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Executive Summary 

Remotely sensed data are widely used in the forestry sector. These data have largely been 
sourced from satellite or airborne sensors. Recently, unmanned aerial vehicles (UAVs) have 
emerged as a new platform for acquiring remotely sensed data. In contrast to satellites and 
aircraft, UAVs are relatively inexpensive and can be rapidly deployed to collect data with high 
frequency. These craft have restricted flight times and payload capacity, limiting the potential 
range of applications and the type of sensors that can be carried. These attributes are likely to 
see UAVs fill a niche for the collection of remote sensing data to serve a variety of novel 
applications. This report presents findings from a study conducted by Scion investigating the 
roles and cost efficacy of UAVs for data collection as well as four potential applications 
highlighted by the forest industry. The applications for UAV imagery investigated were: 1) 
identification and mapping of wind-damaged forest to plan for value recovery; 2) identification 
and mapping of cutover areas; 3) assessment of post-planting stocking and survival; 4) post-
harvest waste assessment.  
 
A survey of commercial providers was conducted to contrast costs for airborne, satellite, and 
UAV remote sensing data. Aircraft was the only practical and cost-effective means of collecting 
LiDAR data for forestry. Costs were strongly impacted by the area and pulse density required, 
with prices varying from $2-5/ha for large, low-density campaigns up to $15-20/ha for small or 
specialist campaigns. Satellites were the most cost effective for imagery, providing 100 ha for 
as little at $1.50; however, large minimum order areas and the coarse spatial resolution limited 
the range of applications for these data. Aerial imagery with higher spatial resolution cost from 
$10-20/ha but also required minimum areas and both platforms could require significant delays 
between order and collection. UAVs offered acquisition of RGB and multispectral data with very 
high spatial and temporal resolution. Prices varied significantly depending on the data, craft, 
and processing required. Fixed wing craft could capture RGB imagery for $3-10/ha over areas 
of up to 100 ha or even 2000 ha for some larger fixed-wing craft. Multirotors offered very high 
resolution imagery, easy deployment, and moderate payload capacity at the expense of range. 
UAVs had no minimum order area and could be deployed within hours to capture data. Basic 
craft and sensors could be purchased and operated for under $5000 or crews and craft could be 
hired for a fixed rate of $2500-$3000 per day. UAVs serve a niche for rapid and cost-effective 
collection of imagery over small to moderate areas using less-sophisticated sensors. 
 
Wind damage is a major risk to planted and natural forests in New Zealand and effective 
mapping and planning can assist with damage assessment and value recovery. A fixed wing 
UAV was used to collect RGB imagery over a wind-damaged forest in the Nelson region. These 
data could be accurately classified into affected / unaffected areas using simple methods such 
as Mahalanobis classification. This approach produced similar estimates to manual mapping 
(10.8 ha cf. 9 ha). The process correctly identified wind-damaged areas missed during manual 
mapping and provided finer detail for updating stand records. Overall, UAV imagery appeared 
useful for rapid assessment of post-storm wind damage in forests. A multirotor craft provided 
much higher resolution RGB imagery to test stem detection over the same site. An object-based 
image analysis performed on a filtered and transformed version of the scene was largely 
successful in delineating stems on the ground and appeared to show promise for obtaining stem 
counts with further refinements. 
 
Cutover assessment is important for monitoring progress during harvest operations and for 
updating stand records after harvesting is complete. A series of images showing forested and 
recently harvested areas were used to develop methods for detecting the boundary between 
forest and cutover. A computationally simple colour space transformation provided mean 
classification accuracy of 83.2%; however, more complex classification using support vector 
machines provided superior accuracy of 90.2%. The edge-detection and tracking algorithm 
showed a mean deviation of 2.4 m from the actual boundary when applied to pre-recorded test 
data. A collaborative project with the University of Canterbury led to the development of an 
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affordable custom UAV equipped with a video camera and programmable navigation system.  
The UAV was successfully programmed to apply the edge-detection algorithm in real-time to 
detect and follow the edge of a recently harvested site in Canterbury. The results showed that 
imagery from inexpensive UAVs could be used to accurately map forest cutover and the UAV 
system developed showed potential for regular, automated updating of the cutover boundary 
using inexpensive UAVs.  
 
Post-planting assessment is important to ensure initial planting has reached the target stocking 
and to assess survival in order to fill areas with high mortality during the next planting season. 
RGB imagery was acquired at a test site to trial a range of methods for counting seedlings 
younger than 1 year. Object-based approaches using the spectral properties of seedlings in 
combination with contrast features had a precision of 83% and sensitivity of 86%. A method 
based on the normalised cross-correlation coefficient between image windows and a template 
derived from a large training sample improved on these results. The method had a sensitivity of 
89% while the precision of the classifier was 92%. Both methods used only RGB data, but the 
addition of multispectral data from higher-resolution sensors is likely to significantly improve 
these approaches. 
 
Post-harvest waste assessment is traditionally conducted using the line intersect method (LIM) 
to compute a residual volume of timber left unrecovered on the site. RGB imagery from a UAV 
was acquired over a recently harvested area and used to develop a very high resolution 
orthomosaic. Measurements obtained using traditional ground-based LIM methods and digitised 
measurements obtained from the UAV imagery were compared. The length, intercept diameter, 
and large and small end diameters all showed strong agreement. Measuring length using 
imagery produced the highest error (mean difference of 9.9 cm). Volumes calculated from the 
field and image-based measurements agreed strongly (R2 = 0.95) with a mean difference of 
0.02 m3. Traditional LIM methods computed using the cross-sectional diameters extracted from 
the field and image-based measurement of pieces along 16 transects showed strong 
agreement. Overall, UAV-derived imagery appeared well suited to the estimation of post-
harvest waste volumes. Further testing and development may validate several apparent 
advantages offered by this approach. 
 
Overall, the results from this study showed that UAVs fill a niche in terms of remote sensing 
data that is not currently served by other platforms. As such, UAVs are likely to complement 
rather than replace traditional remote sensing methods. The results from this study showed 
UAV imagery to be useful at the proof of concept level for all of the potential applications 
highlighted for investigation. The rapid development of methods, craft, and sensors are likely to 
see greatly expanded uses for UAVs within the forest industry in the future. 
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Introduction and Overview 

Remote sensing is widely used in the management of both natural and planted forests for 
a range of applications (Holmgren & Thuresson, 1998; J. C. White et al., 2016). In New 
Zealand, many companies use remote sensing for tasks ranging from mapping and health 
assessment using imagery to inventory and harvest planning using LiDAR (Morgenroth & 
Visser, 2013). These applications traditionally rely on remotely sensed data from aircraft 
and satellite platforms. The sensors carried by these platforms are often expensive, 
sophisticated, and tasked on-demand with the costs of data acquisition often reflecting 
these facts. Recently, unmanned aerial vehicles have emerged as a new platform for data 
acquisition. These craft are often inexpensive and many can only carry light payloads for a 
limited time. However, the low cost and capability for rapid deployment mean that UAVs 
are increasingly being used across a range of disciplines (Grenzdörffer, Engel, & Teichert, 
2008; Pajares, 2015; Wallace, Musk, & Lucieer, 2014). Scion has been running a UAV 
research programme exploring a wide range of applications for UAVs. This report 
examines the cost efficacy and potential roles that UAVs might play within the forestry 
sector. Proof of concept studies were conducted to address four potential applications for 
UAVs highlighted by the forestry sector and Scion researchers. These include: 1) 
identification and mapping of wind-damaged forest to plan for value recovery; 2) 
identification and mapping of cutover areas; 3) assessment of post-planting stocking and 
survival; 4) post-harvest waste assessment. The studies were wide-ranging and focused 
primarily on assessing the practicality and potential for UAV-acquired data to assist with 
the highlighted applications. The studies also deliberately included the use of a wide 
range of UAVs, sensors, image analysis tools, and different forest types to reflect the 
varied roles and environments these platforms are likely to operate in across the forestry 
sector. 
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Roles and Cost Efficacy of UAVs 

 

Background 
Forest management in New Zealand makes extensive use of remotely sensed data, with 
high-resolution aerial imagery for mapping activities being the leading application for many 
forest companies (Morgenroth & Visser, 2013). Airborne laser scanning (ALS or LiDAR) 
has also been adopted for an increasingly broad range of applications such as forest 
inventory. However, the key use of LiDAR for many companies remains the ability to 
extract a high-resolution digital terrain model (DTM) below the canopy for use in harvest 
planning and engineering. Satellite imagery has seen less uptake; however, some 
companies have found applications for the increased spectral resolution available from 
modern sensors in assessments of health and disturbance (Morgenroth & Visser, 2013). 
 
Until recently, remotely sensed data for forestry was nearly exclusively acquired from 
aircraft, primarily fixed wing aeroplanes with occasional use of helicopters for some tasks. 
In the last 30 years, satellites have also played an increasingly important role but offer 
limited spatial resolution. More recently, UAVs have emerged as a new source of remotely 
sensed data. The technological capabilities of these craft now allow a range of sensors to 
be flown along precise pre-determined flight paths. These craft are typically much smaller 
than fixed wing aeroplanes or helicopters and can fly at considerably lower altitudes. The 
cost of these craft has also decreased and both fixed wing and multirotor models typically 
require much less preparation and planning and can be launched and landed in much 
smaller areas. The usefulness of aerial RGB imagery within forestry is of particular 
interest with regards to UAVs as these craft have evolved with RGB capture as a 
fundamental capability. 
 
The flexibility of UAVs and the provision of key products such as RGB and multispectral 
data would appear to make UAVs well suited to a range of forestry-related remote sensing 
tasks. However, UAV technology has practical and technical limitations that restrict the 
range of tasks that these platforms are suited to in the forestry context. For example, most 
civilian craft are severely limited in terms of the sensor payload they can accommodate 
and regulatory restrictions and uncertainty further constrain the range of potential 
applications. 
 
As part of this research report, a survey of satellite, aerial, and UAV suppliers was 
conducted. The purpose of this survey was to identify and compare costs, services, and 
operational considerations for each of these platforms, especially in terms of applications 
within the forestry sector. A range of suppliers from New Zealand and Australia were 
surveyed to collect these data. Providers ranged from general contract providers covering 
many industries to highly specialised operators providing niche services to the forestry 
sector. Businesses ranged in scale from individual operators with a small number of UAVs 
to larger organisations with several fixed wing aircraft. Telephone interviews were wide-
ranging but all conversations covered the costs, platform constraints and advantages, and 
primary uses within forestry. Many respondents preferred cost information to remain 
anonymous. To accommodate this, cost information (excluding satellite data) was pooled 
and converted to indicative bands. In every case, providers indicated a high variance in 
prices, with actual costs depending strongly on factors such as location, weather, job size, 
service level, and many other factors. Therefore, costs can only be considered as 
indicative and are intended only as a general guideline to compare cost efficacy of 
different platforms. 
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Satellite imagery 
A recent survey indicated limited use of satellite imagery in the New Zealand forestry 
sector, with companies usually acquiring these data for input into a GIS as part of 
mapping activities (Morgenroth & Visser, 2013). Cost data for satellite imagery are shown 
in Table 1. Spatial resolution was the primary determinant of cost, with other factors such 
as spectral resolution (number of bands) and acquisition timeframe also impacting the 
pricing. A key factor to be considered for forestry applications is the acceptable level of 
cloud cover and requirements for a minimum area to be purchased. For WorldView 3, 
which has one of the highest spectral and spatial resolutions commercially available, the 
minimum purchase is 100 km2 (10,000 ha) meaning a minimum cost of NZ$4,700 for this 
imagery. The acceptable age of the imagery can impact costs as well. Archive imagery 
older than 90 days is typically discounted by ~ 35%. However, the availability of this 
imagery is dependent on the satellite having acquired it as part of a previous tasking. 
Urgent imagery collected within a timeframe of weeks, for example, imagery urgently 
ordered to assess wind-throw damage, may be up to 60% more expensive than imagery 
from more typical acquisition windows of 30 – 45 days. 
 
Table 1: Indicative prices for different satellite imagery products. Costs may also vary for 

archive imagery, reduced cloud cover, and urgent acquisitions.  
Satellite Resolution Bands Cost (per km2) Minimum Order (tasked) 

RapidEye 5 m 5 $1.50 3500 km2 
SPOT 6, 7/Azersky 5 m 4 $1.70 500 km2 
SPOT 6, 7/Azersky 1.5 m 4 $4 500 km2 
Kompsat 0.50 m 4 $17 100 km2 
Pléides 0.50 m 4 $30 100 km2 
WorldView-3 0.30 m 4/8 $47 100 km2 

 
The satellite earth observation sector is rapidly changing. After many years of moderate 
growth in the constellation size and gradual reductions in cost, a large number of new 
entrants have announced funded constellations of moderate to high-resolution satellites. 
These changes have been spurred on by well-publicised advances in orbital launch 
capabilities such as Ariane 5 (EU) reaching 74 consecutive launch successes, and the 
arrival of lower-cost launch vehicles such as PSLV (India), SpaceX Falcon 9 (USA) and 
Orbital ATK Minotaur & Antares (US). In total, new constellations such as SkySat (13-25), 
BlackSky (60), and Terra Bella / Planet (24 + 200) will bring the total number of earth 
imaging satellites to over 200 by 2020, potentially increasing availability and reducing 
costs for image acquisition. Cheaper sensors may sacrifice spatial resolution and 
geometric accuracy to provide very high revisit times. This may limit practical applications 
of some platforms to broad-scale change detection using a small set of bands e.g. RGB + 
Near Infrared (NIR). 
 
Globally, space-borne sensors have partially replaced aircraft imagery as a major source 
of remote sensing data. Satellite programs such as Landsat and IKONOS have captured 
millions of square kilometres worth of imagery, which would have previously been 
impossible to acquire from aircraft. US restrictions on satellite imagery resolution have 
recently been eased, enabling the resale of much higher resolution products (0.3 m from 
WorldView3). Although these new products can in many instances match aircraft sensors 
of a few years ago, aircraft sensors such as the Ultracam (Vexcel Imaging, Graz, Austria) 
have advanced at a similar pace and offer their own combination of advantages relative to 
satellite sensors (Toth & Jóźków, 2016). 
 
 

Airborne sensors 
Aircraft have a long lineage as platforms for forestry related remote sensing data 
acquisition. As a platform, aircraft offer an appealing combination of reduced lower altitude 
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flight capability (reduced atmospheric interference); large, flexible payload capacity and 
capability to survey very large areas with high resolution (Toth & Jóźków, 2016). Aerial 
imagery is the most commonly used source of remote sensing data for New Zealand 
forest managers, with 88% of surveyed companies making regular use of RGB aerial 
imagery  (Morgenroth & Visser, 2013).  
 
Aerial service providers surveyed for this report indicated forest management companies 
as significant customers across most parts of New Zealand. Although imagery remained 
an important product for the industry, LiDAR data acquisition was close to or over 50% of 
the contracted work for all larger respondents with the capability to acquire these data. 
Multispectral imagery was routinely captured (NIRGB), and one provider was exploring 
the use of forest health assessment services based on analysis of hyperspectral data. 
Costs for aerial imagery and LiDAR varied according to a number of factors such as 
distance to the forest, the size of the surveyed area, final product specifications (e.g. pulse 
density for LiDAR, ground sample distance (GSD) for imagery), and external factors such 
as weather. Table 2 provides indicative costs for acquisition of aerial imagery and LiDAR. 
 
Table 2: Indicative costs for imagery and LiDAR acquired from aircraft. 

Aerial data 
product 

Minimum 
area (ha) 

$ / ha @ 
minimum area 

Maximum area 
(ha) 

$ / ha @ 
maximum 
area 

Imagery 100 - 500 $10 - 20 No limit $<1 - 3 
LiDAR 500 $15 - 20 No limit $2 - 5 

 
Aircraft operators indicated no upper limit to the potential area for LiDAR or aerial 
imagery. Although satellite platforms can theoretically capture planet-wide data, for all 
practical forestry-related tasks aircraft can be considered to have equivalent capabilities in 
terms of scale. While cloud cover and illumination may restrict satellite image capture, 
aircraft are somewhat more flexible. The majority of providers surveyed operated across 
several regions, allowing flexible deployment of aircraft to suit local weather conditions. In 
many cases, aircraft could be redeployed and collecting imagery within 1-3 days. Despite 
this advantage, solar illumination during winter was noted by all providers as an obstacle 
to image acquisition. A small number of suitable hours available per day for this work 
reduced the scale advantage of aircraft operation but data could still be collected at higher 
rates per hectare. LiDAR acquisition was noted to be sensitive to a range of weather 
factors with precipitation, snow cover, mist or fog, and high winds all posing challenges to 
acquisition and data quality. 
 
A key finding from the survey results was that aerial data acquisition often represented a 
smaller portion of the costs than data processing. Minimum specifications for accuracy, 
pulse density, geolocation precision, and other factors meant that, for both imagery and 
LiDAR, acquisition represented 50% or less of the total costs. Imagery was observed to 
require considerable post-processing for image registration, orthorectification, and geo-
referencing. In contrast, LiDAR campaigns generally incurred higher acquisition costs and 
took considerable pre-flight planning, with post processing largely involving quality and 
coverage checks, as well as point classification but this process could still take several 
months. These pre-flight planning requirements increased the minimum economical area 
to around 5 km2 and favoured combined regional acquisitions. 
 
Overall, aircraft offer an appealing combination of high payload, flexible deployment, and 
large-scale capabilities. This survey did not consider helicopter operators but these 
platforms can be adapted to carry similar sensors at lower altitudes and slower speeds, 
albeit for smaller areas. The key limitation of aircraft was the relatively large minimum 
area and high fixed costs. For smaller tasks with high repeat or rapid deployment 
alternatives such as unmanned aerial vehicles (UAVs) may offer an appealing alternative. 
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Unmanned aerial vehicles 
 
UAVs (sometimes referred to as unmanned aircraft systems (UAS) or Remotely Piloted 
Aircraft System, RPAS)) have recently attracted significant attention as potential sources 
of remotely sensed data and as platforms for a range of novel tasks such as security, bird 
control, chemical/spray applications and many others. These platforms emerged out of a 
combination of trends including miniaturisation, improvements in battery technology, low-
cost digital image sensors, and high-accuracy global navigation systems such as Navstar 
GPS (US), GLONASS (Russia), and BeiDou (China). Military and recreational applications 
continue to dominate the market for UAVs, with dedicated remote sensing applications 
only now emerging as a significant market segment (Pajares, 2015; Watts, Ambrosia, & 
Hinkley, 2012). Until recently, UAVs for remote sensing required significant systems 
integration effort by scientists or engineers for particular applications (Jones, Pearlstine, & 
Percival, 2006). Nonetheless, the availability of remote sensing data from a cheap, 
accessible, and easily deployed source has spurred strong interest in the use of UAVs for 
both research and practical operations (Anderson & Gaston, 2013; Toth & Jóźków, 2016) 
and this has spurred the rapid advancement of the commercial UAV sector. Fully 
integrated solutions such as the senseFly eBee (Parrot AR, Lausanne, Switzerland) and 
DJI Matrice (DJI, Shenzhen, China) have greatly simplified UAV operations, providing an 
integrated platform with flight planning and sensor control capabilities. Cloud-based image 
processing tools such as Pix4D Cloud and ATLAS MicaSense have simplified extraction 
of useful imagery products for a range of tasks without the need for specialised computer 
hardware. Sophisticated open-source alternatives such as OpenDroneMap also provide 
high-quality image processing for data collected from UAVs. These factors have made it 
practical for non-specialists to purchase and operate UAVs and to collect and process 
imagery for a wide range of tasks. The market for contract UAV data collection has also 
evolved rapidly in New Zealand. Many existing forestry sector service providers have 
added UAV services to their portfolio and a range of new entrants serving other industries 
such as agriculture and mining have sought to enter the forestry market. 
 
To explore the uses and cost efficacy of UAVs for forestry applications, Scion conducted 
interviews with a range of established and new UAV operators from New Zealand and 
Australia. These results were augmented with Scion’s internal experiences operating and 
contracting UAV to collect data for research purposes. Our results include standard UAV 
data products such as RGB and multispectral imagery as well as emerging products such 
as high-density LiDAR from UAVs. The early status of some companies and services 
meant that prices and products varied greatly between providers, as did the level of 
processing and services. For example, some operators delivered only raw imagery sets 
while others preferred to deliver only the final products to a contracted specification. In the 
Australian market, derived data products such as the provision of maps showing stem 
density of coppiced stands estimated from imagery were available from some service 
providers. 

Costs 

Indicative costs for UAV imagery are shown in Table 3. Costs were highly variable and 
contingent on many factors and should be seen as indicative figures only. A key point of 
difference from aerial and satellite imagery was the lack of a minimum area for UAV data 
collection, with smaller jobs often priced at an hourly or daily rate. Larger jobs attracted 
lower rates for both acquisition and processing; however, the large volumes of data 
requiring processing increased the turn-around time for final products. It was noted that 
smaller acquisitions could often be processed in the field on the same laptop used for 
flight planning and delivered immediately to the client. Several providers had switched to 
offering a daily rate for data acquisition with craft, CAA certified pilots, data processing, 
and travel included in the price. Prices for this service ranged from $2500 - $3000 per day, 
with contracts lasting several days attracting a discount. Acquisition costs were strongly 
impacted by two factors: choice of craft and installation of ground control points.  

https://pix4d.com/
https://atlas.micasense.com/
http://www.opendronemap.org/
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Table 3: Indicative costs for UAV services in New Zealand. 

General 
contractors 

Notes Cost (NZ$/ha) Minimum area Maximum area 

RGB + Multi-
spec 
 

Fixed wing,  
raw data 

$3 - 10 Min 1 hr 
charge @ 
NZ$250-350 

100 - 2000 ha / 
day (craft 
dependent) 
 

RGB + Multi-
spec (RAW) 
Multirotor 

Multi-rotor, 
raw data 

$5 - 10  50 - 100 ha / 
day (typical 
multirotor) 

Processing  Plus $1 – 5 1 - 2 day 
turnaround 

1 - 2 week 
turnaround 

Forestry 
Specific 

    

RGB + Multi 
spec 

No ground 
control 

$10 - 25 None, but few 
jobs < 30 ha 

100 - 2000 ha 
(craft 
dependent) 

RGB + multi-
spec 

Ground 
control 

$50 - 125 30 - 40 ha 60 - 100 ha 
(2000-4000 ha 
if RTK/PPK 
only) 

LiDAR Incl. survey 
and 
processing to 
DTM 

$110   

 
A single contractor offered UAV LiDAR acquisition; however, forestry was a relatively new 
addition to the service offering with most of their LiDAR work focused on mining or urban 
survey. The LiDAR unit offered produced very high density point clouds but limited options 
for forestry-specific processing (e.g. classification and noise removal) were available. 
Indeed, many UAV LiDAR sensors currently available are adapted from automotive 
applications and included multibeam laser scanners that make registration and calibration 
complex. These sensors may work well on hard, regular surfaces but Scion’s experience 
has shown that multibeam sensors over dense foliage and forested areas have poor rates 
of penetration and produce an unacceptably high level of noise and misregistration. More 
sophisticated UAV sensors such as the VUX-1UAV or miniVUX-1UAV (Riegl, Austria) 
have recently become available. These sensors are well suited to forestry and produce 
multiple returns per pulse with very high levels of precision; however, costs for these units 
may exceed NZ$300,000 depending on the configuration chosen and it is unclear if use of 
these sensors on a UAV is desirable or holds the same cost advantages as other UAV 
remote sensing methods. 
 
Choice of Craft 
Nearly all commercial UAVs use either multirotor or fixed wing configurations. Table 4 
summarises indicative costs for common UAVs and sensors used by many contractors 
and Scion. Multirotor craft have higher payload capacity, increased stability, no minimum 
airspeed, and simplified landing and take-off requirements. The carrying capacitor of 
larger multirotors allowed simultaneous acquisition of RGB and multispectral imagery. 
These craft are also well suited to heavier, emerging UAV sensors such as LiDAR and 
hyperspectral cameras. Surveyed operators favoured multirotor craft for smaller areas, or 
for tasks requiring very high resolution imagery (low GSD) with high overlap. The 
maximum area for multirotor craft depended heavily on payload and campaign settings 
but several operators suggested 100 - 150 ha per day was the maximum economical 
area. Fixed wing craft offer much greater flight time at the expense of payload. These craft 
were favoured for general aerial mapping using RGB or multispectral imagery. Operators 
experienced with forestry work noted these craft were constrained by the need for a clear 
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launch and landing area. Newer high-resolution cameras (>20 megapixels) have partially 
compensated for the inability of fixed-wing craft to fly low and slow, but tasks requiring 
high overlap still necessitate repeated overflights. The maximum area for fixed-wing craft 
varied greatly depending on the model, with newer platforms such as the eBee Plus that 
allow rapid battery changes and easy launching capable of capturing over 4000 ha per 
day for basic imagery. Multispectral imagery also impacted on the time and cost of data 
acquisition, often requiring repeated, low-altitude flights due to the low resolution of 
existing cameras (MicaSense RedEdge resolution: 1.3MP); however, newer multispectral 
sensors feature much higher resolutions (8.3MP - 4K resolution) that will likely reduce the 
flying time required and increase the area that can be economically flown using UAVs. 
 
Table 4: Indicative costs for typical UAVs hardware and sensors suitable for forestry. 

Make Model Price 
 (NZ$) 

Endurance (min) Payload and capacity 

Craft 

Multirotor 

DJI Phantom Pro 4 3000 25 4K 20MP RGB camera 

Aeronavics  BOT 5000 25 - 30 Most RGB or 
multispectral cameras 
up to 1.2 kg 

Altus  LRX - heavy lift 50,000 25 Interchangeable 
gimbals for custom 
payload - up to 4 kg; 
Stable in high winds; 
Multi-sensor payload 

Fixed Wing 

senseFly eBee Plus 
RTK/PPK 

62,000 59+ RGB, Multispectral, and 
thermal infrared 

Sensors 

Sony ILCE A6000 1000 360 shots/battery 25 megapixel RGB 

MicaSense RedEdge 7000 2.7hrs from 11Wh 
craft 

5 band multispectral 

 
 
Ground Control 
Without the installation of ground control points, UAV acquired imagery can be expected 
to have a positional accuracy of 6 - 12 m. Installation of ground control points (GCPs) by 
surveying markers or landmarks spread across the scene that appear in the imagery 
offers a range of benefits. GCPs improve the overall vertical (for 3D GCPs) and horizontal 
positional accuracy of the orthomosaic, often to sub-meter precision. Use of GCPs also 
improves orthorectification and alignment when using a digital terrain model or other geo-
rectified data and enhances the accuracy of area and distance measurements made from 
remotely sensed imagery (Aguilar, Saldaña, & Aguilar, 2013; Toutin, 2004). The addition 
of GCPs is also beneficial for co-registering multiple or repeated products e.g. aerial 
LiDAR, GIS records, and UAV orthomosaics (Liu, Zhang, Peterson, & Chandra, 2007). 
The survey of commercial UAV operators revealed that addition of GCPs nearly doubled 
the cost of some data products (Table 3). This finding was supported by Scion’s 
experience, with the installation of GCPs noted to significantly increase data collection 
time. This is the result of visible GCP markers needing to be evenly distributed across the 
capture area – a significant challenge in forested areas. High-grade GPS surveys also 
need to be carried out at each location, adding 10-30 minutes per GCP. Of the surveyed 
providers, only 4 had access to high-grade surveying equipment. Post-processing costs 
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also increased, as GCPs needed to be post-processed using licensed software and 
manually located and marked in multiple images before generating the orthomosaic. One 
alternative to GCP installation is the use of real-time or post-processing kinematic (RTK / 
PPK) whereby craft GPS coordinates are processed to a higher level of accuracy either 
using real-time transmissions from a surveyed reference tower on-site, or by using GPS 
timestamps to apply corrections to collected coordinates during post-processing. Only 2 
providers had access to RTK or PPK equipment, which still required the use of a high-
grade GPS to establish the reference location. The significant cost implications of GCP 
collection mean that future advances in positioning technology could alter the cost efficacy 
of UAVs for tasks currently requiring GCP acquisition. 
 
Satellite Based Augmentation Service (SBAS) 
SBAS services provide improved positional accuracy to GPS users by relaying corrections 
calculated from a network of ground stations that constantly monitor global navigation 
satellite system (GNSS) signal accuracy. Augmentation services can be delivered using 
terrestrial (TBAS) or satellite based (SBAS) data channels. Satellite services offer the 
advantage that nearly any capable receiver can get access the augmentation service in 
real-time. Land Information New Zealand and Geosciences Australia are collaborating on 
an SBAS serving Australasian users. This system will provide three levels of positional 
improvement (Table 5), including two novel levels of service providing extremely high-
precision positional information. Importantly, these services will be available without the 
need for terrestrial data signals (e.g. mobile networks) and future UAV systems will likely 
be able to take advantage of this improved positional information. This may offer the 
opportunity to collect data with a similar level of positional accuracy to that provided by 
current ground control survey installations. 
 
Table 5: Positional accuracy of planned SBAS systems for New Zealand. 

SBAS Service Hardware Positional accuracy 
   
Single frequency service 
(Legacy L1) 

Most existing GPS receivers 
(WAAS/EGNOS compatible) 

Better than 1 m accuracy 

Dual frequency multi-
constellation service 
(DFMC SBAS L1/L5) 

Most commercial receivers 
supporting GPS + Galileo 
L5/E5a service. 

< 1 m - unknown but 
significant improvement 
over Legacy L1 with lower 
variation in accuracy. 

   
Precise Point Positioning 
(PPP) service. 

Specialised user-segment 
hardware e.g. tablet/app or 
microPC with receiver and 
software. 

5 - 10 cm accuracy 

 
 
The L1 augmentation service will utilise the existing SBAS receiver capabilities built into 
most modern GPS units that are already widely employed in Europe, America, and other 
regions served by SBAS. This means that nearly all modern GNSS receivers (e.g. 
handheld GPS units, mobile phones, satnav units) will be able to obtain sub-meter 
accuracy without any modifications. The second generation DFMC service will utilise the 
roll-out of the Galileo GNSS service and a new dual frequency SBAS standard. This 
standard will require hardware support, but the international use and adoption of this 
technology is likely to mean that many upcoming GNSS receivers from major brands will 
support the DFMC service. While the exact gain in positional accuracy is unknown the 
DFMC service is expected to greatly reduce ionospheric interference, allowing 
consistently improved positional accuracy for nearly all users. The third service (PPP) 
uses two dual-frequency broadcasts from GPS and Galileo to provide centimetre level 
accuracy. This service is highly experimental and initial user-segment access will require 
a device that can run the real-time decoding software. The 2-year trial of these services is 
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set to start in June 2017 with a staggered roll-out of the three services starting with the L1 
Legacy signal in late June 2017. 
 

Conclusions 

The results of the price survey showed that, at present, LiDAR data can only be 
economically acquired using aircraft and the cost-structure favours larger acquisitions to 
make these data economical for the current forestry applications. The first generation of 
UAV LiDAR sensors did not appear well suited to forestry applications and few providers 
have targeted this market. The ability of satellites to image large swaths of the globe from 
orbit was reflected in the pricing of the imagery, with 100 ha available for around $1.50. 
However, the most economical sensors had low resolution and required very high 
minimum area purchases. Aircraft were most economical for capturing high-resolution 
imagery over large areas but were not well suited to rapid acquisition of small areas. 
UAVs filled this niche, allowing rapid, repeated acquisition of very high resolution imagery 
of areas up to ~ 100 ha. The weight constraints limited the range and sophistication of 
sensors but this space has evolved rapidly and it is reasonable to expect continued 
improvements in sensors and craft. These improvements, along with new technologies 
such as SBAS may see the role of UAVs expand to include LiDAR acquisition and to 
cover larger areas at reduced cost. 
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Wind Damage Assessment 

Background 

Severe wind events are a major source of forest disturbance in many global ecosystems 
(Gardiner et al., 2013; W. Wang, Qu, Hao, Liu, & Stanturf, 2010). Damage caused by high 
winds from tropical depressions (hurricanes) can cause extensive damage to large areas 
of forest and these events are often associated with long-term changes in forest ecology 
(W. Wang et al., 2010), increased risk of fire (Myers & van Lear, 1998) and reduction in 
carbon storage (Boutet & Weishampel, 2003). 
 
Although New Zealand is located outside of the hurricane zone, severe winds associated 
with periodic tropical depressions migrating from the equatorial zone are major causes of 
wind damage to both natural and planted forests (Martin & Ogden, 2006; Moore, Manley, 
Park, & Scarrott, 2013). The heavy rainfall accompanying these events can worsen the 
damage to forests by lowering the resistive strength offered by the soil and root plate, with 
larger trees and trees on certain soil types being most affected (Martin & Ogden, 2006; 
Moore & Somerville, 1998). For several native species, wind disturbance is often followed 
by strong recruitment, leading to the creation of even-aged stands that may show greater 
susceptibility to future wind events. This creates a natural cycle of ecosystem disturbance 
and recovery on vulnerable sites (Martin & Ogden, 2006; Ogden, 1988). Production 
forestry in New Zealand is largely confined to extensive forests (1.7 M ha) of exotic Pinus 
radiata D. Don (90%), and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) (6%) 
planted across a wide range of sites (FOA, 2016). In these forests, catastrophic wind 
events can have a strong, negative impact on the financial value of the forest. Moore et al. 
(2013) define catastrophic wind damage in this forest type as any continuous area of wind 
damage over 1 ha in size in stands over 5 years of age. The same authors estimate that 
approximately 63 000 ha of planted forest were damaged by wind between 1945 and 
2010. This estimate includes only recorded events and is likely to underestimate the total 
affected area as a significant portion of New Zealand’s forest estate is held in smaller 
woodlots where records are poorer (MPI, 2016). Historically, the costs of wind damage 
have largely been through the loss of timber value. More recently, the introduction of New 
Zealand’s greenhouse gas emissions trading scheme has meant that participating forests 
are liable for loss of carbon stocks due to events such as wind and fire, creating additional 
risk for forest owners (Moore, Manley, & Park, 2011). 
 
Because of the potential for significant financial impacts, timely information on the scale 
and severity of wind damaged forest is valuable to forest managers. This information can 
be used to assess the nature of the damage and to begin planning for harvesting of any 
recoverable timber. Remotely sensed imagery offers the ability to rapidly survey large 
areas of forest to assess wind damage. Previously, satellite remote sensing has been 
used to assess wind damage to forests at regional scales using time-series data from 
sensors such as MODIS (W. Wang et al., 2010) and Landsat (F. Wang & Xu, 2010). 
Digital surface models (DSMs) derived from airborne laser scanning and DSMs derived 
from post-storm aerial photogrammetry have also been used to automatically identify 
storm damage over large areas of forest (Honkavaara, Litkey, & Nurminen, 2013). Time-
series data using other remote sensing technologies such as synthetic aperture radar 
(SAR) imagery has also been shown to allow accurate but manual identification of wind-
thrown forests (Fransson et al., 2007). These methods have largely relied on pixel-based 
approaches to classifying moderate resolution imagery (Chehata, Orny, Boukir, Guyon, & 
Wigneron, 2014). Higher spatial resolution imagery provides much more detailed 
information and can benefit from alternative approaches such as object-based image 
analysis (OBIA) that leverages the contextual and spectral information available in images 
(Blaschke, 2010). Application of OBIA to bi-temporal high-resolution (5-10 m) Formosat-2 
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imagery provided improved classification accuracy (87.8%) of wind damaged areas over a 
pixel-based approach (Chehata et al., 2014). Many of these approaches have relied on 
the availability of multitemporal, multispectral imagery that may not be available for 
affected areas. Furthermore, even high-resolution satellite imagery (1 – 10 m) may not 
provide the fine-scale information required for emerging methods that provide semi-
automated identification and measurement of individual downed stems (Blanchard, 
Jakubowski, & Kelly, 2011; Szantoi et al., 2012). 
 
In this section, we explore the use of RGB imagery acquired using a UAV as a means of 
both identifying and mapping wind-thrown forest. A second analysis explored the 
possibility of using higher resolution RGB imagery to enable semi-automated detection of 
individual stems using OBIA. UAV imagery can be rapidly acquired after a severe storm 
and modern fixed-wing craft can cover reasonably large areas in a single flight (~100 ha - 
see Roles and Cost Efficacy of UAVs). Our analysis focused on the use of high-resolution 
DSMs and RGB orthomosaics derived from photogrammetry. This imagery does not 
require specialised sensors and can be readily processed using commercial tools such as 
Pix4D or open source alternatives such as OpenDroneMap.  

Data and methods 

An area of forest in the Nelson region affected by a catastrophic wind event in 2016 was 
identified as the site for this study. Two sets of UAV imagery were collected (Table 6) by 
Buck Forestry and processed using Agisoft Photoscan. The raw images and craft GPS 
records were combined and re-processed by Scion using the Pix4Dmapper software 
application (Parrot AR, Lausanne, Switzerland) to provide an opportunity to contrast the 
performance of these two widely-used software tools. A range of different software 
settings were trialled in Pix4D to attempt to improve the quality of the orthomosaic. These 
settings are too numerous to list but focused on improving the digital surface model (DSM) 
that largely determines the quality of the final orthomosaic. 

Wind-throw assessment (Area 1) 

The area chosen for large-scale classification of wind damage covered approximately 120 
ha of forest on rolling terrain with approximately 9.3 ha of exposed forest severely 
damaged by wind (Figure 1). This dataset was used to explore semi-automated 
identification and mapping of wind-damaged areas of forest using low-cost UAV imagery. 
Existing harvested areas and pasture visible in the scene were masked from analysis, 
leaving primarily forested and wind-thrown areas. The focus of this analysis was on the 
use of accessible tools and methods that are available to forest managers. Classification 
and post-processing was conducted using a) Mahlanobis distance classifier, b) maximum 
likelihood, and c) isoMeans unsupervised classification. These methods were selected for 
their availability in the widely-used ArcGIS software suite (ESRI, Redlands, California). 
Some analysis was conducted using ENVI 5.4 (Harris Geospatial, Boulder Colorado) but 
results for the chosen methods are unlikely to vary significantly between packages. 
 
Table 6: Description of key characteristics for datasets collected over wind-thrown forest 

in the Nelson region. 
Data characteristics Wind-throw mapping (Area 1) Stem extraction (Area 2) 

Imagery extent (ha) 120 ha 14 ha 
Ground sample distance 
(cm/pixel) 

7 3 

Number of images 681 301 
Image channels RGB RGB 
Ground control No No 

 
 

http://www.opendronemapg.org/
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Figure 1: Study site in the Nelson region for large-scale detection of wind damage. The 
surveyed area covered approximately 120 ha with 9 ha of forest damaged by wind (red 
areas). 
 
Mahlanobis and maximum likelihood classification are supervised classification methods 
that require training data to perform classification. A series of training polygons were 
outlined covering areas representing wind-thrown forest and standing forest. Areas were 
kept as small as practicable to avoid overtraining and were selected to represent the 
range of different conditions across the scene. Maximum likelihood classification uses the 
statistical properties of the pixel values within bands in the identified classes to determine 
the probability that new pixels belong to a chosen class. Mahlanobis classification is 
related to maximum likelihood but offers improved speed and assigns pixels to classes 
using a standardised distance measure that accounts for differences in the variance of the 
data used to define classes (Abburu & Golla, 2015; Mahalanobis, 1936). The Iso-Cluster 
classifier is an unsupervised pixel-based classification that attempts to divide the image 
into the desired number of classes using ‘natural’ clusters (brakes) in the data across the 
specified dimensions – in this case, the pixel values across the RGB bands. Mahlanobis 
and maximum likelihood approaches allowed for probability thresholds to be set, below 
which pixels are considered ‘unclassified’. This option was disabled to force all pixels into 
a specified class. The optimum settings for the classification were determined by trial and 
error and will vary by site and scene. Classification results were converted to vector layers 
and small, irregular polygons were merged to form larger, continuous boundaries for each 
class. Results were assessed by overlaying the classified areas onto the imagery and 
comparing the results against boundaries estimated by manually mapping the damaged 
areas using the imagery and a GIS.  
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Stem extraction (Area 2) 

A second area to the North of Figure 1 was identified to test the feasibility of individual 
stem identification from UAV imagery. The area covered approximately 14 ha and 
contained a large area of forest with severe wind damage (Figure 2). 
 

 
Figure 2: Second area with severe wind damage identified to test identification of 

individual stems. 
 
A higher-resolution survey was conducted in this area to facilitate the OBIA approach 
(Table 6). The spectral and contextual properties of the stems were used to define a rule-
based classification to separate stems from background vegetation. Results from the rule 
set were refined using geometric filters and exported as a vector layer. The key criteria for 
this analysis was the ability to extract straight lines identifying the general outline of stems. 
The ruleset was developed on a small subset of the image and then later applied to the 
remainder of the image. 

Results 

For un-forested areas, both Pix4D and Agisoft Photoscan produced similar quality 
orthomosaics. Results for Agisoft generally took longer to process but, over forested 
areas, the faster Pix4D processing generally produced results with a lower level of detail 
and significant blurring of canopy features (Figure 3), indicating poorer matching of 
canopy pixels across images. Pix4D offers advanced controls for fine-tuning results over 
vegetated areas but settings could not be identified using the data available to match the 
results obtained from Agisoft. Flight settings impacting forward and side image overlap 
may also have improved Pix4D results. Previous experience with this software at Scion 
has demonstrated that sacrificing some resolution can often improve the quality of the 
final orthomosaic. Lower resolution imagery is unlikely to significantly impact large-scale 
classification tasks such as detection of wind-thrown forest. For this project, the 
differences in fine-scale detail with higher altitude imagery may not have impacted 
classification based on spectral properties and analysis using textural metrics may be 
robust to still greater reductions in resolution but this was not tested. 
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Figure 3: Comparison of images produced by Pix4D (above) and Agisoft Photoscan 

(below). 
 
 
Unsupervised Iso-Cluster classification performed poorly (results not shown) with pixels 
assignment failing to isolate wind-thrown areas from standing forest. The classification 
was dominated instead by harvested areas and roads although these areas were poorly 
defined in the classified imagery. Some settings did allow Iso-Clusters to identify stem 
pixels but the classification was too crude to be useful. As such, no further unsupervised 
methods were applied and analysis focused instead on supervised classification methods. 
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Mahlanobis and maximum likelihood classification methods both performed well and 
produced nearly identical classification results. The Mahlanobis operation offered faster 
classification of the image and was chosen for subsequent analysis. This method 
identified 10.8 ha as compared to 9 ha identified manually from the orthomosaic (Figure 
4). The discrepancy of 1.8 ha could be partially attributed to a tendency for the road 
segments to be classified as wind-thrown forest due to the spectral similarity of stems, 
exposed ground, and the unsealed road. Canopy gaps filled with green vegetation were 
also occasionally included as forest. These errors could be resolved by masking road or 
sparsely forested areas or, if desired, including additional training classes to represent 
these areas. The small errors in misclassification did not warrant the increased 
computational time associated with multiclass classification. The Mahlanobis supervised 
classification also offered some advantages over manual mapping. The pixel-by-pixel 
classification was able to provide a much more detailed outline of wind-damaged areas 
than was practical using manual delineation (Figure 4). The process correctly identified 
standing trees, unaffected areas, and some wind-damaged areas that were missed during 
manual mapping. Both classification methods had a tendency to produce fragmented, 
irregular polygons at an impractical level of detail and use of a filter to merge polygons 
below an area threshold was required to simplify the boundary between standing and 
damaged forest. The vectorised boundaries were used to compute and report area 
statistics. 
 

 
Figure 4: Results from Mahlanobis classification of standing and wind-thrown forest. 
Approximately 10 ha of damaged forest was identified. 
 
Stem extraction was considerably more complex than the binary classification process 
used to identify wind-thrown areas of forest. Stems had high reflectance in all bands, but 
exposed branches with similar properties confused initial classification efforts based only 
on spectral properties. The blue and green bands showed the greatest contrast between 
stems and branch pixels due to the mass of senescing needles attached to many of the 
branches. Assigning each pixel the median value from a 5 x 5 pixel kernel using the blue 
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band allowed colour differences to be used to ‘erode’ the branches while stem pixels with 
many similar adjacent pixels were less affected. Stems overlaying each other also 
confused rule-sets designed to extract continuous stem lines. A process using both 
spectral and geometric rules was identified as offering the best results: 

1) A median filter was applied to the blue band using a 5 x 5 pixel kernel to generate 
a fourth band with ‘eroded’ branch features. 

2) Morphological dilation further reduced the visibility of branches. 
3) A combination of blue, green and the band produced in 2) were used to produce a 

contrast segmented image. 
4) Bright areas were classified as stem candidates. 
5) Candidate areas were merged and re-segmented according to shape criteria. 
6) Elongated, spectrally homogenous areas were merged and classified as stems. 
7) Polylines outlining the stems were exported and overlaid onto the orthomosaic. 
8) The rule-set was applied to a larger region to identify stems outside of the training 

area. 
 
The purpose of this ruleset was to explore automated identification and the majority of 
stems within the scene were at least partially identified by the OBIA method. The ruleset 
showed moderate success at delineating individual stems (Figure 5). Bare ground and 
uprooted root plates caused some misclassification due to their spectral similarity to 
exposed stems. Larger branches made it difficult to choose a single threshold length to 
isolate only intact stems. This resulted in some fragmented sections of stem, especially 
where green boughs covered a portion of the stem. 
 
 

 
Figure 5: Stem extraction using object-based image analysis based on spectral and 

geometric properties of image objects. Green lines show the polylines produced by 
application of the final ruleset. 
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Discussion and conclusions 

The results of this analysis suggest that simple RGB imagery acquired from UAVs can be 
used to identify and map wind-thrown forest with a level of accuracy similar to manual de-
lineation. Change detection methods have been widely-used to identify forest damage but 
rely on the existence of suitable time-series data covering the affected region 
(Honkavaara et al., 2013; F. Wang & Xu, 2010; W. Wang et al., 2010). The demonstrated 
approach avoids this requirement by using supervised classification only on post-storm 
imagery. This approach has the added advantage that RGB imagery from UAVs is readily 
available and very-high resolution imagery can be acquired over large areas at short 
notice. The classification methods based on Mahlanobis distance are efficient enough to 
be readily applied to large areas that might take considerable time to manually inspect 
and digitise using a GIS. Based on our results, classification rulesets also appear likely to 
provide finer-scale detail than digitisation. 
 
Previous work has often relied on the availability of multi-spectral images to perform 
classification based on vegetation indices (W. Wang et al., 2010) or use of more 
sophisticated classification techniques. Use of these data and methods would likely allow 
misclassified areas in our analysis such as roads and understory to be refined but these 
methods require more expensive software and sensors that sacrifice some spatial 
resolution for increased spectral resolution. Overall, the process identified represented a 
simple and effective means of identifying and mapping wind-thrown areas. The vectorised 
results obtained were also suitable for transfer into a GIS for tasks such as updating stand 
records or estimating lost volume. 
 
Identification of individual stems from higher-resolution imagery showed promising results. 
Similar work has focused on the use of LiDAR data to detect downed stems (Blanchard et 
al., 2011; Szantoi et al., 2012) but these data can be expensive to acquire, especially if 
the wind-affected areas of forest are spread across the landscape. Using only 
morphological and spectral properties on a small area of rubber plantation forest, Duan, 
Wan, and Deng (2017) identified stems with 75.7% completeness but the method 
struggled to account for confusion with other objects and assessed only a small area of 
forest. Application of OBIA to extract stems has the advantage of using the geometric, 
spectral and contextual properties of stems and has been used with LiDAR data to identify 
downed stems in standing forests to assess habitat and fire fuel levels (Blanchard et al., 
2011). The method presented appeared to provide modest levels of accuracy but lacked a 
validation dataset to compute completeness and accuracy metrics. Based only on visual 
inspection, the major errors were errors of commission in regions where stems were 
obstructed by branches containing green needles. The nature of OBIA means that further 
refinement of the ruleset could address these challenges by ‘growing’ stem regions 
towards other fragmented areas or integrating the DSM data to identify the raised profile 
of stems. This depth of analysis was outside of the scope of this project, but based on this 
analysis we concluded that high-resolution RGB imagery acquired from UAVs may be 
used to identify the majority of larger stems in similar contexts. Imagery may also be more 
practical than field survey on wind-thrown sites. These areas can be challenging and 
hazardous to move around in, especially on steep terrain. 
 
In practical terms, most forest managers would primarily be concerned with identification 
of affected areas to facilitate post-event value recovery operations and to update stand 
records. For large estates, methods such as low-resolution satellite imagery (e.g. 
RapidEye, see Table 1) or aerial surveys after a large storm may be more economical as 
a means of locating affected areas. UAV imagery acquired over identified areas could 
then complement these methods by providing more detailed views of the scale and 
severity of the damage. Based on the findings of this work, standard RGB UAV imagery 
acquired at a moderate resolution appears well suited to aid in planning for value recovery 
and updating of stand records. 
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Automated Cutover Detection 

Background 

Satellite remote sensing is uniquely suited to monitoring forest disturbance at a global 
level. Since the advent of these technologies, methods have been developed to both 
quantify forest cover and to monitor changes in forest cover at large-scales (J. C. White, 
Wulder, Hermosilla, Coops, & Hobart, 2017; Wilson & Sader, 2002). Modern computing 
methods and an increase in the spatial, spectral, and temporal resolution of remote 
sensing data have combined to allow quantification of forest change over several decades 
at a global level (M. C. Hansen et al., 2013; Matthew C. Hansen, Stehman, & Potapov, 
2010) and have enhanced knowledge of the total forest cover across a wider-range of 
biomes (Bastin et al., 2017). Much of this work has focused on identifying forest loss from 
factors such as illegal logging or land use change in order to address topics such as 
climate change and biodiversity loss (M. C. Hansen et al., 2013; Keenan et al., 2015). 
Modern platforms such as Global Forest Watch integrate remote sensing change 
detection to allow rapid detection and reporting of forest harvest activities at a global scale 
with results available online for anyone to access (GlobalForestWatch, 2017; Kennedy, 
Yang, & Cohen, 2010; LandsatFACT, 2017). However, these methods are by necessity 
coarse and do not always accurately separate out land cover classes or reflect gains in 
forest cover attributable to increases in plantation forestry as a land use (Tropek et al., 
2014).  
 
New Zealand’s forests are not subject to many of the same pressures (e.g. wildfire, illegal 
logging, and shifting agriculture) that have driven the development of these global forest 
monitoring systems. In New Zealand, application of change detection methods for 
managed forests is likely to focus instead on forest management and operational 
applications such as identification of wind-thrown forest, disease outbreaks, and cutover 
assessment that require a level of spatial and temporal resolution often unavailable from 
tools targeting large scale degradation or global trends in forest cover. Moreover, the vast 
majority of New Zealand’s change in planted forest cover is the result of (legal) new 
plantings or harvesting of existing forests. Therefore, many of these large-scale methods 
and approaches are unlikely to serve New Zealand’s forest managers well. Instead, 
methods for detecting forest cutover would be more useful if they could provide rapid, 
accurate mapping of cutover areas to better monitor forest operations. 
 
The imagery and positional information available from UAVs has the potential to enable 
rapid and ongoing mapping of harvest operations under a range of weather conditions and 
in difficult sites (Grenzdörffer et al., 2008; Horcher & Visser, 2004). These data could 
provide forest managers with spatially-explicit information on harvest activities to: 1) better 
manage harvest crews, 2) improve reconciliation information, 3) update stand and GIS 
records, 4) link geospatial data to harvester data, and 5) improve logistical planning.  
Use of UAVs has not been widely explored for these applications (Tang & Shao, 2015) 
with most research applications of UAVs focused on forest inventory and pre-harvest 
survey (Puliti, Ørka, Gobakken, & Næsset, 2015; Tang & Shao, 2015; Wallace et al., 
2014). 
 
Studies using satellite imagery have shown that harvested areas can be detected with a 
high-level of accuracy (87.5%) using moderate resolution imagery (Steven A. Sader & 
Legaard, 2008). This is not surprising given the strong spectral differences between 
harvested areas and standing forest that can be used by various classification methods. 
Infrared reflectance and vegetation indices utilising this portion of the spectrum such as 
the normalised difference vegetation index (NDVI) and the normalised difference moisture 
index (NDMI) appear to be particularly well suited for classification (S.A. Sader, Bertrand, 
& Wilson, 2003; Steven A. Sader & Legaard, 2008). These bands are not available in low-
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cost RGB imagery acquired from UAVs, limiting the applicability of these methods. 
However, modern machine learning techniques can often achieve excellent classification 
using different types of remotely sensed data including basic RGB imagery (C. Huang, 
Davis, & Townshend, 2002; Mountrakis, Im, & Ogole, 2011; Pal & Mather, 2005). 
 
This section describes an experimental UAV platform designed to facilitate rapid, 
autonomous identification and mapping of harvest boundaries using only RGB video and 
imagery from a low-cost camera mounted on the UAV. The experimental platform was 
designed to automatically process imagery in real-time to identify and follow the boundary 
between forest and harvested areas. The design, integration and testing of this system 
was supported by Scion Research and the University of Canterbury and carried out as 
part of a Masters in Engineering thesis (Hunt, 2016). The following sections and figures 
are abbreviated and adapted from the final thesis and project reports provided to Scion. 

Methods 

Training data 

A specialised UAV was designed and built to test the feasibility of autonomous cutover 
tracking and mapping. The system was based around a Steadidrone QU4D (Steadidrone, 
Knysna, South Africa) multirotor craft with a maximum payload of 800 g. A light-weight 
laser rangefinder was integrated to provide altitude detection and control. The UAV vision 
system was based around a light-weight consumer grade webcam mounted on a two-axis 
gimbal. Video from the camera was transmitted wirelessly to a ground receiver to allow 
real-time monitoring of the UAV. The video was also fed into a single-board computer 
(Minnowboard Max and Turbot, Intel Corporation, California, USA) to allow real-time 
processing of imagery to detect and track the forest cutover boundary. Guidance and flight 
control for the UAV were provided by a programmable flight controller connected to the 
single-board computer. This allowed the guidance system to be controlled using the 
results of the image processing algorithm running on the on-board computer. 
 
The guidance and vision systems were developed using a software simulation of the flight 
controller that could simulate navigation and craft control based on simulated or actual 
inputs from the different sensors. The vision-based navigation system was developed and 
tested using a series of training datasets (Figure 6) showing various forest cutover scenes 
in images and video collected from aerial survey and using Scion’s UAV. The imagery 
was collected at a range of altitudes using RGB, infrared, and multi-spectral sensors. 
Ground-truth GPS survey of the actual cutover line was also carried out at one test 
location to allow comparison of the guidance systems edge path against the true edge. 
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Figure 6: Examples of different scenes used to develop the cutover detection and 

tracking algorithm. 
 

Algorithm development 

The primary objective of the project was to develop an algorithm that could locate the 
cutover edge with a level of accuracy and reliability that would allow the demonstration 
craft to be guided by the location information in real-time. The majority of the project was 
concerned with development of this algorithm. Other objectives focused on expanding and 
augmenting the edge-tracking system to address high-level navigation decisions such as 
maintaining altitude and position over the cutover boundary and altering air speed and 
direction in response to different events such as loss of the cutover edge. 
 
A range of algorithms were explored to allow the vision system to detect and track the 
boundary line between cutover and forest. Although multispectral imagery has previously 
been identified as useful for identifying harvested areas (S.A. Sader et al., 2003; Steven 
A. Sader & Legaard, 2008) this imagery required specialised sensors and output formats. 
Techniques that allow 3D scene awareness such as structure from motion (Ullman, 1979) 
and optical flow methods (Hérissé, Hamel, Mahony, & Russotto, 2010; Hérissé, Russotto, 
Hamel, & Mahony, 2008) were also examined but these were observed to require 
significant computational power or were negatively affected by the lens distortion present 
in cheaper RGB sensors used to capture the training images and video. 
 
Because of these limitations, a range of image processing techniques suitable for use with 
standard RGB imagery were identified for development of the final algorithm. Three 
methods were highlighted for detailed investigation: 
 

1) Simple binary thresholding of images produced using a colour space 
transformation method that maximised contrast between the forest and cutover. 
Threshold values in the transformed space were determined by trial and error and 
used to produce a binary image (forest / cutover). The binary classification was 
then filtered and refined before application of a contour detection algorithm to find 
the cutover edge. 
 

2) A support vector machine (SVM) learning algorithm was trained using transformed 
example images of forest, cutover, and mixed areas covering a range of different 
conditions. A total of 6 derived image features were used in both linear and radial 
kernel SVM classifications. The SVM was used to classify images and a contour 
discovery algorithm was applied to the classified image to extract a line 
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representing the cutover edge. A refined version of this method was used for the 
supplementary testing conducted using a second iteration of the UAV system. 
 

3) A method combining the classification results from both the colour-transformed 
method (1) and the SVM approach (2) was developed. Results were combined to 
utilise the different advantages of each method. A boundary detection method was 
applied to the classified image before being combined with a smoothing algorithm 
to produce a more regular flight-path following the cutover edge. This method was 
used for flight testing with the first iteration of the UAV system. 

 
These methods were applied to a set of 5 manually classified images to calculate 
accuracy statistics. The test images were chosen to include different brightness levels, 
shadow direction, cutover edge clarity, and height above ground (Figure 7). The best 
algorithm was then applied to a video feed connected to a full simulation of the UAV 
system to evaluate how the automatic navigation system would control the UAV in 
response to the cutover edge detected in the test videos. The simulated UAV flight line 
was compared to the ground-truth GPS track of the actual forest edge. The final algorithm 
was integrated into the flight control computer along with relevant fail-safe instructions in 
preparation for use in a series of test-flights. 

Flight testing 

Incremental testing of the UAV system with increasing levels of complexity was performed 
to ensure individual aspects were working as expected before proceeding. The tests were 
set up as follows: 
 
Flight Test 1: The first flight test involved taking the quadcopter for a flight with all 

supplementary hardware removed to test that the craft, flight controller, and transmitting 
equipment were behaving as expected. 
 
Flight Test 2: The second flight test added the Minnowboard computer into the navigation 

loop sending instructions to the flight controller to fly along a simple square with sides of 
10 m. This served as a test for the navigation system and of the communication between 
the flight control system and the Minnowboard computer that would ultimately send more 
complex navigation commands to follow the detected edge. 
 
Flight Test 3: In the third flight test, the camera gimbal, camera, and video transmitter 

were mounted in order to test the quality and range of the video downlink as well as the 
functionality of the gimbal. 
 
Flight Test 4: The fourth flight test involved the testing of the integrated UAV system 

including the full cutover detection and tracking system. This test was performed at Bottle 
Lake Forest Park. Technical issues relating to the video downlink and Pixhawk firmware 
meant that a successful test was not performed. Despite this, performance of the 
proposed cutover edge algorithm was verified, with the cutover edge being reliably and 
accurately detected using the combined SVM and colour transformation methods. 
 
Following a crash of the Steadidrone-based system, a second test UAV was 
commissioned with support from Scion. The software was ported for operation with an 
Aeronavics Navi UAV and the on-board processing was upgraded to a more powerful 
system (Intel NUC, Intel Corporation, California, USA). The edge-detection algorithm was 
adapted to run on the new system and simplified to use only the SVM classifier. A series 
of test flights were carried out at Bottle Lake Forest using the Aeronavics platform. The 
edge-detection algorithm was tested in both manual and automatic mode. 
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Results 

UAV System 

All sensors, the flight controller, and the single-board computer were successfully 
integrated and tested. Hardware-in-the-loop simulation (allowing simulation of craft 
behaviour based on inputs from the sensors and Minnowboard computer) was used 
extensively to test the modules and to develop the edge-tracking algorithm. This approach 
greatly simplified the development process and allowed software routines to be thoroughly 
tested before upload to the actual craft. Overall, the system performed well and identified 
issues relating to control and motion of the craft were resolved. Flight testing of the UAV 
system was carried out at a recent harvest site in Bottle Lake Forest park with the 
permission of Rayonier | Matariki Forests (Figures 7 and 8). 
 
 

 
Figure 7: A panorama generated of the site used to test the cutover edge detection and 

tracking system on-board a UAV. 
 

 
Figure 8: An image take of the Steadidrone UAV during flight testing at Bottle Lake Forest 

Park. 
 

Cutover detection algorithm 

The results of the two classification algorithms tested individually against the manually 
classified set of images are shown in Table 7. In simple images (Figure 6, 1 & 2), the 
colour-transformation classifier narrowly outperformed the SVM classifier. However, the 
colour-transformation method only outperformed the SVM method by a large amount in 
one of the tested images and had a mean accuracy rate that was 7% lower than the SVM 
classifier. The SVM classifiers had poor performance on image four (Figure 6, 4) which 
was likely due to the distortion of the trees due to the low altitude of the image and the low 
contrast. Images one and two (Figure 6, 1 & 2) were more typical of the scale used in the 
training data set. Classification accuracy from image three (Figure 6, 3) using the colour-
transformation method was particularly low due to the two regions of forest in the image. 
Due to the contour selection step of the colour classification, the entire forest section 
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below the road was ignored. This highlighted the need for a classifier that did not rely 
solely on colour values and motivated the selection of a combined approach. 
 
Table 7: Accuracy of SVM and colour based forest classifiers applied to five ground truth 

images. 

Image 
Number 

SVM Accuracy Colour Accuracy 

1  
2  
3  
4  
5  

96.2%  
94.6%  
92.8%  
81.9%  
85.3%  

97.1% 
96.9% 
55.0% 
90.2% 
76.7% 

Mean  90.2 %  83.2 % 

 
The flight paths produced by the edge-detection algorithm applied to a sequence of 
images following the edge of a cutover are shown in Figure 9. The flight path agreed well 
with the ground-truth forest edge. The absolute deviation of the flight path from the actual 
edge was 26.2 pixels. Based on the size of tree crowns and tree trunks in the image, there 
were approximately 11 pixels per metre in this scene, implying an approximate average 
error of 2.4 m. This discrepancy was largely attributable to the smoothing routine included 
in the edge detection algorithm that was essential to avoid rapid, irregular adjustments of 
the UAV during flight. 

 
Figure 9: Software simulation of UAV flight path based on cutover edge detection 

algorithms. (a) Shows the simulated flight path from an early iteration of the algorithm over 
simple edge features. (b) Shows a later example of the UAV flight path (green) and 
heading (blue lines) over a more complex edge. C) Shows the smoothed flight path (red) 
against the edge as assessed from ground-truth mapping (green). 
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The algorithm was successfully adapted to run on the Aeronavics UAV and several test 
flights were carried out using the new platform. Results showed that the improved SVM 
classifier was more reliable during actual flights. Manual flights showed the software to be 
accurately tracking the cutover edge and the system was successfully switched into 
automatic mode. The UAV successfully identified and followed the edge in autonomous 
mode during this flight. 

Discussion and conclusions 

These results demonstrated that simple RGB imagery acquired from a UAV can be used 
to accurately classify forest and cutover areas. The classification results were good 
enough to enable autonomous navigation of a UAV system programmed to detect, track, 
and map the cutover edge. The accuracy of the classification results (SVM = 90.2% 
accurate) compared well to similar research using imagery with higher spectral resolution, 
where SVM classification was reported as being 87.9% accurate (Pal & Mather, 2005). 
The Aeronavics based platform further demonstrated that the SVM method alone was 
sufficient for the task; however, a more powerful CPU was required to perform 
classification in real-time. SVMs have been widely used in remote sensing and are well 
suited to the complex image classification and different sensor types encountered in the 
field. These methods are also transferable to a wide range of image sources and can be 
used on orthomosaics generated in post-processing rather than real-time video frame as 
done in this project (C. Huang et al., 2002; Mountrakis et al., 2011; Pal & Mather, 2005). 
 
Previous research has addressed similar tasks such as autonomous tracking of a river 
centre using a fixed-wing UAV (Rathinam et al., 2007). The simulated mean accuracy of 
2.4 m from the SVM method in this test compares favourably to the mean value of 7 m 
observed in Rathinam et al. (2007) during flight testing. In a forestry context, errors of this 
magnitude are likely to be lower than those produced used traditional aerial or satellite-
based cutover mapping (Figure 10) and could be used to update GIS records and monitor 
harvest operations with high frequency. 
 

 
Figure 10: Example image showing manual cutover edge identification from aerial 

imagery. 
  
The project successfully demonstrated a proof of concept for an autonomous UAV system 
that can detect and follow the forest cutover edge. Development of the system was 
complex and suffered from numerous technical challenges. However, use of a commercial 
grade UAV and upgraded computational systems resolved most of these challenges. A 
range of commercial UAVs such as the PaparazziUAV (Parrot AR, Lausanne, 
Switzerland) now offer some form of programmable guidance system. These systems 
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could potentially be used to further develop and implement methods similar to the 
demonstrated cutover detection algorithm on top of mature hardware platforms with much 
greater simplicity. 
 
Future work could also explore further use of a laser range finder to supplement the 
tracking algorithm and enhance the control functions of the system. For safety reasons, 
the UAV was only operated in autonomous mode for brief periods. With further 
development the system could be expanded to include more sophisticated control 
features for faster flying and to perform advanced tasks such as entering search mode for 
the cutover at the start of the flight, or after the line is lost. 
 

Post-planting assessment  

Background 

Within plantation forestry, there is considerable interest in the use of imagery to assess 
post-planting stocking for quality assessments and to detect mortality of seedlings so that 
replacement planting can be scheduled in a timely manner. The objective is to achieve a 
uniform target stand density across new or replanted areas to achieve silvicultural 
objectives. Mortality of seedlings may be caused by a range of factors such as moisture 
stress (Villar-Salvador et al., 2012), pathogens (Reglinski & Dick, 2005), herbivory 
(Bulinski & McArthur, 1999), weed competition, and frost damage (Mason, South, & 
Weizhong, 1996). Current assessment relies on inspection of a small number of sample 
plots or transects to assess mortality and identify irregular planting density. This process 
is laborious and often only a small sample of the total planted area can be economically 
assessed. UAV-based assessment may offer a means of rapidly assessing seedling 
mortality and density across large areas. However, most research to-date has focused on 
mortality of larger trees and little work has examined the use of UAV imagery. 
 
Remote sensing has been widely used to characterise the spatial extent of tree mortality 
caused by drought stress (Allen et al., 2010; Macomber & Woodcock, 1994; Williams et 
al., 2010), bark beetle infestation (Edburg et al., 2012; Wulder, Dymond, White, Leckie, & 
Carroll, 2006), and to study the potential impacts of mortality on regional carbon budgets 
(C. Y. Huang & Anderegg, 2012). Most research has used satellite imagery to quantify the 
spatial extent of tree mortality at regional and landscape scales using imagery of a 
moderate (5 - 30 m) resolution (Fraser & Latifovic, 2005; Meigs, Kennedy, & Cohen, 
2011). Over the last decade a growing number of studies have used high resolution (<5 
m) satellite imagery to examine tree mortality at finer spatial scales in order to detect 
mortality of individual trees, or clusters of trees, within a stand (Coops, Johnson, Wulder, 
& White, 2006; Dennison, Brunelle, & Carter, 2010; Guo, Kelly, Gong, & Liu, 2007; Hicke 
& Logan, 2009; Stone, Penman, & Turner, 2012). Generally, the use of satellite imagery 
with a finer spatial resolution has been shown to more accurately classify mortality. For 
example, recent studies, that investigate mortality from outbreaks of mountain pine beetle 
(Dendroctonus ponderosae), showed classification accuracies ranging from 67- 78% for 
medium resolution (Franklin, Wulder, Skakun, & Carroll, 2003; Skakun, Wulder, & 
Franklin, 2003; Wulder et al., 2006) to accuracies of 71-93% when high-resolution satellite 
imagery was used (Coops et al., 2006; Hicke & Logan, 2009; Joanne C White, Wulder, 
Brooks, Reich, & Wheate, 2005; Wulder, White, Coops, & Butson, 2008). 
 
Although the utility of satellite imagery has been widely explored, far less research has 
utilised aerially-acquired imagery at a very fine resolution to characterise mortality. Four-
band aerial imagery with a spatial resolution of 30 cm was acquired over lodgepole pine-
dominated stands recently attacked by mountain pine beetle (Meddens, Hicke, & Vierling, 
2011). The imagery was resampled to 1.2, 2.4, and 4.2 m resolutions and indices derived 
from this imagery were used to detect mortality using a maximum likelihood classifier. 
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Imagery with a 2.4 m resolution, which approximated the crown area, provided the highest 
classification accuracy of 90%. Stone et al. (2012) used multispectral aerial imagery at a 
spatial resolution of 20 cm to successfully detect drought-induced mortality in Pinus 
radiata D. Don within stands ranging in age from 0-35 years. 
 
The indices used to detect mortality show considerable consistency between studies. 
Conifer foliage may be damaged and become red due to a variety of agents, such as 
insects, root rot, fungi, and drought (Vollenweider & Günthardt-Goerg, 2005). Independent 
of the damaging agent, foliar moisture declines, chlorophyll and other pigment molecules 
break down, followed by a breakdown of intracellular and cellular structures (Sims & 
Gamon, 2002; Vollenweider & Günthardt-Goerg, 2005). This change manifests as an 
increase in the spectral reflectance of red wavelengths and a drop in green reflectance 
(Ahern, 1988; Curran, Dungan, & Gholz, 1990; Herrmann, Rock, Ammer, & Paley, 1988; 
Leckie, Teillet, Fedosejevs, & Ostaff, 1988; Rock, Hoshizaki, & Miller, 1988). 
Consequently, the ratio of red reflectance to green reflectance, which is known as the 
Red-Green Index (RGI), was found by Coops et al. (2006) to be most effective at 
separating green tree crowns from red tree crowns in areas attacked by mountain pine 
beetle. The RGI index and temporal changes in this index were subsequently used to 
detect attacked crowns in many studies using both satellite imagery  (Gartner, Veblen, 
Leyk, & Wessman, 2015; J. White, Coops, Hilker, Wulder, & Carroll, 2007; Wulder et al., 
2008) and four band aerial imagery (Dennison et al., 2010). A similar classifier based on 
the red and green reflectance bands was used to detect drought-induced mortality from 
aerially-acquired multispectral imagery (Stone et al., 2012). 
 
Nearly all of this work has focused on detecting mortality on larger trees using imagery 
from aircraft or satellites. We are unaware of any research that has investigated the 
feasibility of detecting density and mortality in young plantations with small seedlings. The 
successful detection and mapping of seedlings will require the matching of the platform, 
sensor and image analysis method to the information requirements. Previous research 
shows that detection rates of mortality are high when spatial resolution of the imagery 
approximates crown area and imagery that includes the green, red bands is collected. 
This suggests that a UAV, which can supply RGB and multispectral imagery at 3-10 cm 
resolutions, is likely to provide the most appropriate platform for detection of dead 
seedlings.  

Methods 

The trial was carried out at Rangipo in the Central North Island. The site was formerly 
under fertile pasture and was converted to forestry as part of a Scion led trial. The site 
included a range of treatments, planting densities, and included site preparation 
(continuous ripping) in two blocks. This provided a range of conditions for testing the 
image analysis methods. Table 8 summarises the key characteristics of the data 
collected. 
 
Table 8: Summary of site flown to test assessment of seedling mortality and density. 

Site Captured (Age) RGB Multispec Notes 
Rangipo 1 (8 ha) April 2017 (8 

months) 
Yes - 1 
cm/pixel 

No Trial site converted from 
pasture with +- 4ha 
ripped (East block) 

 
The eastern half of the trial was subject to site preparation (continuous ripping) before 
establishment. The trial was planted between 22-24 August 2016 and the first RGB 
imagery was collected in February 2017 with a second dataset collected in April 2017 with 
higher resolution RGB. The April dataset was used for all analysis due to the higher 
resolution available; however, weed growth had increased significantly since the 
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acquisition of the February dataset. The RGB imagery was processed in Pix4D Mapper 
with the ground control points installed before generation of the orthomosaic. 
 
Multiple attempts were made to capture multispectral data at the location; however, 
several factors significantly hampered these efforts. The low resolution of the RedEdge 
multispectral camera (1.3 MP) meant extremely low altitude flight plans were required to 
obtain adequate resolution imagery of the small seedlings. This necessitated a series of 
very slow flights and changes in sky conditions such as clouds moving over the sun 
repeatedly spoiled the data. The changes in reflectance created significant artefacts in the 
imagery, especially across key bands such as the red edge. This imagery was ultimately 
excluded from analysis and the approach focused instead on exploring methods to identify 
seedlings from very high resolution RGB imagery alone. Capturing RGB imagery of the 
seedlings was greatly simplified by the much higher resolution of typical RGB cameras. 
Cameras that have a resolution of 20 megapixels or higher are affordable and can be 
purchased to suit a wide range of UAVs. This greatly increased the practicality of 
conducting the post-planting assessment. The current generation of multispectral sensors 
are more expensive and have a considerably lower resolution (1.3 MP MicaSense 
RedEdge cf. 20 MP RGB Sony). This significantly increases the time and cost of acquiring 
high-resolution data and may make this impractical for operational use. However, newer 
generations of these sensors with much higher resolutions (4K) are currently being tested 
for release in 2017/ 2018. These sensors are likely to overcome many of the challenges 
noted in this study. 
 
The imagery covered a large area and a manual field survey to identify dead or senescing 
seedlings was carried out along several transects within the bounds of the trial. Different 
subset areas of the main trial were identified to develop and test the two approaches 
trialled. The OBIA analysis was developed using a 0.2 ha subset. The area was clipped 
out from the main orthomosaic and the position of each seedling (dead or alive) was 
manually digitised from the orthomosaic. A total of 257 seedlings were identified. This step 
was accomplished using ENVI 5.4 (Harris, Boulder, CO, USA). The subset area and 
marked seedlings are shown in Figure 11. The area chosen included a mix of seedlings 
surrounded by bare earth as well as some areas with significant weed growth. The weeds 
had similar spectral properties and some had attained a similar height to the pine 
seedlings. Analysis of training samples showed little spectral separability of weeds from 
seedlings in the RGB bands, suggesting that supervised classification was unlikely to be 
successful. The RGR index has previously been used for similar tasks (Gartner et al., 
2015; J. White et al., 2007; Wulder et al., 2008) and a new layer (RGR) was computed as 
Red Digital Number / Green Digital Number for the subset area. The first approach 
focused on using OBIA to identify seedlings by combining the available spectral and 
contextual information (Blaschke, 2010). In this case, pine seedlings were taller than most 
surrounding weeds – casting significant shadows, planted in a regular pattern, and were 
slightly darker than weeds in the red and green bands and showed increased contrast in 
the RGR layer. The analysis attempted to develop a rule set encapsulating these 
characteristics in order to separate out live seedlings from other image features. 
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Figure 11: Rangipo RGB data showing a subset of the compartment containing manually  
identified seedlings (yellow asterisks) used to test an object-based classification. 
 
The second approach used a method based on cross-correlation template matching. This 
is a well-established image processing and machine vision technique that identifies areas 
in an image that match a template defining features of interest (seedlings in this case). 
The template is systematically compared to the target image pixels within a moving 
window of the same dimensions as the template. The normalised correlation coefficient 
between the template and the current window is computed and recorded in a secondary 
image (Briechle & Hanebeck, 2001; Sarvaiya, Patnaik, & Bombaywala, 2009). A 
correlation threshold can be specified based on the desired level of specificity and 
sensitivity to identify the best matching areas within the target image. A combination of 
software tools was used to develop this approach but the commercial package MATLAB 
(MathWorks, Natick, MA, USA) and the open source alternative SciLab (Scilab, 2012) are 
capable of sophisticated template creation and matching for image recognition. 
 
The image template was developed using training data from a new 0.8 ha area containing 
a large number of seedlings (Figure 12). The training process used 400 reference images 
containing a single seedling each. These data were used to assess the accuracy of 
different templates derived using each of the bands (RGB) and using different window 
sizes (15-60 pixels or cm). The best template was then applied to two new regions to 
assess the accuracy. Each identified seedling was manually assessed and the Type I 
error (false positive) was computed. A second inspection identified missed seedlings to 
compute the Type II error (false negative). The second region was located in an area 
heavily infested with weeds to assess how the template matching algorithm would perform 
in these areas. An example of this area can be seen in Figure 13. 
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Figure 12: Training area within Rangipo RGB imagery used to develop cross-correlation 
template image.  
 
 

 
Figure 13: Second test area in heavily weed infested location. Yellow diamonds show 

manually identified seedlings. 
 
 



 

35 

Results 

A range of OBIA rulesets were trialled and tested in the first region. The best results were 
obtained by: 

1) Separating image components using only the red and green channels. RGR index 
was not useful and was discarded. 

2) Thresholding regions with low RGB digital numbers to isolate the shadowed side 
of the seedlings. 

3) Thresholding regions with higher green values but low blue values to separate out 
most live vegetation, and especially the brighter green conifers. 

4) Classifying shapes that had both bright green pixels in a circular shape that were 
adjacent to regions classified as ‘shadow’ as ‘candidate seedlings’. 

5) Filtering out smaller shapes to leave only the remaining objects classified as 
‘seedlings’. 
 

The centroid of each seedling shape was extracted and compared to the actual locations 
of seedlings. The results of the OBIA analysis are shown in Figure 14.  

 
Figure 14: Results from an object-based classification to detect seedlings in RGB 

imagery. 
 
The centroids for correctly located seedlings were always located on the South East edge 
of the seedlings, reflecting the influence of the shadow on the shape of the classified 
objects. The lack of spectral resolution to separate out conifers from weeds was reflected 
in the rate of false positives. Out of a total of 267 detected seedlings, 46 were false 
positives. All of these were located on tall, dark green weeds that were confused for 
seedlings. Dead seedlings were not included in the false positives. The number of false 
negatives was 36. Most of these were seedlings much smaller than the average s ize or 
regions where tall weeds near grass confused the OBIA ruleset. The precision of the 
classifier (true positives / true positives + false positives) was 83%, while the sensitivity 
(true positive rate) was 86%. Overall, the classifier performed well and the few dead 
seedlings present in the scene were excluded during the thresholding stages. However, 
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the process was sensitive to weeds and appeared to rely strongly on the contrast resulting 
from shadows cast by the taller seedlings. 
 
Training of the template matching algorithm from the sample images was straightforward 
and the training images produced a template with low ambiguity. Comparison of different 
templates showed that the red channel was best, producing a higher correlation 
coefficient with new training samples. The template produced by this channel had a higher 
contrast between seedlings, surrounding vegetation, and the ground. A larger window size 
was also favoured. The seedlings averaged 20 - 25 cm diameter but the optimum window 
size was close to 60 cm. The template showed that the larger window size captured the 
effects of shadow on the South East side of the seedlings and adjacent ground. The 
template-matching output estimated the location of the top of each seedling. The results of 
the template applied to a new area not used to train the algorithm are shown in Figure 15. 

 
Figure 15: Results of template matching algorithm for detecting seedlings. 

 
The classifier identified 619 seedlings, whereas the area was known to contain 642 
seedlings. A correlation coefficient threshold of 0.775 appeared to produce a good 
balance between false negatives and positives. Higher coefficients reduced the detection 
of taller weeds as seedlings but increased the number of smaller seedlings missed by the 
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algorithm. The final classification produced 50 false positives, nearly all from tall, green 
weeds. At this threshold, a total of 73 seedlings were missed and these were almost all 
seedlings that were considerably smaller than the average for the site. The sensitivity was 
89%, while the precision was 92%. These results were obtained by testing on a relatively 
large area but the results still surpassed the usefulness and accuracy of the OBIA 
classifier. The template matching approach appeared to benefit from the shadow and 
shape of the seedlings but the results excluded the few dead and missing seedlings 
present in both the training and test scenes owing to the low contrast between the ground 
and the red, senescing needles as well as the smaller shadow cast by these seedlings. 
 
Applying the template to the heavily weed infested area produced poor results (not 
shown). This was due to the very dense vegetation that obscured both the seedlings and 
the shadow-related elements in the scene. Interestingly, the classifier suffered mostly from 
false positives from tall weeds, with many of the seedlings being identified. Had 
multispectral data been available, the strong contrast between the flowering weeds and 
the pines may have been useful in a revised classification aimed at reducing the false 
positive rate. 

Discussion and conclusions 

Overall, the results demonstrated that seedlings could be detected with a high level of 
accuracy across this site using only RGB imagery. Both the OBIA and template matching 
approaches produced accurate classifications, with the template matching algorithm 
producing a better compromise between false positives and false negatives. Both 
approaches benefitted substantially from the shadows cast by the taller seedlings and the 
contrast between the North West and South East portions of the seedlings. The shape 
and colour also assisted both classifications. The few dead seedlings in the scenes 
usually had red needles and showed less contrast and smaller area cast in shadow. Both 
classifications were capable of excluding these dead seedlings but the overall number 
available for testing was low and the classifiers may not have performed as well on 
examples with higher contrast or only partially dead foliage. Nearly all false positives 
resulted from taller weeds and the results from the heavily weed-infested site confirmed 
that high prevalence of weeds confuses the classification. 
 
The demonstrated approaches are unlikely to perform as well on sites with a high level of 
weeds and the importance of shadows suggested that elevation of the vegetation within 
the scene was useful for classification. This suggests that the use of multispectral imagery 
and the dense matching point clouds from RGB imagery might be useful for classification. 
Multispectral imagery collected by Scion at other sites containing seedlings > 2 years old 
showed higher contrast between conifer seedlings and weed species using the red edge 
and near-infrared channels. However, the low resolution of current multispectral sensors 
made it impractical to collect data for the much smaller seedlings. Data from higher flights 
showed that the small seedlings became hard to detect at lower resolutions. This is 
important because the early assessment of mortality and stocking at e.g. 8 months allows 
forest managers to correct these issues during the next planting season. The advent of 
higher resolution multispectral camera is likely to overcome these issues and would allow 
the classifiers to be further refined to exclude weeds species. This study did not examine 
the use of synthetic point clouds or DSMs, but it may be possible to use values from a 
DSM produced by Pix4D or other image-matching software in place of the shadows that 
formed a proxy for vegetation height. Overall, the use of UAV-derived RGB imagery 
appeared to show promise for post-planting assessment but further testing across a 
broader range of sites, and potentially utilising newer multispectral sensors may validate 
and improve the practicality of this approach.  
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Post-harvest Waste Assessment  

Background 

Coarse woody debris (CWD) plays an important role within forests. This dead wood 
provides a long-term source of organic matter and nutrients to the forest soil (Karjalainen 
& Kuuluvainen, 2002; Siitonen, 2001; Yan, Wang, & Huang, 2006) and is a critical habitat 
for the maintenance of biodiversity (Bütler & Schlaepfer, 2004; Mielikäinen & Hynynen, 
2003). The quantity of CWD also affects carbon dynamics (Bütler & Schlaepfer, 2004; 
Ståhl, Ringvall, & Fridman, 2001) and fire risk (Brown, Reinhardt, & Kramer, 2003). 
Consequently, information about the spatial distribution of CWD provides useful insight 
into soil nutrition, species distribution, biodiversity and biogeochemical cycles in forest 
ecosystems (Jia-bing, De-xin, Shi-jie, Mi, & Chang-jie, 2005). 
 
CWD inventories have traditionally been undertaken using ground-based field surveys. 
Several unbiased methods for sampling CWD are available that include fixed area 
sampling, line intersect sampling, planar intersect sampling and transect relascope 
sampling (Jordan, Ducey, & Gove, 2004). Field campaigns to locate and characterise logs 
often need to be extensive as CWD is usually distributed in a random pattern that is not 
spatially contiguous. Consequently, field surveys are often expensive, labour intensive 
and difficult in remote areas or regions with broken or steep terrain (Bütler & Schlaepfer, 
2004). The line intersect method (LIM) (Van Wagner, 1968, 1982) is commonly used in 
New Zealand to assess waste left on site and to ensure logging contractors have reached 
target values for recovery of merchantable timber (Warren & Olsen, 1964). The accuracy 
of the LIM method can be negatively impacted by violations of the assumption that pieces 
are randomly orientated, as might be encountered on wind-damaged areas (Bell, Kerr, 
McNickle, & Woollons, 1996). The accuracy of the LIM waste assessment also benefits 
from increased total transect length but the degree of improvement depends on site 
characteristics and can increase the cost of sampling using traditional field-based 
methods (Pickford & Hazard, 1978; Warren & Olsen, 1964). 
 
Remote sensing methods such as manual aerial photo interpretation, manual or automatic 
interpretation of satellite images, and ocular estimation from aeroplanes or helicopters are 
used in the estimation phase to more effectively allocate sample plots (Ståhl et al., 2001). 
Research describing the use of remote sensing to directly estimate CWD is relatively 
sparse and most studies have used data collected from manned aircraft. Following a 
severe fire in Yellowstone Park, 1 m aerial imagery with four bands was used to map 
CWD in streams but proved to be relatively inaccurate (Marcus, Marston, Colvard, & Gray, 
2002). Similarly, fused airborne Synthetic Aperture Radar (AirSAR) and optical Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) was of limited use in detecting CWD, 
within this study area (S. Huang, Crabtree, Potter, & Gross, 2009). CWD was successfully 
mapped within Yellowstone Park, with an accuracy of 83%, using 1 m hyperspectral 
imagery (Marcus, Legleiter, Aspinall, Boardman, & Crabtree, 2003). In Gatineau Park, 
Québec, Pasher and King (2009) were able to accurately map 94% of dead wood objects 
using 20 cm multispectral imagery.  
 
ALS data has been found to be moderately useful in the detection of CWD. Within the 
lodgepole pine and spruce/fir stands of Montana in the US, ALS was used to accurately 
describe the total fuel load which was mostly composed of CWD (Seielstad & Queen, 
2003). Research undertaken in Koli National Park in eastern Finland (Pesonen, Maltamo, 
Eerikäinen, & Packalèn, 2008) showed that a model constructed using intensity data and 
height percentiles from ALS data was moderately accurate at predicting CWD (adjusted 
R2 = 0.61; RMSE of 51.6%). Blanchard et al. (2011), investigated the utility of LiDAR at 
delineating downed logs in disturbed forest landscape in Lake Tahoe National Park, 
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California. Using an OBIA framework, 73% of downed log objects were successfully 
delineated and classified from LiDAR-derived metrics (Blanchard et al., 2011). 
 
Although little research has investigated the utility of UAVs for detecting CWD, this could 
provide a promising avenue given the higher spatial resolution of the data and the 
relatively low cost of flying moderate sized areas. Fallen trees within a deciduous forest in 
eastern Japan were surveyed using high resolution aerial photographs (0.5-1.0 cm per 
pixel) acquired from a UAV (Inoue et al., 2014). This research was able to identify 80% to 
90% of fallen trees that were >30 cm in diameter or >10 m in length but missed many that 
were narrower or shorter. Within a recently harvested plantation, Bryson and Sukkarieh 
(2016) used high-resolution colour imagery data (2 mm) collected from a UAV to 
characterise CWD through digital annotation. The method was successful and showed a 
very close correspondence (R2 = 0.99) between estimated and measured volumes of 
CWD (Bryson & Sukkarieh, 2016). 
 
This study aimed to evaluate the usefulness of RGB imagery acquired from a UAV as a 
means of assessing post-harvest waste. The method sought to replicate the results 
obtained using the LIM that is widely used in New Zealand and elsewhere as a means of 
estimating the volume of potentially merchantable timber left unrecovered. The study also 
sought to explore possible implications for future improvements in waste assessment 
methods based on availability and usefulness of UAV imagery. 

Methods 

This study focused on the feasibility of performing post-harvest waste assessment using 
RGB imagery acquired from a UAV. The primary objective was to compare measurements 
of CWD extracted from the imagery to measurements obtained using field-based LIM 
surveys. To accommodate this, the LIM field sampling protocol deviated from the 
sampling considerations required to achieve representative estimates of the residual 
material per hectare. The study design used an adaptation of the LIM layout but plots 
location and length were adjusted to include a larger number of pieces covering a range of 
sizes and the study was located on a site with moderate amounts of waste present. 
 
In the field, eight plots were systematically located in a recently harvested site. The centre 
of each plot was located using a high-grade GPS, post-processed to centimetre accuracy. 
Two perpendicular transects were set out from each plot (Figure 16) with an orientation 
chosen to intersect visible waste elements. The total transect length was 345 m, with most 
transects measuring approximately 20 m. In some cases, transects were extended to a 
maximum of 27 m to include additional waste pieces. The line intersect method requires 
the definition of minimum piece size based on e.g. length and small end diameter (SED), 
and large end diameter (LED) to determine if waste pieces should be included in 
measurements. For this study, all waste pieces with length > 1 m and SED > 10 cm were 
measured. The cross-sectional diameter at the point the transect line intersected each 
piece was measured using callipers or a DBH tape. In addition to this, the SED, LED and 
length between these points were also recorded and marked with blue paint. Excessive 
sweep, rot, and other defects on identified waste pieces were noted to assess whether 
these could be detected from the imagery. 
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Figure 16: Study site and layout for post-harvest waste assessment based on the line 

intersect method. Blue paint indicated the locations where field measurements were 
collected. 
 
A summary of the key characteristics for the imagery collected is shown in Table 9. 
Images were processed using Pix4D mapper with ground-control points inserted before 
refining the final orthomosaic to ensure accurate geo-rectification. The transect lines were 
located in the imagery using a GIS. Waste pieces intercepted by these lines were 
identified and annotated by locating the painted marks on the pieces and defining a 
polyline in the GIS. This process was carried out without reference to the field 
measurements. The final annotated layer marked the length, SED, LED, and cross-
sectional diameter at the point of field measurement (identifiable from the painted marks in 
the imagery). 
 
Table 9: Description of key characteristics for datasets collected over recent harvest site. 

Data characteristics Values 

Imagery extent (ha) 6.4 ha 
Ground sample distance (cm/pixel) 0.7 
Flight altitude 30 m 
Number of images 701 
Image channels RGB 
Ground control Yes (8) 
Forward / side overlap (%) 88 / 90 

 
The field measurements were graphically compared to the annotated measurements 
obtained from the imagery. Both sets of measurements were then used to calculate the 
approximate volume of each piece as a conical frustum according to the equation: 
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Where L is the piece length, SED is the small end diameter and LED the large end 
diameter. This volume of waste per unit area was then computed using the line intersect 
equation of Van Wagner (1968, 1982): 
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𝜋2
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)∑ 𝐷2 

 
Where L is the length of the transect line along which the pieces lie and D is the cross-
sectional diameter at the point of intersection on this line. The estimates of waste and 
individual piece volumes from annotated imagery and field measurement were compared. 
Finally, an assessment was conducted to determine if defects could be located on larger 
pieces that may have been correctly left as waste because of e.g. rot or excessive sweep 
noted by the harvesting crews. 

Results 

In total, 60 waste pieces were identified and measured covering a range of lengths and 
diameters (Table 10). The annotated measurements extracted from the orthomosaic 
agreed well with field measurements at nearly all points. The maximum difference of 14 
cm occurred measuring the length of a 9 m piece with moderate sweep (Table 10). The 
average difference between field and imagery measurements was generally low with 
length measurements showing the highest error (Table 10). This was usually due to 
sweep or difficulty identifying ends that were covered by slash or other debris. 
 
Table 10: Summary statistics for measured waste pieces. 

 SED Intersect LED Length 
 Field Imagery Field Imagery Field Imagery Field Imagery 

Mean (cm) 17 16 19 18 20 21 339 333 
Std. Dev (cm) 7 7 8 7 8 8 173 173 
Min (cm) 10 7 11 9 11 11 115 112 
Max (cm) 47 43 50 54 55 58 920 934 

Absolute Mean 
difference (cm) 

2.3 1.7 2 9.9 

 
Some artefacts were observed in the final orthomosaic (Figure 17, Top); however, none of 
the identified transects ran through these areas. These artefacts were likely caused by 
poor matching of images covering these locations but the affected regions were small and 
the remaining orthomosaic showed very high levels of detail across the site (Figure 17, 
bottom). 
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Figure 17: Example of image ghosting from poor matching during orthomosaic generation 
(top). The bottom panel shows the typical level of detail achieved across most of the site 
from imagery with a GSD of 0.7 cm/pixel. 
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The volume defined by a frustum of a cone was computed using the field and imagery 
measurements of length, SED, and LED. The volumes computed in this way agreed well 
for all 60 pieces and a regression between these values showed strong agreement (R2 = 
0.95) with an intercept of 0 and a slope nearly equal to 1 showing strong agreement 
across the range (Figure 18). The volume of pieces ranged from 0.03 m3 to 0.8 m3 but 
most pieces were quite small (mean = 0.12 m2), as could be expected in a waste 
assessment. The volume and dimensions of the largest piece were well estimated from 
the imagery; however, field inspection could identify that this piece was left due to 
extensive rot. This was not immediately evident from the UAV imagery. The volume per 
hectare from the field estimates was 85.6 m3 / ha while the estimate from the image-based 
measurements was 84.4 m3 / ha. Although these estimates agreed well, the deliberately 
biased sampling strategy made these values considerably higher than might be expected 
from a random sample. The process of annotating imagery was straightforward and could 
be accomplished efficiently using nearly any GIS software. 
 
The results from inspection of identified pieces for defects produced mixed results. The 
key limitation of the imagery-based approach was the inability to identify rot and difficulty 
identifying and measuring pieces hidden by other slash and debris. However, the imagery 
could be used to easily trace out pieces with significant sweep, and it would have been 
feasible to compute the actual sweep from the annotations as a verification of the harvest 
crew’s assessment. Broken or shattered pieces occasionally posed a challenge for SED 
and LED measurements but were rarely an issue when focusing only on the diameter at 
the point of intercept.  

 
Figure 18: Regression of volume estimates for 60 waste pieces calculated using field 
measurements and measurements extracted from digital annotation of UAV imagery. 

Discussion and conclusions 

The primary objective of this study was to evaluate the utility of RGB imagery for post-
harvest waste assessment. Digital annotations extracted from the geo-rectified imagery 
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showed excellent agreement with measurements obtained in the field. The study relied on 
replicating the line intersect sampling approach as this method is widely used in New 
Zealand to conduct post-harvest waste assessment. While the imagery provided a very 
similar estimate of residual volume, several key advantages were noted when using the 
RGB imagery. LIM sampling is constrained by the need to physically move around the site 
to locate and measure transects. This may constrain the number, location and total length 
of transects achievable and this may impact the error of the estimates (Van Wagner, 
1968, 1982). The image-based approach was much less constrained and it would have 
been feasible to place transects anywhere where the imagery was free from artefacts, and 
potentially long transect lines could have been marked in any direction. The process of 
measuring pieces was straightforward and most GIS software includes template tools to 
assess the size of objects – allowing small, in-eligible pieces to be rapidly excluded. 
Another advantage of the image-based approach was the ability to easily identify the 
general orientation of pieces across the site. This is important because the non-random 
orientation of pieces has been shown to induce serious errors in LIM-based estimates of 
waste volume (Bell et al., 1996). One approach to overcome non-random orientation is to 
arrange transects as equilateral triangles. While this works well it is often costly and hard 
when done in the field (Bell et al., 1996). The image-based approach could help to both 
identify sites with non-random orientation of pieces and to implement transect layouts best 
suited to minimising error in the estimates derived from these sites in a cost-effective 
manner. 
 
One key disadvantage of the image-based approach was the inability to identify rot in the 
imagery. This might lead to an overestimation of waste when these pieces are 
erroneously included in the survey. It was also difficult to measure pieces where slash 
obstructed clear views; however, this must be weighed against the potential advantages 
such as the ability to survey longer transects, to accurately measure sweep, and to 
improve the layout of plots by e.g. sampling hard-to-reach areas. This study also lacked 
imagery covering steep sites. In theory, the dense matching point cloud could be used to 
provide an accurate estimate of the slope to correct any measurements but this was not 
tested and other factors such as long shadows or poor illumination on steep sites might 
pose challenges to image-based approaches. Future work might explore the method 
applied to a wider range of areas and sites. A key area for further investigation should be 
the use of the imagery and dense matching point clouds to automatically identify debris, 
potentially using OBIA. Successful identification of larger pieces from these data could 
allow assessment of waste across most or all of a recently harvested site. 
 

Conclusions 

Remote sensing is widely used in New Zealand’s forestry sector. UAVs offer new 
opportunities to collect these data but the cost efficacy and potential applications have not 
been broadly explored. A survey of data providers suggested that LiDAR is increasingly 
sought by forestry companies but UAVs are not yet capable of delivering routine LiDAR 
products. Instead, UAVs currently fill a niche role in the provision of RGB and 
multispectral imagery. UAVs were most cost-effective for areas up to 100 ha and offered 
rapid capture of very high resolution imagery products. These data showed promise for a 
range of potential applications within the sector. This study demonstrated the potential for 
autonomous mapping of cutover areas using a customised UAV and detection and 
mapping of wind-thrown forest using fixed wing craft that can capture larger areas. 
Operational applications such as post-harvest waste assessment also appeared 
promising, with methods based on imagery showing strong agreement with field-based 
assessments. Tasks such as post-planting survival assessment were more challenging 
but advances in sensor capabilities are likely to overcome the identified limitations. As 
sensors and craft develop it is expected that UAVs and the data they can provide will play 
an increasing role in New Zealand forestry. 
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