinned during their life, it is considered necessary to
include a function which predicts the effects of thinning on the remaining shelterbelt
basal area to provide modelling flexibility.

Trees were chosen to be thinned based primarily on their form (vigour was a
secondary consideration) and it was decided that for the first twenty percent of trees
chosen they should not leave a gap as large as 4 metres apart. This involved going out
to shelterbelt sites with relevant stockings (those closely spaced) and measuring the
diameters and heights of 150 trees. 150 trees in total were chosen from three sites
near Rotorua where PSP’s were already located. For these sites, successively larger
thinnings were applied and the appropriate trees chosen. The basal area remaining
was then computed for each percentage of stems remaining and models fitted.

8.2 Exploratory Data Analysis:

The shelterbelt data was taken from 150 trees from three main sites and the diameters
and heights recorded are plotted below:
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Figure 8-1. Scatterplot of Diameter at Breast Height versus Height for the shelterbelt thinning
data.
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Figure 8-1 shows that the third site exhibited larger taller trees while the first two sites
appeared quite similar. For all sites larger diameters were associated with larger
heights.

The relationship between diameter and height (across all sites) and the percentage of
stems chosen for thinning was also examined and is illustrated in figure 8-2 below.

Note: An indicator variable was used to describe which trees were chosen for
thinning. For example, if the indicator variable for the tree was zero then it was not
chosen for thinning, if the variable was equal to one, then it was chosen for the first 10
percent to be thinned, if the variable was equal to two then it was included in the first

20 percent to be thinned and so on. This was performed until about 60% of the stems
were chosen for thinning.
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Figure 8-2. Scatterplots of Diameter at breast Height versus Height measurements with local
regression models for the trees chosen for each percentage of stems thinned.

Figure 8-2 shows great variation in the diameter to height relationships across all
trees. There seems to only be small differences between the trees immediately chosen
for thinning and those only considered for thinning when over half the stand had
already been chosen. This may be due to the criteria used for thinning (given they
were chosen on form) however for completeness, any differences in their diameter to
height relationships between groups were investigated.

8.3 Model Specification:

The relationship between the percentage of basal area remaining given the percentage
of stems remaining after thinning was explored using a scatterplot (figure 8-3),
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Generalized Additive Models and then a Nonlinear function. The results are
illustrated below:

1.0

Proportion of Basal Area Remaining

T T T
0.5 0.6 0.7 0.8 0.9 1.0

Proportion of Stems Remaining

Figure 8-3. Scatterplot of Percent of basal area remaining versus the percent of stems remaining.

Figure 8-3 shows that the basal area remaining was consistently higher than the
percent of stems remaining which was to be expected given the nature of thinning.
The poor formed trees which were chosen for thinning appeared to have also been at
least slightly smaller in diameter.
The form of this relationship plotted in figure 8-3 was further investigated using
GAM’s:
GAM Model:
Model 8-1 : Percent of Basal Area Remaining = s(Percent of Stems Remaining)

Coefficients:

intercept = 0.0494309, s(Percent of Stems Remaining) = 0.9716628
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Figure 8-4. Regression plot for GAM 8-1.
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Figure 8-5. Observed versus predicted values for Model 8-1.
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Figure 8-6. Residual plot for Model 8-1.

Figure 8-4 shows a slightly curved relationship which must pass through the origin
and 100 percent. This suggested a simple nonlinear function with a single parameter.

8.4 Nonlinear Thinning Function:

Model 8-2: Percent of Basal Area Remaining = Percent of Stems remaining **c
Coefficients:
c= 0.8872487593

Fit and Residual plots:
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Figure 8-7. Scatterplot of the proportion of stems remaining and the proportion of basal area
remaining with the Model 8-2 overlayed.
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Figure 8-8. Observed versus predicted values for Model 8-2.
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Figure 8-9. Residual plot for Model 8-2.

Fit Statistics:
RMS =0.0003701403

8.5 Conclusions:

In order to predict the proportion of basal area remaining after a thinning (given the
proportion of stocking remaining) this relationship was explored. This exploration
also involved the use of a Generalized Additive model (GAM) which was followed by
the fitting of a nonlinear model. The nonlinear model (Model 8-2) appeared to fit
rather closely to both the GAM (Model 8-1) and the observed data. An alternative
linear model was fitted to serve as a comparison to the nonlinear model 8-2 and the fit
obtained was slightly better. However despite the better fit, the linear model was not
considered suitable given that it would not pass through the points 0,0 and 100,100
therefore the nonlinear model was chosen.
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Part Nine: Validation of the Complete Growth Model:

9.1 Introduction:

The performance of the various functions that comprise the complete growth model
were examined using a similar process to that embedded within STANDPAK. This
was undertaken to ensure that the Mean top Height, Basal area (with regional and plot
asymptotes) and Mortality functions all worked together to provide reasonable
predictions when supplied with single starting values for each plot.

9.2 Methods:

The validation process involved running all of the functions simultaneously after
supplying the relevant initial values (Mean Top Height, Basal area, and Stocking).
These were the only observed values entered in and the plots were grown over time
(and compared at each re-measurement value) until the most recent measurement for
each plot was reached.

9.3 Results for the Mean Top Height Curve:

9.3.1 Fit and Residual Plots:
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Figure 9-1. Plot of observed and predicted Mean Top Height versus age for all of the shelterbelt
data.
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Residuals

Predicted Mean Top Height

Figure 9-2. Residual plot for the Mean Top Height model for all of the shelterbelt data.

9.3.2 Residual Summary Statistics:

Mean SD Min Max N
Absolute Errors (m)
North Island 0.259 1.084 -5.900 6.200 974
South Island 0.170 1.067 -3.800 3.900 96
Combined 0.252 1.082 -5.900 6.200 1140

Table 9-1. Residual Summary statistics for Mean Top Height Function.

Figures 9-1 and 9-2 show the Mean Top Height function to fit satisfactorily with
slight underprediction at larger Mean Top Height values. The mean residual for the
North Island was considerably higher than that for the South Island, however the
standard deviations around the mean were very similar for both islands.

The performance of the Mean Top Height function was also examined at the regional
level to identify any particularly ill-fitting regions (Figures 9-3 and 9-4). It was found
that Mean Top Height was underpredicted the worst on average for the
Nelson/Marlborough region with an error rate of 11.5% while Taranaki was
overpredicted on average with an error rate of 7.5%. (Note: Error rate = Mean
Absolute Residual / Mean predicted value) The best fitting regions were Canterbury
and the Bay of Plenty with error rates of 0.15% and 1.8% respectively.
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Figure 9-3. Plot of Observed and Predicted Mean top height versus age for all of the Shelterbelt

Residuals
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Figure 9-4. Residual plots for all shelterbelt data for each region.
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The performance of the Mean Top Height function was also examined by plotting the
residuals against factors such as stocking, age of the stand, and time interval of
prediction (figures 9-5, 9-6 and 9-7).
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Figure 9-5. Residual plot with a local regression model for all shelterbelt data by Stems per

Kilometre.
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Figure 9-6. Residual plot with a local regression model for all shelterbelt data by Age of the
stand.
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&

9-9 also indicated this. Despite the apparent normality, the distribution was not
strictly normal (which was determined by the Kolmogorov-Smirnov test) however the
residuals were considered to be approximately normal.
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Figure 9-8. Density plot of the Residuals
Empirical and Hypothesized normal CDFs
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Figure 9-9. Cumulative distribution plot for the normal distribution (solid line) and the
distribution of the residuals (dotted line).
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9-10. QQ-plot for Mean Top Height residuals

9.4 Validation for the Basal Area Increment Functions:

Fit and residual plots were produced for two Basal Area increment functions (Model
5b and Model 3) using either regional or estimated plot asymptote values and a
satisfactory fit was found for both functions (see figures 9-11, 9-12, 9-13, and 9-14).

9.4.1 Fit and Residual plots for the Basal Area Increment Model 5b and Model 3
using regional asymptote estimates:
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Figure 9-11. Observed versus Predicted shelterbelt Basal Area Values (m?/km) for Regional
Mixed model 5b.
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Figure 9-14. Residual plot for the basal area increment Regional Mixed model 3.

9.4.2 Fit and Residual plots for Basal Area increment Model 5b and Model 3 using
Plot asymptote estimates:
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Figure 9-15. Observed versus Predicted shelterbelt Basal Area Values (m?*/km) for Plot
estimate Mixed model 5b.
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Figure 9-16. Observed versus Predicted shelterbelt Basal Area Values (m?/km) for Plot
estimate Mixed model 3.
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Figure 9-17. Residual plot for basal area increment plot estimate Mixed model Sb.
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Figure 9-18. Residual plot for Plot estimate Mixed model 3.

Performance of the basal area functions was also checked at the regional level,
however due to the similar performance of the basal area functions using either
regional or plot asymptote estimates only the regional results for either model 5b or
model 3 are shown below:
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Figure 9-19. Plot of Fitted versus Predicted Values from Mixed model 5b within region.
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Figure 9-20. Plot of Fitted versus Predicted Values from Mixed model 3 within region.
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Figure 9-21. Residual plot for Mixed model 5b for all shelterbelt data within region.
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Figure 9-22. Residual plot for Mixed model 3 for all shelterbelt data within region.
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9.4.3 Residual Summarv Statistics

Mean SD Min Max
Residuals
All data (5) -1.449 5.490 -42.680 21.460 1140
-1.770 5.495 -43.020 19.200
3) -0.678 4.990 -38.800 26.960
1.074 4.957 | -39.3100 26.510
Northland (5) -0.686 0.947 -2.440 0.730 15
-0.791 0.965 -2.650 0.600
3) -0.629 0.688 -1.890 0.510
-0.790 0.718 -2.020 0.260
Auckland (5) 2.768 1.205 1.760 4.320 4
2.653 1.161 1.690 4.150
3) 3.003 1.356 1.800 4.800
2.878 1.320 1.710 4.640
Bay of Plenty (5) -0.920 5.164 -19.320 21.460 654
-1.318 5.159 -22.460 19.200
3) 0.083 4.740 -17.560 19.080
-0.407 4.696 -18.590 17.410
Hawkes Bay (5) -2.637 7.079 -42.680 10.250 232
-2.862 7.100 -43.020 9.980
3) -2.160 6.308 -38.800 13.050
-2.469 6.314 -39.310 12.330
Manawatu (5) -0.557 1.641 -4.160 3.710 30
-0.898 1.537 -4.370 3.500
3) -0.750 1.199 -2.390 3.150
-1.084 1.182 -2.900 2.690
Taranaki (5) -2.100 1.934 -10.780 0.320 40
-2.279 1.944 -10.930 0.240
(€))] -1.570 2.033 -10.970 0.880
-1.749 2.071 -11.380 0.550
Wairarapa (5) -1.727 1.876 -6.090 1.870 65
-1.859 1.865 -6.210 1.720
3) -1.200 1.751 -4.960 3.340
-1.420 1.702 -5.240 2.650
Nelson (5) 1.335 1.237 0.000 5.130 24
1.259 1.224 -0.110 5.000
3) 0.043 1.070 -1.880 2.830
-0.163 1.030 -2.190 2.350
Canterbury (5) -3.395 7.059 -36.940 15.790 76
-3.711 7.151 -37.590 14.370
3 -2.204 6.203 -14.180 26.960
-2.459 0.284 -14.930 26.510

Table 9-2. Residual Summary Statistics for the two basal area function results. The bold

numbers represent the residuals obtained using regional asymptote estimates while the italicised
numbers represent those obtained using plot asymptote estimates. Note: (3) = Mixed model 3,

(5)=Mixed model 5b.
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Either basal area increment model appeared to consistently overpredict on average for
seven of the nine regions for model 5b, and six of the regions for model 3. This
overprediction was largest for the Taranaki region for both mixed models given the
error rates of 18.4% and 14.42% for mixed models 5b and 3 respectively (based on
3.5% of the data). In addition, the results show that either regional basal area
increment function underpredicted most on average (for regions with more than four
data points) for the Nelson/Marlborough region with error rates of 30% or 0.8% for
models 5b and 3 respectively. This level of underprediction may not be surprising
given that only 2.1% of the data came from this region. The Bay of Plenty region
fitted the best on average, given that the error rates for model 5b and 3 were only
3.04% or 0.28% respectively. These rates are reassuring given that 57.4% of the data
came from this region.

The residuals for both basal area functions were also checked with various age,
stocking and length of prediction periods for any obvious relationships. See figures 9-
23, 9-24 and 9-25.
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Figure 9-23. Residual plot for model 5b with a local regression for all shelterbelt data by Stems
per Kilometre.
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Figure 9-24. Residual plot for model 5b with a local regression for all shelterbelt data by Age.

112



Residuals
>
|
P o8

o
1
° 1)
@00 4 GommE—— ©TOODC O

)
S
L

3
T

@
S
i
T

IS
S
L

T T T T T T T
0 2 4 6 8 10 12

Length of the Prediction Interval

Figure 9-25. Residual plot for model 5b with a local regression model for all shelterbelt data by
length of prediction interval (years).

9.4.4 Discussion:

Errors in relation to age:

Both regional basal area models underpredicted on average for seven and
overpredicted on average for six age classes (Figures 9-24 and Appendices 4, 11).

The largest error rate for model 5b(for age classes with more than one observation)
was for the 15-17 age class which reached 10.27%. While the largest error rate for
model 3 was for the 25-27 age class which had an error rate of 8.80%. The best fitting
age class for both models was the 5-7 age class with error rates of only 0.147% and
0.3% for models 5b and 3 respectively.

Both basal area functions using plot asymptote estimates also underpredicted on
average for seven of the thirteen age classes (Appendix 4 and 11). The largest error
rate (for age classes with more than one observation) was for the 15-17 age class
which was 10.16% for model 5b, while the corresponding value for model 3 was
9.66% for the under five age class. The best predicted class on average resulted in an
error rate of 0.25% (for the 21-23 age class) for model 5b while model 3 produced the
best error rate of 0.3% for the 23-25 age class.

Errors in relation to stocking:

The regional model 5b overpredicted on average for six and underpredicted on
average for five stocking classes (Figure 9-23 and Appendix 4). While model 3
overpredicted for nine of the eleven classes (Appendix 12). The largest overpredicted
class (based on more than 5 data points) for either model was the 100-200 stems per
kilometre group where the error rates were 24.9% and 15.0% for models 5b and 3
respectively. The best fitted class for both models was the 400-500 stems group
where the residual mean was only 1.89% and 0.79% the size of the predicted mean
basal area for models Sb and 3 respectively.
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The stocking class with the largest error rates (24.9% , 15%) for prediction of basal
area was also the stocking class (with more than 5 data points) with the largest error
rate for predicting mortality. This suggests that the reason that basal area was being
overpredicted was because the number of stems was being overpredicted rather than
gross overprediction of basal area increment on each plot.

The basal area model 5b using plot asymptote estimates overpredicted on average for
10 of the eleven stocking classes while model 3 overpredicted for nine of the eleven
stocking classes. The largest overpredicted group for either model (based on more
than 5 data points) was also the 100-200 stems per kilometre class which saw error
rates of 22.95%, and 17.23% for models 5b and 3 respectively. The closest fitting
stocking class for model 5b was the 800-900 class with an error rate of only 0.68%
while the corresponding value for model 3 was for the 700-800 class with an error rate
of 1.86%.

The reason for the ill-fitting 100-200 stems groups is also considered to be highly
related to the mortality model.

Errors in relation to length of prediction period:

The regional basal area model 5b underpredicted on average for two of the ten
prediction interval classes, however the size of the residuals did not seem to increase
considerably as the prediction period increased (Figure 9-25 and Appendix 6). This
was also seen for model 3 , however this model underpredicted for three of the ten
classes (Appendix 13). The largest error rate (for those groups with greater than six
observations) for model 5b was found for the stands that were only predicted one year
ahead (14.3%) however this group only contained 3.3% of the data. The largest error
rate for model 3 corresponded to the 3-4 year prediction interval (for those classes
with greater than six observations) which was 12.26%. The best error rate on average
for model 5b was found for the 12-13 prediction period group which contained about
15% of the data and had an error rate of only 1.3%. The corresponding error rate for
model 3 was 1.91% which was associated with the 1-2 year prediction interval class.

The plot asymptote basal area model 5b was underpredicted on average for only one
of the ten prediction interval classes, while model 3 underpredicted for only three of
the ten prediction classes. The size of the residuals did not increase considerably as
the prediction period increased for either model (Appendix 6 and 13). The largest
error rate for model 5b (for those groups with greater than six observations) was also
found for the stands that were only predicted one year apart (15.1%). While model 3
produced the largest error rate (for those groups with greater than six observations) for
the 5-6 year prediction class which was 11.5%. The best error rate for model 5b was
found for the 12-13 prediction period group which contained about 15% of the data
and had an error rate of only 0.4%. The best error rate for model 3 corresponded to
the 8-9 interval class with an error rate of 0.14%.

Errors in relation to regional and plot level models:

The basal area functions using either regional or plot asymptote estimates produced
very similar results (Appendices 4-6, 11-13). The function using plot asymptote
estimates improved on the mean residual in six of the thirteen age classes for both
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models and improved on the standard deviations about the mean residual in eight of
the thirteen age classes for models 5b and 3. Using plot asymptotes resulted in a
reduction in the mean residuals in only two of the eleven stocking classes for both
models while the standard deviations were reduced for only four of the eleven
stocking classes for model 5b and only three for model 3. The similarity in the
residuals for either asymptote model can also be seen in the density plot illustrated
below (figure 9-26) while statistical similarity was confirmed using the Kolmogorov-
Smirnov test.

Comparison of errors obtained in relation to the mixed model fitted:

The residuals from Mixed model 3 have been shown to be consistently smaller and
less variable on average than those obtained from Mixed model 5b. These results are
contrary to what was expected given the results obtained when the models were fitted
using the modelling data. One possible reason for these contrary results is the
formulation of the equations with respect to the stems per kilometre variable. As we
have seen in part six and will see in section 9.5, the mortality model is less than
adequate given the exposed nature of shelterbelt sites. This has been shown to effect
the two basal area models differently. Model 5b (which has shown to fit better than
Model 3 in part two) fits a coefficient to the stocking variable which is multiplied by
the average taper variable. However, model 3 incorporates the stocking parameter
into the rate parameter for the green crown length convex curve. Therefore, the
precision of the results from model 5b are more dependent on correct stocking
estimates being entered into the model. For example, simply fitting the two models
with and without the stocking terms using the modelling data (not allowing for
compounding errors) resulted in a 27.7% decrease in the residual mean square (RMS)
for Model 3 however, a 40.4% decrease in the RMS was seen when model 5b was
fitted with stems per kilometre information. This indicates that the prediction of basal
area increment for model 5b relies more heavily on the stems per kilometre variable
than model 3.

9.4.5 Distribution of the Residuals:

The distribution of the residuals using either the regional or plot level asymptotes for
both models is illustrated in Figures 9-26, 9-27. Skewness is apparent in both
distributions (which was confirmed by the QQ-plots and cumulative density plots
(figures 9-28 - 9-31) ) however the residuals of model 3 was less skewed with
skewness statistics of -0.59 and -0.79 for the regional and plot level models compared
to statistics of -1.44 and -1.65 for model 5b for the regional and plot level models
respectively. Not one of the residual distributions for either model were considered
normal when the Kolmogorov-Smirnov test was used.
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Figure 9-26. Density plot for the residuals for the basal area model 5b. The green line is
obtained using the regional estimates while the pink line was obtained using plot asymptote

estimates.
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Figure 9-27. Density plot for the residuals for the basal area model 3. The black line is obtained
using the regional estimates while the pink line was obtained using plot asymptote estimates.
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solid line is the empirical d.f.

Figure 9-28. Cumulative density plot for residuals from the Regional asymptote basal area model
5b.
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Figure 9-29. Cumulative density plot for residuals from the Regional asymptote basal area model
3.

117



Residuals

T T T
2 ¢ 2

Quantiles of Standard Normal

Figure 9-30. QQ-plot for residuals from the Regional asymptote basal area model 5b.
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Figure 9-31. QQ-plot for residuals from the Regional asymptote basal area model 3.
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9.5 Validation of the Mortality Function:

9.5.1 Fit and Residual Plots:

Predicted Stems per Kilometre
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Figure 9-25. Observed versus fitted values for Stems per Kilometre.
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Figure 9-26. Residual plot for Stems per Kilometre.
9.5.2 Residual Summary Statistics:
Mean SD Min Max N
All data -19.532 42.314 -299.300 13.300 1140

Table 9-3. Residual summary statistics for the Mortality function.
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Figure 9-27. Residual plot with a local regression model versus Age of the stand
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Figure 9-28. Residual plot with a local regression model versus length of prediction interval.
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9.5.3 Discussion:

Figures 9-25 and 9-26 show general underprediction of mortality on average, while
figures 9-27 and 9-28 show the residuals are not highly related to either age, length of
the prediction interval or stocking. Despite the large residuals the error rates did not
rise over 6.1% for any of the age classes (Appendix 8), which corresponded to the 7-9
age group. The best error rate (0.2%) was obtained for the 23-25 age group.

The residuals in relation to stocking class showed a large error rate (15.5%) for the
100-200 stocking group (Appendix 9). This was closely followed by an error rate of
12.3% rate that was associated with the 200-300 stocking group. The best predictions
on average corresponded to the 900-100 stocking class with an error rate of 0.10%.

The error rates when concerned with the length of the prediction interval (Appendix
10) showed to be smallest for prediction terms of 11-12 years (0.32%) while the worst
predictions on average were made for the 5-6 year prediction terms (6.8%). Most
importantly the error rate was not found to increase with increasing prediction

interval.

9.5.4 Distribution of the Residuals:

As expected the residuals for the mortality function were highly skewed (skewness
statistic of -2.89) which further highlights the overprediction of surviving stems per

kilometre.
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Figure 9-30. Distribution of the residuals for the mortality model.

9.5 Conclusions:

The performance of the complete growth model from single starting values invoked
predominantly Mean Top Height, Basal Area increment, Mortality and Average taper
functions. These functions require starting estimates of mean diameter, mean height,
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age, and mortality. These functions were employed simultaneously and predicted
values obtained for each re-measurement of the shelterbelts.

The Mean top Height function produced good results for both the North and South
Islands, with a national residual mean average of only 0.25 metres. In addition, no
significant biases were seen when the errors were related to stocking, age or the length
of the prediction period. The residuals from both the North and South Island models
were also examined and were found to be approximately normally distributed.

The selected Basal Area increment functions produced similar results which were not
significantly affected by stocking, age or the length of prediction period. However,
the validation of Model 3 obtained smaller and less variable residuals on average than
Model 5b. This was thought to be predominantly due to the performance of the
mortality function given the relative contribution of the stocking term to the two
models and thus the relative consequences of incorrect stocking predictions.
Therefore, given the degree of difficulty encountered when mortality modelling is
undertaken in shelterbelts, the implementation of the mortality model within
STANDPAK is often user defined. This feature allows the user to proportionally
increase or decrease the amount of mortality predicted and is designed to re-fine the
stocking predictions. Given the refined nature of the mortality predictions, Model 5b
was chosen as the preferred basal area increment model.
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Appendix [:
Mean Top Height Function: Observed, Predicted and Residual Values for different

age classes:

where MTH= Observed Mean Top Height, P_MTH= Predicted Mean Top Height, RESMTH= Residual

............................................ N T

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 152 5.6585526 1.2616842 3.1000000 9.5000000

P_MTH P_MTH 153 5.4339869 1.1088854 3.1000000 8.5000000

RESMTH 152 0.2184211 0.4392078 -0.6000000 1.7000000
------------------------------------------- AGESE -7 = - e e iaaaaaan

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 265 8.2086792 1.8518726 4.1000000 14.5000000

P_MTH P_MTH 273 8.0703297 1.8369669 4,2000000 13.4000000

RESMTH 265 0.1603774 0.7695285 -1.9000000 2.3000000
------------------------------------------- T <

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 215 10.8981395 2.0290867 6.6000000 16.8000000

P_MTH P_MTH 224 10.9160714 2.2251539 6.1000000 16.5000000

RESMTH 215 -0.0046512 0.9374238 -2.5000000 2.4000000
------------------------------------------ AGESQ-11 = mmmm e e

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 133 13.9631579 2.6930459 7.6000000 20.3000000

P_MTH P_MTH 146 13.8287671 2.8684240 8.0000000 21.8000000

RESMTH 133 0.1511278 1.0941730 -3.0000000 2.8000000
------------------------------------------ AGES11-18 = e el

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 92 15.8010870 3.2954012 8.4000000 23.9000000

P_MTH P_MTH 100 15.83470000 3.2352370 8.9000000 23,7000000

RESMTH 92 0.4336957 0.8434984 -1.4000000 3.0000000
------------------------------------------ AGE=13-15 - - - mmmmm e

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 91 18.1043956 3.2836265 10.1000000 23,0000000

P_MTH P_MTH 100 17.4980000 3.2566321 10.1000000 23.1000000

RESMTH 91 0.8054945 1.1504939 -2.,5000000 3.9000000
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Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 58 19.3879310 3.4513195 11.8000000 26.0000000

P_MTH P_MTH 63 19.3222222 3.3307678 12.3000000 25.,7000000

RESMTH 58 0.1913793 1.4407947 -3.1000000 4.6000000
------------------------------------------ AGE=17-19 =c-cmmmom i e

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 23 26.5434783 3.1502996 19.7000000 34.,4000000

P_MTH P_MTH 33 25,9000000 3.1227992 20.9000000 34,3000000

RESMTH 23 0.2956522 3.0560638 -5.9000000 6.2000000
------------------------------------------ AGE=19-21 cmccmcmeam e e

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 4 18.4750000 0.8655441 17.5000000 19.5000000

P_MTH P_MTH 4 18.7500000 1.4059398 17.3000000 20.1000000

RESMTH 4 -0.2750000 0.6291529 -1.0000000 0.3000000
------------------------------------------ AGE=21-28 - -cocmmmmmmmommm e secsessoeeecn oo

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 21 25.9190476 4,0046996 16.1000000 31.7000000

P_MTH P_MTH 26 24.9653846 3.1842038 17.1000000 28.9000000

RESMTH 21 1.5619048 1.8583531 -1.4000000 5.1000000
------------------------------------------ AGE=28-25 - - - e m e camem e

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 12 22.2916667 4.5127009 15.2000000 29.3000000

P_MTH P_MTH 14 22.5142857 4.3173812 16.9000000 29.7000000

RESMTH 12 0.7666667 1.4208406 -1.7000000 3.5000000
------------------------------------------ AGES25-27 - cmommmmmmmmm e

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 3 20.4000000 1.2288206 19.5000000 21.,8000000

P_MTH P_MTH 3 20.9333333 4.0722639 18.1000000 25.6000000

RESMTH 3 -0.5333333 2.8448784 -3.8000000 1.4000000
------------------------------------------ AGE=27-29 - cmmcmcmmmomm oo

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 1 24.4000000 24,4000000 24.4000000

P_MTH P_MTH 1 20.5000000 20.5000000 20.5000000

RESMTH 1 3.9000000 3.9000000 3.9000000
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Appendix 2:
Mean Top Height Function: Observed, Predicted and Residual Values for different

stocking classes (stems/km) :
where MTH= Observed Mean Top Height, P_MTH= Predicted Mean Top Height, RESMTH= Residual

------------------------------------------ Stems/Kkm =0-100 = emmcmmm e e

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 3 8.7666667 0.9609024 7.9000000 9.8000000

P_MTH P_MTH 5 10.1600000 2.7373345 6.2000000 13.3000000

RESMTH 3 -1.6666667 0.5131601 -2.1000000 -1.1000000
------------------------------------------ STEMS/KM =100-200 - ----mmmmmm o e c e e

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 112 10.8116071 4.9421654 3.6000000 25.5000000

P_MTH P_MTH 121 10.7793388 4.8295086 3.6000000 21.6000000

RESMTH 112 -0.0062500 1.1446138 -3.1000000 4.5000000
------------------------------------------ STEMS/KM =200-300 =« --ccmmmmmmmmemmammmm e e e e e

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 144 9.3833333 4.6305009 3.1000000 25.8000000

P_MTH P_MTH 152 9.4651316 4.7671372 3.1000000 25.8000000

RESMTH 144 0.1020833 0.8679587 -2.5000000 2.4000000
------------------------------------------ STEMS/KM =800-400 === xmmmmmememmmemm oo oo

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 241 12.8746888 5.3455338 3.7000000 28.9000000

P_MTH P_MTH 258 12.7837209 5.3867801 3.7000000 27.2000000

RESMTH 241 0.5190871 0.9144037 -2.3000000 3.0000000
------------------------------------------ STEMS/KM =400-500 ------mrmmmmmm e o e

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 319 13.3959248 6.4709571 3.1000000 34.4000000

P_MTH P_MTH 332 13.2837349 6.3145093 3.3000000 33.9000000

RESMTH 319 0.3589342 1.2039924 -5,3000000 6.2000000
------------------------------------------ STEMS/KM =500-600 =---ccmmocmmm e

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 79 14.0746835 5.5830666 6.8000000 28.4000000

P_MTH P_MTH 94 15.1287234 6.3322968 5.2000000 34.,3000000

RESMTH 79 0.0468354 1.0163832 -5.9000000 2.1000000
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P_MTH

12.6000000
12.7333333
-0.1333333

4.8135226
4.8583262
0.0577350

7.4000000
7.5000000
-0.2000000

16.9000000
17.1000000
-0.1000000

P_MTH

14.3666667
14.3791667
-0.0125000

6.8022162
6.8980766
1.4099992

5.9000000
5.8000000
-2.9000000

26.7000000
27.2000000
3.9000000

P_MTH

13.0605263
13.2794872
0.1842105

6.4130584
6.5755600
0.8870011

6.7000000
5.6000000
-1.5000000

30.3000000
28.6000000
2.6000000

P_MTH

10.2436893
10.3768519
0.0922330

4.1898025
4.,4145386
1.1296095

4.4000000
3.9000000
-3.8000000

21.8000000
25.6000000
2.3000000

P_MTH

8.1750000
7.9250000
0.2500000

2.9375443
3.0793668
0.4795832

4.7000000
4.7000000
-0.3000000

11.4000000
11.7000000
0.7000000
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Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 6 9.,0500000 2.8521921 6.6000000 13.4000000

P_MTH P_MTH 6 8.9666667 2.7645373 6.7000000 12.7000000

RESMTH 6 0.0833333 0.6823977 -0.9000000 1.1000000
------------------------------------------- TIMES0-9 = smmcmc e s cmmmaeeeeem o

variable Label N Mean Std Dev Minimum Maximum

MTH MTH 130 13.6315385 5.0588633 5.,4000000 24,4000000

P_MTH P_MTH 138 13.4188406 4.8802230 5.1000000 25.6000000

RESMTH 130 0.3361538 1.0625407 -3.,8000000 3.9000000
------------------------------------------ TIME=0-12 =ccmecmama e ce o c e

Variable Label N Mean Std Dev Minimum Maximum

MTH MTH 16 14.0812500 5.2636133 7.8000000 25.4000000

P_MTH P_MTH 16 15.1000000 6.0181946 8.1000000 27.9000000

RESMTH 16 -1.0187500 0.9042262 -3.4000000 0
------------------------------------------ TIME=0-13 = cmmcocmmmmmmmmsemmmoommeemm o oae s

variable Label N Mean Std Dev Minimum Maximum

MTH MTH 145 16.8262069 6.5277402 6.8000000 34.4000000

P_MTH P_MTH 166 17.1054217 6.3533743 6.4000000 34,3000000

RESMTH 145 0.4737931 1.3902948 -5,9000000 6.2000000
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Appendix 4:
Basal Area Increment Function: Observed, Predicted and Residual Values for

different age classes:

where BALIVE= Live Basal Area, P_BA = Predicted basal area using regional asymptote estimates,
P_BA2 = Predicted basal area using plot asymptote estimates, RESBA= Residuals for the Basal area
function using regional asymptote estimates and RESBA2 = Residuals for the Basal area function
using plot asymptote estimates.

-------------------------------------------- 1] SR S I

vVariable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 153 4,3807843 2.7827520 0.5000000 12.5900000

P_BA P_BA 153 4,2056863 2.7134959 0.1000000 12.6500000

P_BA2 P_BA 153 4.2624183 2.7225527 0.1000000 12.7400000

RESBA 153 0.1750980 0.8616234 -2.4400000 2.8000000

RESBA2 153 0.1183660 0.8660728 -2.5200000 2.7800000
------------------------------------------- AGE=B -7 mcmemmemee e

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 273 11.2565201 6.5780830 0.9000000 38.0000000

P_BA P_BA 273 11.2398901 6.2854104 0.1000000 32.0100000

P_BA2 P_BA 273 11.3831136 6.3029354 0.1000000 32.2900000

RESBA 273 0.0166300 2,2469068 -6.8000000 7.8400000

RESBA2 273 -0.1265934 2.2521269 -6.8700000 7.5100000
------------------------------------------- e 8 T L R T

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 224 18.8141964 10.4904551 2.7000000 57.6000000

P_BA P_BA 224 20.0442857 9.7337838 1.1400000 47.6300000

P_BA2 P_BA 224 20.3197768 9.7696401 1.2400000 48.0900000

RESBA 224 -1.2300893 4,2878767 -13.8500000 11.6400000

RESBA2 224 -1.5055804 4.2764062 -14.2700000 11.0600000
------------------------------------------- AGE=G-11 -ommmmmm e e e

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 146 26.6159589 12.8732592 4,0000000 68.4000000

P_BA P_BA 146 29.2073288 11.3969093 2.,5500000 56.5200000

P_BA2 P_BA 146 29.6178767 11.4559272 2.7200000 56.6500000

RESBA 146 -2.5913699 5.2887761 -16.1800000 14.6900000

RESBA2 146 -3.0019178 5.2715006 -16.4600000 14.1900000
------------------------------------------ AGE=11-13 -cccmmm e

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 100 31.1490000 12.8391627 10.2200000 66.3400000

P_BA P_BA 100 33.9677000 11.6948012 11.7900000 65.7100000
P_BA2 P_BA 100 34.3377000 11.8891534 11.9000000 66.6100000
RESBA 100 -2.8187000 4.5323011 -18.1400000 5,9400000
RESBA2 100 -3.1887000 4.5654837 -18.8900000 5.2400000
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Variable Label N Mean Std Dev Minimum Maximum
BALIVE BALIVE 3 95.5700000 67.7600598 55.9000000 173.8100000
P_BA P_BA 3 93.1500000 66.5598039 53.8500000 170.0000000
P_BA2 P_BA 3 93.5466667 66.8742382 54,0800000 170.7600000
RESBA 3 2.4200000 1.2468761 1.4000000 3.8100000
RESBA2 3 2.0233333 0.9416121 1.2000000 3.0500000
------------------------------------------ AGE=27-29 v cmcmmccm e e e e c o m s
Variable Label N Mean Std Dev Minimum Maximum
BALIVE BALIVE 1 160.1200000 . 160.1200000 160.1200000
P_BA P_BA 1 144.3300000 . 144.3300000 144.3300000
P_BA2 P_BA 1 145.7500000 . 145.7500000 145.7500000
RESBA 1 15.7900000 . 15.7900000 15.7900000
RESBA2 1 14.3700000 . 14.3700000 14.3700000
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Appendix 7:
Basal Area Increment Functions: Observed, Predicted and Residual Values for

different regions:

where BALIVE= Live Basal Area, P_BA = Predicted basal area using regional asymptote estimates,
P_BA2 = Predicted basal area using plot asymptote estimates, RESBA= Residuals for the Basal area
function using regional asymptote estimates and RESBA2 = Residuals for the Basal area function
using plot asymptote estimates.

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 4 17.7975000 3.8502846 13.9200000 22.3200000

P_BA P_BA 4 15.0300000 2.6698689 12.1600000 18.0000000

P_BA2 P_BA 4 15.1450000 2.7137981 12.2300000 18.1700000

RESBA 4 2.7675000 1.2048617 1.7600000 4,3200000

RESBA2 4 2.6525000 1.1610448 1.6900000 4.1500000
------------------------------------------ REGION= Bay of Plenty----------crecmmmmmmomnmonenno

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 654 29.3453517 28.0128725 0.9000000 148.3600000

P_BA P_BA 654 30.2655810 26.9345866 1.7600000 149.6700000

P_BA2 P_BA 654 30.6635933 27.1978966 1.8000000 149,8300000

RESBA 654 -0.9202294 5.1642708 -19.3200000 21.4600000

RESBA2 654 -1.3182416 5,.1593582 -22.,4600000 19.2000000
------------------------------------------ REGION= Canterbury----------ccrmommmmmc oo s

variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 76 34,0573684 35.3306713 2.8900000 173.8100000

P_BA P_BA 76 37.4523684 35.5489524 3.0800000 170.0000000

P_BA2 P_BA 76 37.7685526 35.6839645 3.1200000 170.7600000

RESBA 76 -3.3950000 7.0587295 -36.9400000 15.7900000

RESBA2 76 -3.7111842 7.1512067 -37.5900000 14.3700000
---------------------------------------- REGION= Hawkes Bay---------commmmmmomnmmmem oo cmm oo e

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 232 23.4478017 16.4483656 0.6000000 64.5800000

P_BA P_BA 232 26.0844397 19.4712207 0.1000000 64.,9500000

P_BA2 P_BA 232 26.3097414 19.5225327 0.1000000 65.3200000

RESBA 232 -2.6366379 7.0788243 -42,6800000 10.2500000

RESBA2 232 -2.8619397 7.1000645 -43.0200000 9.9800000
----------------------------------------- REGION=Manawatu =--------=-cccrmmmmmmrmmma oo

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 30 7.7466667 7.2762596 0.,5000000 29.4000000

P_BA P_BA 30 8.3040000 8.0286206 0.3000000 32.9500000

P_BA2 P_BA 30 8.6446667 8.0848968 0.3200000 33.2500000

RESBA 30 -0.5573333 1.6407272 -4.1600000 3.7100000

RESBA2 30 -0.8980000 1.5370469 -4.3700000 3.,5000000
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Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE SPHLIVE 63 480.2063492 202.6369038 150.0000000 1000.00

P_SPH P_SPH 63 508.1857143 184.9236092 170.8000000 997.8000000

RESSPH 63 -27.9793651 64.7173636 -299.3000000 3.3000000
------------------------------------------ AGE=17-19 « e m e e e e e e e e e

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE SPHLIVE 33 520.6060606 127.6976261 342.0000000 901.,0000000

P_SPH P_SPH 33 541.3060606 119.0713151 424 ,6000000 900. 7000000

RESSPH 33 -20.7000000 35.4658374 -109.4000000 3.5000000
------------------------------------------ AGE=10-21 w o mmmmc oo

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE SPHLIVE 4 476.0000000 374.2735185 139.0000000 800.0000000

P_SPH P_SPH 4 475.8750000 374.1292413 139.0000000 799.8000000

RESSPH 4 0.1250000 0.1500000 0 0.3000000
------------------------------------------ AGE=21-28 - - c e e e e e e

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE  SPHLIVE 26 521.5384615 252.4138238  122.0000000  868.0000000

P_SPH P_SPH 26 529.6307692 259.9746507 122.0000000 867.8000000

RESSPH 26 -8.0923077 20.4981935 -76.7000000 0.4000000
------------------------------------------ AGE=28-25 = - - m s mm i m e oo

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE SPHLIVE 14 363.1428571 146.6465437 122.0000000, 569.0000000

P_SPH P_SPH 14 363.9500000 145.0198806 122.0000000 568.8000000

RESSPH 14 -0.8071429 3.5111831 -13.0000000 0.5000000
------------------------------------------ AGE=25-27 = --=-vemmmmmmmmm e e

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE SPHLIVE 3 630.6666667 234.,1203394 494 ,0000000 901.0000000

P_SPH P_SPH 3 630,0333333 233.3697995 493.8000000 899.5000000

RESSPH 3 0.6333333 0.7505553 0.2000000 1.5000000
------------------------------------------ AGE=27-20 v mmm oo mee e

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE  SPHLIVE 1 800.0000000 . 800.0000000  800.0000000

P_SPH P_SPH 1 798.9000000 . 798.9000000 798.9000000

RESSPH 1 1.1000000 . 1.1000000 1.1000000
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Appendix 9:
Mortality Function: Observed, Predicted and Residual Values for different stocking
classes:
where sphlive=stems per kilometre, p_sph = predicted stems per kilometre, and ressph=residual stems
per km

------------------------------------------ STEMS/KM =0-100 == -c-nmmmmmmmmmmama e meeee e e o

variable Label N Mean Std Dev Minimum Maximum

SPHLIVE SPHLIVE 5 50.0000000 0 50.0000000 50.0000000

P_SPH P_SPH 5 249.3400000 0.2302173 249.1000000 249.7000000

RESSPH 5 -199.3400000 0.2302173 -199.7000000 -199.1000000
----------------------------------------- STEMS/KM =100-200 == --cnmmmmmmmmmommammmmmmmcmme e m

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE SPHLIVE 121 180.8099174 22.2487131 122.0000000 200.0000000

P_SPH P_SPH 121 213.8801653 55.8108899 122.0000000 449.3000000

RESSPH 121 -33.0702479 53.2164599 -299.3000000 1.0000000
----------------------------------------- STEMS/KM =200-300 - ----cncmmmmmmmommmmmmmm oo

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE SPHLIVE 152 251.8750000 31.7294675 202.0000000 300.0000000

P_SPH P_SPH 152 287.3282895 72.0574940 201.0000000 499.5000000

RESSPH 152 -35.4532895 55.4003968 -230.3000000 1.5000000
----------------------------------------- STEMS/KM =300-400 == === xmmmmmmomemeammmam oo oanan

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE SPHLIVE 258 360.8604651 29.2458369 303.0000000 400.0000000

P_SPH P_SPH 258 376.8007752 44.,1321750 302.9000000 499.8000000

RESSPH 258 -15.9403101 33.2416386 -165.2000000 2.2000000
----------------------------------------- STEMS/KM =400-500 - === -=-eememmmmmmmmmmmmommoecccm s

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE SPHLIVE 332 466.1807229 32.9582340 403.0000000 500.0000000

P_SPH P_SPH 332 477.0141566 34.9176469 402.,6000000 562.6000000

RESSPH 332 -10.8334337 24,1070109 -110.6000000 3.5000000
----------------------------------------- STEMS/KM =500-600 - - -« v=nmmcmmmmmmmmmmmmoommeeomecenan

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE SPHLIVE 94 533.9468085 20.3223311 502.0000000 600.0000000

P_SPH P_SPH 94 542,9234043 45.1390740 500.7000000 728.3000000

RESSPH 94 -8.9765957 38.1961756 -194,7000000 3.5000000
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----------------------------------------- STEMS/KM =600-700 == -rnsnmmmmemmmaaeamaaaaaaaaacaamnas

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE SPHLIVE 3 637.6666667 25.4034118 623.0000000 667.0000000

P_SPH P_SPH 3 710.0666667 17.1820643 699.7000000 729.9000000

RESSPH 3 -72.4000000 8.2395388 -77.6000000 -62.9000000
----------------------------------------- STEMS/KM =700-800 - -------nmm-mmmmmmmmmcmcammmcoemoeoe s

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE SPHLIVE 24 758.8333333 26.7283706 701.0000000 800.0000000

P_SPH P_SPH 24 803.4833333 88.5742463 700.8000000 991.7000000

RESSPH 24 -44,6500000 89.8778398 -258.7000000 2.6000000
----------------------------------------- STEMS/KM =800-900 - -----nncmmmmmmmmmmmm oo eceenne o

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE SPHLIVE 39 863.6153846 32,4391052 801.0000000 900.0000000

P_SPH P_SPH 39 914.1564103 60.0677372 800.6000000 995.0000000

RESSPH 39 -50.5410256 35.7984101 -97.7000000 2.8000000
----------------------------------------- STEMS/KM =900-1000 -----cmmcmmmm i e e s

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE SPHLIVE 108 979.2222222 29.0166995 901.0000000 1000.00

P_SPH P_SPH 108 980.1925926 27.1493299 899.5000000 999.4000000

RESSPH 108 -0.9703704 15.7063965 -57.8000000 9.8000000
------------------------------------------- STEMS/KM =>1000 ----cmvmcmmmme oo e e m e

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE  SPHLIVE 4 1067.00 0 1067.00 1067.00

P_SPH P_SPH 4 1057.30 3.4292856 1053.70 1061.50

RESSPH 4 9.7000000 3.4292856 5.5000000 13.3000000
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Appendix 10:
Mortality Function: Observed, Predicted and Residual Values for different length of
prediction intervals:
where sphlive=stems per kilometre, p_sph = predicted stems per kilometre, and ressph=residual stems
per km

------------------------------------------- TIMES0-1 wwmmmme e mmme e e oo e oo oo
Variable Label N Mean Std Dev Minimum Maximum
SPHLIVE SPHLIVE 38 443.5526316 244,5948329 160.0000000 1000.00
P_SPH P_SPH 38 446.6631579 243.4521946 172.7000000 997.0000000
RESSPH 38 -3.1105263 10.2772062 -43.4000000 3.2000000

------------------------------------------- TIMES0-2 =o-ccmmmemc e smmccca e emmam e
Variable Label N Mean Std Dev Minimum Maximum
SPHLIVE SPHLIVE 77 449,2077922 213.2605484 122.0000000 1000.00
P_SPH P_SPH 77 461.9545455 208.1246353 122.0000000 996.7000000
RESSPH 77 -12.7467532 26.6916781 -110.4000000 6.7000000

------------------------------------------- TIMEZ0=3 - - cmcmmmmcsma e e e e
Variable Label N Mean Std Dev Minimum Maximum
SPHLIVE SPHLIVE 208 480.4759615 233.5880792 150.0000000 1000.00
P_SPH P_SPH 208 492.6187500 234,8890205 166.7000000 999. 1000000
RESSPH 208 -12.1427885 29.3624978 -133.5000000 5.0000000

------------------------------------------- TIMEZ0-4 - - - mmeem e e e c oo ee e
Variable Label N Mean Std Dev Minimum Maximum
SPHLIVE SPHLIVE 120 412.2333333 237.5480043 126.0000000 1067.00
P_SPH P_SPH 120 435,8266667 223.2379665 139.0000000 1061.50
RESSPH 120 -23.5933333 50.2147769 -299.3000000 13.3000000

------------------------------------------- TIME=Z0-5 = - cccemmmmamemmm oo mem e e e
variable Label N Mean Std Dev Minimum Maximum
SPHLIVE SPHLIVE 171 465,9883041 295.4165949 50.0000000 1000.00
P_SPH P_SPH 171 495,7035088 285,7838346 170.8000000 999. 4000000
RESSPH 171 -29.7152047 62.1999991 -258,7000000 9.0000000

------------------------------------------- TIMES0-6 == cnmceemmemmmmccaacammamamm e e mememeen
Variable Label N Mean Std Dev Minimum Maximum
SPHLIVE SPHLIVE 200 498.2300000 281,7510521 167.0000000 1000.00
P_SPH P_SPH 200 534,6040000 279.9737583 199. 1000000 997.1000000
RESSPH 200 -36.3740000 51.0625267 -230.3000000 9.8000000

141



Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE  SPHLIVE 6  349.0000000 19.6265127  313.0000000  365.0000000

P_SPH P_SPH 6 360.9500000 3.8365349 357.0000000 364.8000000

RESSPH 6 -11.9500000 17.2383004 -44.0000000 0.4000000
------------------------------------------- TIME=0-9Q --cemmmomm e e

Variable Label N Mean Std Dev Minimum Maximum

SPHLIVE  SPHLIVE 138 368.3188406 156.3013179 195.0000000 901.0000000

P_SPH P_SPH 138 376.6920290 159.1345572 194.0000000 900.7000000
RESSPH 138 -8.3731884 16.0816509 -77.6000000 2.2000000
------------------------------------------ TIMES0-12 - cnmsocmommcomcmmmmmmsesmoscmecmcoann
Variable Label N Mean Std Dev Minimum Max imum

SPHLIVE  SPHLIVE 16 481.5000000 19.1067178  463.0000000 500.0000000

P_SPH P_SPH 16 479.9562500 19.0376808 460.3000000 499.,6000000

RESSPH 16 1.5437500 0.7571603 0.3000000 3.0000000
------------------------------------------ TIME=0-183 - -vcvmmrmmmmmmmmmmmmeo o mmmeo o

Variable Label N Mean Std Dev Minimum Max imum

SPHLIVE SPHLIVE 166 490.9698795 44,7131497  342.0000000 565,0000000
P_SPH P_SPH 166 504.5295181 34.7841226  424.6000000 564,6000000
RESSPH 166 -13.5596386 30.8555441 -110.6000000 3.5000000
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Appendix 11:
Alternative Basal Area Increment Function: Observed, Predicted and Residual values

for different age classes.
where BALIVE= Live Basal Area, P_BA = Predicted basal area using regional asymptote estimates,
P_BA2 = Predicted basal area using plot asymptote estimates, RESBA= Residuals for the Basal area
function using regional asymptote estimates and RESBA2 = Residuals for the Basal area function
using plot asymptote estimates.

............................................ AGES<S5 = cvemmmmmmmmmmm e mm e e e

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 153 4,3807843 2.7827520 0.5000000 12.5900000

P_BA P_BA 153 4.7341176 2.4112506 1.0800000 11.5600000

P_BA2 P_BA 153 4.8493464 2.4496194 1.1200000 11.9000000

RESBA 153 -0.3533333 0.9189790 -2.6600000 3.2200000

RESBA2 153 -0.4685621 0.9108451 -2.7800000 3.0600000
------------------------------------------- AGE=5-7 ----mmmm it e o

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 273 11.2565201 6.5780830 0.9000000 38.0000000

P_BA P_BA 273 11.2913553 5.9080211 2.4100000 33.1600000

P_BA2 P_BA 273 11.5241026 5.9739513 2.5300000 33.8100000

RESBA 273 -0.0348352 2.2660096 -10.3400000 8.2800000

RESBA2 273 -0.2675824 2,2790099 -10.8800000 7.7000000
------------------------------------------- AGE=7-9Q --mcmm e e e a o

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 224 18.8141964 10.4904551 2.7000000 57.6000000

P_BA P_BA 224 19.3840625 9.5721370 5.2700000 48,5100000

P_BA2 P_BA 224 19.8095536 9.7060589 5.4200000 49.5200000

RESBA 224 -0.5698661 4,2071716 -15.1100000 13.0500000

RESBA2 224 -0.9953571 4.,2324938 -15.9700000 12.3300000
------------------------------------------- AGE=9-11 =cmmmmmmm e

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 146 26.6159589 12.8732592 4,0000000 68.4000000

P_BA P_BA 146 27.6861644 11.0535436 8.3200000 55.9900000

P_BA2 P_BA 146 28.2607534 11.1912764 8.5800000 57.1900000

RESBA 146 -1.0702055 5.0915315 -17.5600000 15.2000000

RESBA2 146 -1.6447945 5.0724958 -18.5900000 14.7100000
------------------------------------------ AGE=11-13 - cmmmmm e

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 100 31.1490000 12.8391627 10.2200000 66.3400000

P_BA P_BA 100 31.9751000 10.3983349 10.9300000 57.9500000

P_BA2 P_BA 100 32.4304000 10.5906350 11.0000000 58.1900000

RESBA 100 -0.8261000 4.0217479 -14.,5000000 11.1500000

RESBA2 100 -1.2814000 3.8299128 -14.6600000 9.4200000
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Variable Label N Mean Std Dev Minimum Maximum
BALIVE BALIVE 100 39.1607000 13.5014861 12.5000000 75.2000000
P_BA P_BA 100 42.1753000 10.6355836 16.8400000 64.0900000
P_BA2 P_BA 100 42,6969000 10.8239190 17.0700000 65.2800000
RESBA 100 -3.0146000 5.8081187 -24.0300000 11.1100000
RESBA2 100 -3.5362000 5.6913276 -24.,3600000 9.9200000
------------------------------------------ AGE=15-17 ---cmmmme i e m e e e m e m o e
Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 63 49.7123810 18.1516810 17.6000000 87.8200000

P_BA P_BA 63 53.8017460 12.5589855 21.9600000 77.3700000

P_BA2 P_BA 63 54,4204762 12.8099508 22.3300000 78.6100000

RESBA 63 -4,0893651 10.2661811 -38.8000000 15.5900000

RESBA2 63 -4,7080952 10.1452968 -39.3100000 14.5300000
------------------------------------------ AGE=17-19 ---cmccmm i et s

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 33 88.4921212 16.0424614 59.7900000 131.3300000

P_BA P_BA 33 84.5978788 11.9349528 69.5200000 123.3000000

P_BA2 P_BA 33 85.9893939 11.7052363 70.9100000 123.4200000

RESBA 33 3.8942424 10.2169388 -14.1800000 19.0800000

RESBA2 33 2.5027273 10.1414860 -14.7700000 17.4100000
----------------------------------------- AGE=19-21 w-cemmec i

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 4 70.4225000 50.0055026 25.7000000 119.0900000

P_BA P_BA 4 67.5450000 46.,7226430 25.1900000 109.9600000

P_BA2 P_BA 4 67.6250000 46.,7235055 25.2700000 110.0700000

RESBA 4 2.8775000 4.2661409 -0.1500000 9.1300000

RESBA2 4 2.7975000 4,2495127 -0.2300000 9.0200000
------------------------------------------ AGE=21-23 ~cccmmmmmm e e e me e e s e

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 26 101.1907692 35.9378155 27.9500000 148.3600000

P_BA P_BA 26  100.4465385 35.1544987 27.4900000 148.2100000

P_BA2 P_BA 26 100.5807692 35.1238778 27.6500000 148.3600000

RESBA 26 0.7442308 3.9779062 -10.6000000 6.0300000

RESBA2 26 0.6100000 4.0723536 -11.1400000 5.9100000
------------------------------------------ AGE=283-25 ---cmrmmem oo o m

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 14 71.5221429 32.4012759 29.4900000 130.8700000

P_BA P_BA 14 71.1128571 29,7482388 31.6900000 123.6500000
P_BA2 P_BA 14 71.3078571 29.7331965 32.0100000  123.8200000
RESBA 14 0.4092857 4.0626033 -9.8500000 7.2200000
RESBA2 14 0.2142857 4.1391465 -10.4200000 7.0500000
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BALIVE BALIVE 95.5700000 67.7600598 55.9000000 173.8100000

3
P_BA P_BA 3 87.8433333 52,9844735 56.6100000 149.0200000
P_BA2 P_BA 3 88.0966667 53.1721594 56.7500000 149.4900000
RESBA 3 7.7266667 14.7775855 -0.9000000 24.7900000
RESBA2 3 7.4733333 14.5899840 -1.0500000 24.3200000

----------------------------------------- AGE=27-29 --emccmmmme i m s m e mm e mm e
variable Label N Mean Std Dev Minimum Maximum
BALIVE BALIVE 1 160.1200000 . 160.1200000 160. 1200000
P_BA P_BA 1 133. 1600000 . 133.1600000 133. 1600000
P_BA2 P_BA 1 133.6100000 . 133.6100000 133.6100000
RESBA 1 26.9600000 . 26.9600000 26.9600000
RESBA2 1 26.5100000 . 26.5100000 26.5100000
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Appendix 12:
Alternative Basal Area Increment Function: Observed, Predicted and Residual values

for different stocking classes.
where BALIVE= Live Basal Area, P_BA = Predicted basal area using regional asymptote estimates,
P_BA2 = Predicted basal area using plot asymptote estimates, RESBA= Residuals for the Basal area
function using regional asymptote estimates and RESBA2 = Residuals for the Basal area function
using plot asymptote estimates.

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 5 2,5800000 1.1945711 0.9000000 4.0000000

P_BA P_BA 5 10.3740000 5.5234482 2.7600000 17.0600000

P_BA2 P_BA 5 10.6720000 5.6965533 2.8200000 17.5700000

RESBA 5 -7.7940000 4.,3293510 -13.0600000 -1.8600000

RESBA2 5 -8.0920000 4.5024571 -13.5700000 -1.9200000
----------------------------------------- STEMS/KM =100-200 ---------mmmm o mm e m e m e m o m e

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 121 11.4442975 9.5355022 0.6000000 53.3400000

P_BA P_BA 121 13.4560331 11.6218788 1.1900000 56.6000000

P_BA2 P_BA 121 13.8273554 11.7166949 1.2400000 57.1100000

RESBA 121 -2.0117355 5.8381905 -38.8000000 3.3500000

RESBA2 121 -2.3830579 5.8885473 -39.3100000 2.9300000
----------------------------------------- STEMS/KM =200-8300 ---------cmmmmmm e m e mmm i m e mm e e o

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 152 11.6444737 12.6707902 0.5000000 77.7700000

P_BA P_BA 152 13.1615132 14.1973036 1.0800000 77.1300000

P_BA2 P_BA 152 13.4926316 14.3361956 1.1200000 77.3100000

RESBA 152 -1.5170395 4,7858099 -28.1700000 7.9800000

RESBA2 152 -1.8481579 4,8018845 -28.6800000 6.4200000
----------------------------------------- STEMS/KM =300-400 --vcvmcmommmmmm o e e oo

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 258 23.0201938 18.3149811 1.1000000 104.8100000

P_BA P_BA 258 24,2752713 18.7833878 1.8300000 103.9800000

P_BA2 P_BA 258 24.6800388 18.9433743 1.9100000 104.1500000

RESBA 258 -1.2550775 4.0402128 -14.1500000 11.1500000

RESBA2 258 -1.6598450 4.0818701 -14.9300000 9.4200000
----------------------------------------- STEMS/KM =400-500 -----c-cmmmmmmmmmemccammmmmcme o m

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 332 29.5341867 24,7852097 1.1000000 130.8700000

P_BA P_BA 332 29.7659940 23.7091149 2.0900000 123.6500000

P_BA2 P_BA 332 30.1654819 23.9750297 2.1500000 123.8200000

RESBA 332 -0.2318072 4.0214100 -10.5100000 18.1900000

RESBA2 332 -0.6312952 3.9440936 -11.9200000 16.8600000
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----------------------------------------- STEMS/KM =500-600 === === snnermrmroamomammamanmanannnn

Variable Label N Mean Std Dev Minimum Maximum
BALIVE BALIVE 94 38.4384043 30.4327297 5.6100000 127.9800000
P_BA P_BA 94 36.5931915 26.5328355 6.2100000  121.9500000
P_BA2 P_BA 94 37.1113830 26.9016382 6.2800000 122.1100000
RESBA 94 1.8452128 6.1289587 -17.5600000 19.0800000
RESBA2 94 1.3270213 5.8800451 -18.5900000 17.4100000

variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 3 34.9600000 26.8261309 6.6000000 59.9300000

P_BA P_BA 3 40.9466667 28.0562298 12.7400000 68.8500000

P_BA2 P_BA 3 41.2666667 28.2001708 13.0100000 69.4100000

RESBA 3 -5.9866667 3.0129277 -8.9200000 -2.9000000

RESBA2 3 -6.3066667 3.2262414 -9.4800000 -3.0300000
----------------------------------------- STEMS/KM =700-800 ------cmcmmmmm e mmmmm e m e m o mm e

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 24 58.3254167 49,0245372 3.5000000 160.1200000

P_BA P_BA 24 59.0854167 44,8437575 6.1600000 141.5600000

P_BA2 P_BA 24 59.4316667 44.,7930314 6.2800000 141.7100000

RESBA 24 -0.7600000 9.2723249 -14.1800000 26.9600000

RESBA2 24 -1.1062500 9.3107352 -14.7700000 26.5100000
----------------------------------------- STEMS/KM =800-800 --------cccrmmmmmm o m oo o

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 39 50.9879487 41.,2875128 10.5500000 148.3600000

P_BA P_BA 39 48.6948718 41.,2639270 12.6300000 148.2100000
P_BA2 P_BA 39 49.0789744 41.1968072 12.8000000 148.3600000
RESBA 39 2.2930769 6.5747260 -7.9700000 15.2000000
RESBA2 39 1.9089744 6.4098217 -8.4700000 14.7100000

----------------------------------------- STEMS/KM =900-1000 = -« -« - memmmmmmmmm e emacnoe

Variable Label N Mean Std Dev Minimum Maximum
BALIVE BALIVE 108 29.6691667 24.7316996 3.5000000 173.8100000
P_BA P_BA 108 30.4343519 23,5530807 4.9700000  149.0200000
P_BA2 P_BA 108 30.8212037 23.6545062 5.0600000  149.4900000
RESBA 108 -0.7651852 4.6443449 -10.9700000 24,7900000
RESBA2 108 -1.1520370 4.7144889 -11.3800000 24.3200000

Variable Label N Mean Std Dev Minimum Maximum
BALIVE BALIVE 4 16.1500000 10.7413531 4,7000000 29.4000000
P_BA P_BA 4 17.2050000 10.6172988 5.8400000 29.7400000
P_BA2 P_BA 4 17.7450000 10.9786292 6.0000000 30.7100000
RESBA 4 -1.0550000 0.7583095 -2.0800000 -0.3400000
RESBA2 4 -1.5950000 0.7964295 -2.7700000 -1.0000000
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Appendix 13:
Alternative Basal Area Increment Function: Observed, Predicted and Residual values

for different length of prediction periods:
where BALIVE= Live Basal Area, P_BA = Predicted basal area using regional asymptote estimates,
P_BA2 = Predicted basal area using plot asymptote estimates, RESBA= Residuals for the Basal area
function using regional asymptote estimates and RESBA2 = Residuals for the Basal area function
using plot asymptote estimates.

------------------------------------------- TIMEZ0-1 -ococomeme e et o

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 38 14.3444737 13.6775724 2.5000000 67.1900000

P_BA P_BA 38 15.7700000 15.6277636 2.9100000 81.3700000

P_BA2 P_BA 38 15.9305263 15.7097412 3.0000000 81.9600000

RESBA 38 -1.4255263 3.1089119 -14.1800000 4.8000000

RESBA2 38 -1.5860526 3.2103360 -14.7700000 4,6400000
------------------------------------------- TIME=0-2 ---ccrmemmcm e e e e m e m e m e

Variable Label N Mean Std Dev Minimum Max imum

BALIVE BALIVE 77 51.8561039 49.0005478 0.6600000 148.3600000

P_BA P_BA 77 50.8819481 48.1056211 1.3100000 148.2100000

P_BA2 P_BA 77 51.0497403 48,0750000 1.3800000 148.3600000

RESBA 77 0.9741558 2.3094693 -3.7500000 7.2200000

RESBA2 77 0.8063636 2.3260826 -3.8900000 7.0500000
------------------------------------------- TIME=0-3 -omcmmmmmo et e e o

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 208 16.8165865 13.9633593 1.9300000 63.1000000

P_BA P_BA 208 17.4577885 13.4941720 2.3300000 60.5600000

P_BA2 P_BA 208 17.6815385 13.5409883 2.3900000 61.0600000

RESBA 208 -0.6412019 3.1629652 -10.9700000 15.2000000

RESBA2 208 -0.8649519 3.1420974 -11.3800000 14.7100000
------------------------------------------- TIME=0-4 -c-c-rmmmmmm oo o

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 120 20.3097500 15.0214582 0.5000000 55,8000000

P_BA P_BA 120 23.1479167 17.1498204 1.1400000 58.4600000

P_BA2 P_BA 120 23.4685000 17.2178187 1.1900000 58,9700000

RESBA 120 -2.8381667 6.5256478 -38.8000000 9.4400000

RESBA2 120 -3.1587500 6.5420981 -39.3100000 8.7500000
------------------------------------------- TIME=0-5 ---ccmmmmiee oo e

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 171 20.3673099 15.6108953 0.6000000 64.5800000

P_BA P_BA 171 22.0042690 16.8002622 1.0800000 61.8300000

P_BA2 P_BA 171 22.3252632 16.8635826 1.1200000 62.2500000

RESBA 171 -1.6369591 5.1588593 -28.1700000 13.0500000

RESBA2 171 -1.9579532 5.1632036 -28.6800000 12.3300000
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Appendix 14:
Alternative Basal Area Increment Function: Observed, Predicted and Residual values

for different regions:
where BALIVE= Live Basal Area, P_BA = Predicted basal area using regional asymptote estimates,
P_BA2 = Predicted basal area using plot asymptote estimates, RESBA= Residuals for the Basal area
function using regional asymptote estimates and RESBA2 = Residuals for the Basal area function
using plot asymptote estimates.

vVariable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 4 17.7975000 3.8502846 13.9200000 22.3200000

P_BA P_BA 4 14.7950000 2.5300395 12.1200000 17.5200000

P_BA2 P_BA 4 14.9200000 2.5689816 12.2100000 17.6800000

RESBA 4 3.0025000 1.3558853 1.8000000 4.8000000

RESBA2 4 2.8775000 1.3203125 1.7100000 4.6400000
------------------------------------------ REGION=Bay of Plenty---------wcwvmmmmmrommmmnanamee s

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 654 29.3453517 28.0128725 0.9000000 148.3600000

P_BA P_BA 654 29.2621713 26.4944829 2.1200000 148.2100000

P_BA2 P_BA 654 29.7520336 26.6998483 2.1900000 148.3600000

RESBA 654 0.0831804 4,7398702 -17.5600000 19.0800000

RESBA2 654 -0.4066820 4,6959211 -18.5900000 17.4100000
------------------------------------------ REGION=Canterbury-----------summrmmmmmma e m e s

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 76 34,0573684 35.3306713 2.8900000 173.8100000

P_BA P_BA 76 36.2617105 32.3022099 4,1000000 149.0200000

P_BA2 P_BA 76 36.5161842 32.3472302 4.1800000 149.4900000

RESBA 76 -2.2043421 6.2034312 -14,1800000 26.9600000

RESBA2 76 -2.4588158 6.2835512 -14,9300000 26.5100000
---------------------------------------- REGION=Hawkes Bay------«---woccomnrmmr oo mmm e s

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 232 23.4478017 16.4483656 0.6000000 64.5800000

P_BA P_BA 232 25.6079310 18.1360532 1.0800000 61.8300000

P_BA2 P_BA 232 25.9165948 18.2018458 1.1200000 62.2500000

RESBA 232 -2.1601293 6.3084273 -38.8000000 13.0500000

RESBA2 232 -2.4687931 6.3138464 -39.3100000 12.3300000
----------------------------------------- REGION=Manawatu-----«--=-cmommmmmmmmommmmm oo mon s

variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 30 7.7466667 7.2762596 0.5000000 29.4000000

P_BA P_BA 30 8.4963333 6.8541523 1.1400000 29.7400000

P_BA2 P_BA 30 8.8303333 7.0644830 1.1900000 30.7100000

RESBA 30 -0.7496667 1.1992972 -2.3900000 3.1500000

RESBA2 30 -1.0836667 1.1817914 -2.9000000 2.6900000
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Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 24 5.6712500 4.4488800 0.6600000 19.6000000

P_BA P_BA 24 5.6279167 3.7692705 1.3100000 16.7700000

P_BA2 P_BA 24 5.8337500 3.8737767 1.3800000 17.2500000

RESBA 24 0.0433333 1.0703135 -1.8800000 2.8300000

RESBA2 24 -0.1625000 1.0302648 -2.1900000 2.3500000
----------------------------------------- REGION=Northland---------c-c-rmmmmm e e s

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 15 10.0953333 7.3239323 2.6200000 28.1100000

P_BA P_BA 15 10.7246667 7.3728071 2.9100000 29.4200000

P_BA2 P_BA 15 10.8853333 7.4734233 3.0000000 29.9100000

RESBA 15 -0.6293333 0.6877029 -1.8900000 0.5100000

RESBA2 15 -0.7900000 0.7182021 -2.0200000 0.2600000
----------------------------------------- REGION=Taranaki-------c-mcvocmmmmmno oo e

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 40 9.3150000 5.2753170 2.0300000 23.3100000

P_BA P_BA 40 10.8845000 6.0033123 2.8300000 26.9500000

P_BA2 P_BA 40 11.0642500 6.0786768 2.8900000 27.3600000

RESBA 40 -1.5695000 2.0326778 -10.9700000 0.8800000

RESBA2 40 -1.,7492500 2.0709497 -11.3800000 0.5500000
----------------------------------------- REGION=Wairarapa--------------c-c-mmmmmmmmononmnon

Variable Label N Mean Std Dev Minimum Maximum

BALIVE BALIVE 65 16.9790769 7.6471577 1.9300000 33.2400000

P_BA P_BA 65 18.1789231 8.1408737 2.3300000 35.3500000

P_BA2 P_BA 65 18.3993846 8.1942365 2.3900000 35.6100000

RESBA 65 -1.1998462 1.7511144 -4,9600000 3.3400000

RESBA2 65 -1.4203077 1.7015627 -5.2400000 2.6500000
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