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Summary: We collected an ultra-high density UAV laser scanning dataset using a Riegl miniVUX-1 UAV scanner 
embedded within a LidarUSA system over a mature genetics trial. This was supplemented by an extensive field 
dataset that was used to validate the utility of the resultant UAV point cloud for measuring phenotypic traits in 
forest trees. We examined the dataset and found good laser penetration to the lower parts of the tree, the 
understorey and the terrain. We quantified the vertical accuracy of the UAV dataset using a set of independent 
ground control points and found it to have high accuracy (RMSE = 0.26 m). We developed methods to adapt a 
tree identification and delineation algorithm to the UAV data and extracted individual tree point clouds from which 
we could extract tree position and height. We compared the height of trees extracted from the UAV dataset at both 
the plot and tree-level and found that the plot level comparison was very similar (RMSE = 1.57 m) but was less 
accurate at the tree-level although considerable errors associated with trees with broken tops which were not well 
identified using the tree-identification approach trialled. Once these were removed the tree-level height comparison 
revealed improved accuracy (RMSE = 2.9 m). We discussed the sources of error in the collected dataset and 
suggested directions for further research in this area. 
 

 

Introduction 

Detailed measurement of tree phenotypic traits can 
support tree breeding programmes when linked to 
information on the genetic worth of individuals within 
experimental trials. Traditional methods for measuring 
tree phenotypic traits have relied on manual field 
measurements. These methods are limited due to the 
amount of measurements that can be accurately 
captured by a field team within budgetary and 
resource constraints. For larger trees, the accuracy of 
many measurements is also lower because many 
traits of interest, including tree height and 
assessments of features in the upper stem, are very 
difficult to collect in larger trees. Therefore, new 
methods that can provide accurate, cost-effective 
measurements over larger areas are required. Within 
the Growing Confidence in Forestry’s Future (GCFF) 
programme significant developments have been 
made towards tree-level phenotyping of forest trees 
and these have been successfully linked to data on the 

genetic composition of trees to improve the 
deployment of tree breeding research (Pont, 2016; 
Pont et al., 2015). This research has primarily 
focussed on the use of data from conventional 
manned aerial platforms and offers encouraging 
results. The acquisition cost of these data can be 
prohibitively high for frequent measurement of trials or 
measurement of smaller areas. Unmanned aerial 
vehicles (UAV) potentially provide an alternative data 
collection platform as, once equipped with appropriate 
sensors, they can provide flexible and highly detailed 
data collection on tree phenotype over moderately 
sized areas. Furthermore, in recent years there have 
been substantial developments in UAV technology 
and in the development of the associated miniaturised 
sensors required. One such development has been 
the emergence of light weight laser scanning systems 
(Dandois and Ellis, 2013; Dash et al., 2019; Wallace 
et al., 2012) that can be mounted on a UAV and can 
provide potentially provide detailed data on the canopy 
structure of forest trees. 
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Significant efforts have been made towards 
developing data collection procedures (Puliti et al., 
2019) and methods for extracting useful metrics from 
this emerging data source. However, much research 
effort has been focussed on smaller trees because of 
the limited power and accuracy of the earlier UAV 
mounted laser scanners. For fast growing species 
such as Pinus radiata higher powered sensors are 
required that can accurately resolve both the treetops 
and the local ground surface so that tree heights and 
other canopy features of interest can be extracted. 
This was not feasible using earlier iterations of 
commercially available UAV-borne laser scanners due 
to range limitations and significant errors and noise in 
the resultant datasets. Subsequent systems often built 
around more modern scanners such as the Riegl 
miniVUX-1 UAV (RIEGL, Horn, Austria) offer greater 
range and higher accuracy thanks to the increased 
sophistication of the various system components and 
the scanner itself. 
 
In late 2018 Scion acquired a new miniaturised laser 
scanning system that can be mounted on a UAV and 
can potentially provide accurate information on tree 
and forest dimensions. Early trials with this scanner 
indicate that it has sufficient power to provide detailed 
depiction of trees and to penetrate through to the tree 
stem, lower branches, and the terrain below the forest 
canopy. To understand the performance of this new 
device we designed a trial where we collected an 
extensive experimental dataset to develop data 
collection procedures and to test whether we can 
extract useful information on tree and forest 
dimensions. 
 
In this study we installed a case study in a mature 
genetics trial to develop and test initial methods for 
extracting key phenotypic traits from UAV laser 
scanning (UAV-LS) data and to validate the accuracy 
of these measurements against an extensive 
conventional field survey.     
 

Method 

Study site 
This study was located in Tarawera Forest in the Bay 
of Plenty district close to Pukemaire Road. The study 
site encompasses a 3.6 ha clonal genetics trial 
(FR203/3) that was planted with advanced generation 
breeding population Pinus radiata in 1993 and aged 
26 years old at the time of measurement. The trial is 
in stand TAWE/5/5/4A and is managed by Hancock 
Forest Management. The site is 200 m, currently has 
a stand density of ~304 sph, and is pruned to 5.5 – 6 
m. Site preparation included a pre-plant herbicide 
spray, line-raking, ripping, and mounding. Tarawera 
forest is known for moderate fertility, a relatively fine 
branching habit, and freedom from excessive weeds. 
 

Experimental Design 
The original study trial design was a single-tree-plot 
trial with replication. The trial has three sets, with 30 
families per set including controls. All sites have 25 
replications and control seedlots were used in each 
set. Readers are advised to refer to (Stovold, 1993) for 

further information on the trial design including 
extensive detail on the genetic composition. Within the 
trial plots are demarcated with numbered treated 
stakes in each corner (Figure 1). These pegs were 
located and reinstated where required during a field 
visit prior to study commencement. The original plot 
boundaries were used to provide a field dataset for this 
study. The trial consists of 75 rectangular plots with a 
size of 24 x 20m (0.048 ha) and the trial spacing is 4 x 
4 m. Each plot originally contained 30 trees although 
several trees per plot have been removed due to 
thinning or mortality. 
 

 
Figure 1. Map of the original trial layout for the 
FR203/3 genetics trial showing the plot 
boundaries and tree locations used in this study 
 

Datasets 
The following datasets were collected to meet the 
study objectives. 

 
Field Data 
Detailed ground verification data is vital to develop and 
validate the UAV based measurement methods that 
were the focus of this experiment. The highest 
standards of care were employed during data 
collection to improve the accuracy of the field dataset. 
This ensured that it will provide a valuable data source 
for this study and subsequent analysis. Diligent 
auditing and data assurance were used to improve 
data quality. All study trees were measured to enable 
a full genetic analysis of the trial to be completed by 
other research groups at Scion. 
 
Accurately locating the trial and the trees within it was 
extremely important. The accuracy of Global 
Navigation Satellite System (GNSS) data collected 
below the forest canopy remains a major problem 
regardless of equipment used. A significant effort was 
exerted to accurately fix the trial location through 
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collection of a set of differentially corrected GNSS 
(dGNSS) points over the trial pegs along the northern 
edge of the trial. In this area the adjacent trees had 
been removed as part of road line harvesting of the 
stand and so we could be more confident of collecting 
data with high positional accuracy. Other trial pegs 
within the stand were also fixed using a dGNSS but 
exhibited substantial variation and so the pegs at the 
northern edge were used to locate the trial. As the trial 
was planted on a strict grid with a 4 x 4 m spacing this 
was sufficient to locate the trial and to approximate the 
position of the study trees. The tree locations and 
numbering scheme of the original genetics trial was 
used for the study dataset and trees were re-
numbered by the field team. Unfortunately, the 
matching of mature trees in both field and UAV 
datasets remains a difficult task and is likely to 
introduce substantial errors.   
 
Within each plot numerous external phenotypic traits 
were measured on each tree. The traits of interest 
included: 
 

 Tree height collected to decimetre precision; 

 Diameter at breast height (DBH at 1.4 m) 
using a dbh tape; 

 Stem straightness; 

 Branching pattern; 

 Stem malformation; 

 Stem dominance status 
 
 
Tree height was measured on all trees using an 
ultrasonic vertex. Heights were measured from two 
different angles to reduce the probability of erroneous 
measurement caused by occlusion or the identification 
of false treetops. Field crews noted many instances 
where tree heights would have been incorrect based 
on the initial measurement and finding an additional 
angle for measurement improved tree height 
accuracy. Where tree lean was observed, the initial 
height measurement was taken at a 90° angle from the 
direction of maximum lean. Tree height 
measurements were audited on a randomly selected 
sample of 60 study trees by an expert auditor to 
improve the dataset and to quantify expected error 
levels within the field data. 
 
Diameter at breast height (DBH) was measured on all 
plot trees at 1.4 m above the true ground surface on 
the uphill side of the stem. Measurements were taken 
to the nearest mm using a DBH tape avoiding parts of 
the stem affected by branch whorls or other forms of 
nodal swelling.  
 
Stem straightness, branching patterns, and 
malformations were assessed using the overlapping 
feature cruise methodology commonly collected within 
the Plotsafe software (Silmetra Ltd., Tokoroa, NZ). 
Stem straightness was assessed visually as the 
deviation of stem form from a straight line assessed 
over appropriate saw log assessment lengths. 
Branching regions are classified according to the 
maximum branch size and the height of changes in 

branch characteristics are recorded for each stem. 
The start and end heights of all other features that lead 
to a value downgrade in log-product output (e.g. nodal 
swelling, damage, rot) are also recorded. The Plotsafe 
user guide provides a detailed description of these 
methods. In addition to the normally collected data the 
dominance status of the stem should be recorded as 
either dominant, co-dominant, or suppressed. 
 
 

UAV Data 
UAV data was collected across the entire study area 
(wall to wall) on 17th April 2019. Prior to data collection 
ground control points (GCPs) were established to 
allow accurate co-registration of all data sources and 
to provide a means of quantifying the vertical 
positional accuracy of the UAV-LS data. The GCPs 
were located on roads or open cutover surrounding 
the trial and were visible in all UAV datasets. 
 
All data collection was carried out using a DJI  Matrice 
600 Pro piloted hexacopter platform (DJI Ltd., 
Shenzen, China). UAV Airborne laser scanning (UAV-
LS) data were collected from the UAV platform using 
Scion’s Riegl VUX-1 sensor embedded within a 
LidarUSA system (Fagerman Technologies, INC., 
Somerville, AL, USA). All flight manoeuvres including 
turning and altitude adjustments should be completed 
outside of the area of interest to reduce the possibility 
of flight artefacts in the trial dataset. Data collection 
was completed in fine and still weather conditions  
 

Point cloud analysis 

Point cloud analysis was completed on this dataset to 
meet the requirements of the GCFF milestone. The 
focus of this analysis was on quantifying the properties 
of the mini VUX-1 point cloud and assessing its utility 
for detailed measurement of the trees in the genetics 
trial in both a quantitative and qualitative manner. The 
number of ground returns, proportion of stem hits, and 
capacity to detect large branching and significant stem 
deformations were of interest.  
 
Data were extracted from the native Riegl format using 
Scanlook software v1.0.190 
(Fagerman Technologies, Inc., Somerville, AL, USA), 
and processed with trajectory data that was post-
processed using the Inertial Explorer software 
package (NovAtel Inc., Calgary, AB, Canada). 
Subsequent processing was completed using the 
LAStools software (RapidLasso, Gilchin, Germany). 
This processing included ground classification, noise 
removal, and interpolation of a digital terrain model 
(DTM). The DTM was used both to normalise the point 
cloud to the local terrain so that tree and canopy could 
be extracted and to quantify the vertical accuracy of 
the point cloud through a comparison with the GCPs. 
A canopy height model (CHM) was calculated from the 
ALS point cloud to provide an input into tree detection 
and delineation.  The properties of the point cloud 
were summarised to provide insight into the canopy 
penetration and accuracy levels. The proportion of 
ground returns and the density of returns at different 
points of the canopy were extracted and plotted. The 
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amount of stem hits and the capacity of the point cloud 
to resolve branching and other stem deformations was 
made qualitatively through visual examination of the 
point cloud. 
 
Tree identification and delineation was carried out 
using a range of algorithms available through the LidR 
v2.0.2 (Roussel and Auty, 2019) R library.  
The library offers a complete solution specifically 
designed for the identification and delineation of forest 
trees and other forms of analysis of ALS data. A 
number of delineation algorithms are available within 
the library and the algorithms “silva2016” (Silva et al., 
2016) and “dalponte2016” (Dalponte and Coomes, 
2016) were trialled in this analysis. Both algorithms 
require a set of local maxima extracted from a CHM 
raster to serve as surrogate treetops and provide a 
seeding point for segmentation. These approaches 
work well in many conifer species that maintain strong 
apical dominance, self-prune, and have narrow 
crowns. Unfortunately, mature Pinus radiata does not 
have these properties as the high crown plasticity 
means that in many cases branches can become 
emergent from the canopy and appear as false 
treetops. The lidR package provides a function to find 
local maxima in a smoothed CHM using a moving 
window size specified by the user. The moving window 
size has a major influence on the number of maxima 
identified. Following initial investigations, we found 
that a moving kernel size of 3 m provided a closer 
approximation of the actual tree numbers in the trial 
than the other settings trialled. Using this approach, a 
representation of the trees in the trial was extracted 
from the UAV-LS point cloud (Fig. 2).      
 

 
 
Figure 2. The delineated UAV-LS point cloud. Each 
colour represents a different tree identified in the 
point cloud. The red spheres show the locations 
of local maxima used to seed the delineation 
algorithm.  
 
 
There were two outputs from the tree identification and 
delineation process. The first was a shapefile 
containing the local maxima identified from the CHM 
that is assumed to represent the top of each study 
tree. These data are used to estimate the tree location 
in the shapefile and also to provide a start point for the 
tree delineation algorithm. The second output was the 

delineated point cloud containing all points that were 
assigned as belonging to a specific tree by the tree 
delineation algorithm. This output can then be used to 
calculate any desired metrics from the point cloud 
associated with each tree and also to estimate the 
canopy size and shape by fitting a two-dimensional 
Voroni polygon to the individual tree point cloud. In this 
manner estimates of tree height and canopy width and 
volume were extracted. All spatial analysis was 
undertaken using the simple features (sf) package 
(Pebesma, 2018) in the R programming language. 
 

Tree matching 

Matching the trees identified in the UAV point cloud 
with the field measured trees is a significant challenge. 
In this analysis we attempted to use the regular 
planting pattern of the trial trees to match the two 
datasets. A shapefile representing the locations of the 
study trees was produced assuming a regular planted 
spacing of 4 X 4 m. The grid was orientated and 
located using the plot boundaries provided by the 
northern boundary of the trial fixed with the highest 
GNSS accuracy in the field. The grid was manually 
adjusted in a GIS until it closely matched the observed 
tree positions in both the UAV imagery and the CHM 
produced from the UAV-ALS point cloud. The field 
measurements were then merged with this shapefile 
and stored as a simple features dataframe that 
included all tree measurements and an estimated 
location for each tree in the field dataset. Rotten and 
thinned trees were removed from the dataset and then 
a spatial match was used to link the field trees to the 
local maxima file identified from the CHM as part of the 
tree identification process. The accuracy of tree 
matching was assessed by comparing plot level tree 
counts in the UAV and field datasets and through 
comparing the accuracy of the tree height  
 

Accuracy statistics 

To assess the equivalence of the field and UAV 
derived height estimates the root mean square error 
(RMSE), and mean bias (MBE) were calculated.  The 
accuracy statistics were calculated using the following 
equations: 
 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖

𝑛
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𝑖=1

 

 
 

where 𝑦𝑖 is the observed value, �̂� is the predicted 

value in plot i, �̅� is the average of the observed values, 

and n is the number of plots. The RMSE was also 
expressed as a proportion of the field measured 
dataset (RMSE%) to provide an easily interpretable 
measure of accuracy. 
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Results 

The results obtained from the trial are summarised in 
the following sections. 
 

Field data 

In total 2,250 trees were assessed by the field crews 
including trees that had been thinned or were absent 
for other reasons. All the originally planted trees were 
accounted for in the field dataset. There were 30 trees 
assessed in each of the 75 plots measured. Of the 
total trees assessed 1,113 trees were recorded as 
having been thinned leaving a total of 1,137 standing 
trees in the trial. A further 14 of these trees were dead 
standing, recorded as being rotten, and not measured 
for this trial. Broken tops were observed in 66 trees 
(5.9%) distributed throughout the study area. The 
relationship between Height and DBH and the 
distributions of tree heights and DBH are shown in Fig. 
3.  
 

 
 
Figure 3. The relationship between Height and 
DBH in the study trees 
 
Sixty of the 1,123 live standing trees (5%) were 
audited by an expert assessor as the measurement 
error identified in tree height was of particular interest. 
Assuming the field measured height to be 𝑦𝑖  and the 

audit height to be �̂�, in the equation above, the RMSE 
on height measurement was 1.28 m (RMSE% = 3%). 
This level of field height accuracy is greater than 
anticipated for trees greater that are    40 m tall. The 
mean bias error (MBE) of the height prediction was 
0.29 m and the observed height error ranged from -3.2 
m to 3.3 m (Fig. 4)  
 

 
Figure 4. Density plot of the height errors 
observed in the field dataset based on the audit 
results. The grey dashed line shown is at zero 
and the black dashed line shows the mean bias 
error. 
 

UAV point cloud description 

Following processing to remove duplicates, clipping of 
the point cloud to the study area and classification of 
the ground returns, the properties of the UAV-LS point 
cloud were summarised (Table 1). This showed that 
the Riegl MiniVUX-1 UAV scanner produced a rich 
and extremely detailed point cloud. Unlike previous 
less sophisticated scanners trialled by Scion the Riegl 
miniVUX-1 UAV captured multiple returns and 
recorded up to 6 returns per pulse emitted. The study 
area included 97,238,107 points at a density of 1,589 
pts/m2 which is at the higher end reported in published 
UAV-LS studies (Puliti et al., 2015). Only 2,284,43 
(0.2%) were classified as reaching the forest floor 
(Table 1). Clearly, most returns originated in the forest 
canopy, this result is unsurprising due to the closed 
canopy and the high canopy biomass of mature Pinus 
radiata stands. The point spacing for both the “all 
points” and “last only” points was approximately 
equivalent to the footprint size of the scanner (~0.1 m). 
 
Table 1. The properties of the study UAV point 
cloud. 

Variable Value 

Total # of points 97,238,107 
Max. returns per pulse 6 

Total # of ground 
returns 

228,443 

Point density (pts/m2) 1,589 
Point spacing (m) 0.03 

Point spacing (last only) 0.05 

 
Studying the heights of the return profile of the point 
cloud provides more useful information on the point 
cloud properties (Fig. 5) The majority of points in the 
point cloud were first returns originating in the green 
crown of the canopies of the trial trees between 
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approximately 23 m and 45 m with a mode at 37 m. 
The maxima of this distribution is analogous with the 
tree heights of the dominant trees in the trial and the 
minima probably approximates the height of the base 
of the green crown. A substantial number of second 
returns originated in the same part of the canopy with 
a mode of approximately 31 m. This result shows the 
impressive capability of the scanner to resolve 
backscattering from targets within close proximity (~6 
m) to each other and promises a significant level of 
detail from the upper and mid canopy. This is a feature 
of the Riegl scanners that is not available from other 
units. Below 23 m there were substantially fewer 
returns but these returns originate in the branches and 
stems of the study trees. There is another peak in 
return count at around 6 m, probably associated with 
larger understory vegetation (trees, shrubs, ferns), 
and finally a large number of returns associated with 
the ground and near ground objects and vegetation. 
Most of the higher number returns (3,4,5,6) originate 
below ~5m.    
 

 

Figure 5. The return profile of returns within the 
point cloud covering the trial. 
 
Clearly the point cloud contains significant detail on 
the forest canopy. This was supported through a visual 
examination of the point cloud. Clipping areas of the 
point cloud from the centre of the trial (e.g. Fig. 6) 
reveals significant canopy penetration even in areas 
with dense foliage and total canopy closure. 

Numerous features of the tree architecture are 
apparent including branches and returns originating 
on the tree stem all the way down to ground level.  
 
From initial examination of the point cloud in the 
interior of the stand it is apparent that objects within 
the lower canopy and the tree stem are represented in 
the point cloud. This raises the question of whether 
techniques designed to process terrestrial laser 
scanning can be applied to this data type. We 
examined sections of the point cloud at various 
heights for several heights and concluded that it is 
unclear whether sufficient returns occur around the 
stem to be able to fit cylinders and circles to the point 
cloud based on the current UAV data collection 
procedures. 
 

 
 
Figure 6. An example screenshot from point 
cloud in the trial interior.  
 

Point cloud accuracy 

We compared the point cloud accuracy by comparing 
a set of dGNSS points collected in open areas with the 
DTM extracted from the UAV-LS point cloud. This 
analysis revealed a RMSE of 0.26 m. This is indicative 
of best quantitative estimate of the total vertical 
positional error in the point cloud in open areas and on 
a reasonably hard surface. We would expect the 
positional error for returns originating in the vegetation 
to be larger due to the porosity of the vegetation 
surface and vegetation movement caused by airflow 
near the canopy.     
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Tree identification and delineation 

 

Plot level results 

To provide an estimate of the accuracy of the tree 
counts and heights extracted from the UAV-LS point 
cloud at the plot level the delineated point cloud was 
intersected with a shapefile containing the plot 
boundaries. The plot level comparison showed that 
the UAV-LS height estimates were consistent with the 
plot level heights measured in the field (Fig. 7). The 
plot level height RMSE was 1.57 m (RMSE% = 3.84%). 
There was some evidence of bias with the UAV-LS 
extracted heights being slightly higher than the field 
measures.  This RMSE value is not substantially 
greater than the measurement error we would expect 
on tree height based on the results of the field audit. 

 
Figure 7. The plot-level relationship between UAV-
LS (Lidar Height) and field measured heights. The 
red line shows a perfect 1:1 correspondence, the 
grey solid line shows the RMSE from the field 
audit, and the grey dashed line shows the 
additional error that estimated from the accuracy 
of the point cloud based on the dGNSS data. 
 
 

Tree level results 

Following matching of the trees identified in the UAV-
LS point cloud with the field data we compared both 
datasets to investigate the accuracy of tree-level 
prediction. Tree matching remains a difficult process 
in mature Pinus radiata stands and we sought to make 
the process as automated and reproducible as 
possible. To that end, no manual positional 
adjustments to the idealised tree planting locations 
were made. We then used a nearest neighbour spatial 
intersection (k=1, maximum search distance = 4m) to 
link trees in the field dataset with those identified in the 
UAV-LS point cloud. The resulting tree-level 
comparison revealed that there was a poor 
correspondence between UAV-LS derived and field 
derived tree heights when all trees were considered 

(RMSE = 6.3 m, RMSE% = 15%). However, this result 
was heavily influenced by the presence of trees with 
broken tops in the trial dataset. Unbroken trees 
showed significantly better correspondence with field 
measurement (RMSE = 2.9 m, RMSE% = 6.8%) than 
trees with broken tops (RMSE = 16.2 m, RMSE% = 
56%). The relationship between field and UAV-LS tree 
heights confirms that for trees with broken tops the 
relationship is very poor whilst for unbroken trees the 
relationship is stronger (Fig. 8). 

 

 

Figure 8. The relationship between UAV-LS and 
field measured tree heights for the trial. Colours 
relate to the density of points (green = low, red = 
high) 

 

Discussion 

In this study we successfully collected a UAV-LS 
dataset using a Riegl miniVUX-1 UAV laser scanning 
system over a mature Pinus radiata genetics trial. In 
addition, we collected an extensive field dataset that 
was used to validate the UAV based estimates of tree 
height and will be used in subsequent research. We 
employed methods for tree identification and 
delineation from the ultra-high resolution (1,589 
pts/m2) point cloud using methods available in an 
open-source library in the R programming language. 
The results of the validation of tree heights showed 
promise and were accurate at the plot level. At the 
tree-level the results were less accurate and the height 
of trees within broken tops could not be accurately 
estimated using the methods used.  
 
A detailed and high-quality field dataset was collected 
as part of this study. Phenotypic traits were recorded 
on all trees within the trial and used to test the capacity 
of the UAV-LS data to identify and delineate trees and 
to estimate tree heights. This field dataset will also 
provide significant additional value as an input into 
tree-breeding research and for future analysis of the 
UAV-LS data. For mature trees the field measurement 
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of tree height is both expensive and known to be 
inaccurate. This means that it is regularly not 
measured in genetics trials and is a good candidate 
for replacement by UAV-LS. To characterise and 
reduce the variance in the field dataset in this study 
we carried out a detailed audit of field heights. This 
revealed that the height measurements were 
unbiassed (MBE = 0.23 m) and the error was only 
moderate on average (RMSE = 1.28 m, RMSE% = 3%) 
but that the errors in tree height ranged from -3.2 – 3.3 
m. These results help to interpret the accuracy of the 
UAV-LS derived and improved the quality of the field 
dataset by replacing field measurements that were 
found to be in error. Measurement of error is frequently 
ignored in forest measurement research and this 
dataset should provide a useful perspective for 
ongoing research.  
 
Using the UAV data collection procedures developed 
a coherent and useful point cloud was collected over 
the trees in the study trial. Analysis of the point cloud 
showed that there was good laser penetration that 
characterised the entirety of the tree stems, the 
understorey vegetation, and the terrain below the 
forest canopy. This is an encouraging result as earlier 
lower-powered scanners struggled to provide 
adequate penetration to the ground below mature 
stands. Using this dataset, a high-quality DTM was 
produced and used to normalise the point cloud so 
that local tree heights could be extracted. A thorough 
inspection of sections of the point cloud for several 
trees throughout the stand revealed that although 
major features upon the tree were resolved there was 
not a good representation of points around the stem. 
Methods developed for extracting tree dimensions 
from TLS rely on fitting circles or cylinders to the points 
originating on the stems. Our examination suggested 
that in this dataset there was not good representation 
of all sides of the stem. Further research is required to 
investigate whether this level of detail is adequate to 
extract measurements using a TLS type analysis 
approach. An alternative approach to estimation of 
phenotypic traits such as DBH from ALS data have 
been successfully developed through extracting tree 
heights and crown width from the point cloud and 
using these to predict DBH (Aubry-Kientz et al., 2019). 
This might provide a good template for further 
research using this dataset and should be explored 
further.    
 
The vertical accuracy of the UAV-LS point cloud was 
assessed by using a series of dGNSS points collected 
in clear areas near the trial. A comparison of the 
elevations extracted from the UAV-LS DTM and the 
dGNSS points revealed that the point cloud had good 
accuracy (RMSE = 0.26 m). This level of accuracy is 
comparable with commercial ALS data and is 
significantly higher than the accuracy experienced 
from earlier UAV-LS datasets. 
 
Initial methods were developed for tree identification 
and delineation. These methods could likely be 
improved through further exploration of the effect of 
different parameters such as CHM smoothing, window 
size when identifying local maxima, and algorithm 

hyperparameters. Nevertheless, a realistic tree 
identification and delineation was achieved from the 
point cloud. The field dataset was used to assess the 
accuracy of tree heights and tree counts at the plot 
level and to compare UAV-LS and field tree heights. 
At the plot-level there was good consistency between 
the heights extracted from the UAV-LS and the field 
dataset. In fact, once the variance associated with field 
height measurement error and the vertical positional 
error in the UAV-LS data are considered the difference 
between both data sources is minimal at the plot level. 
This suggests that the UAV-LS point cloud is capable 
of very accurately measuring tree heights and this is 
consistent with previous research (Puliti et al., 2019; 
Wallace et al., 2012). The tree-level findings were 
considerably less accurate. This was in part due to the 
failure of the method used to extract meaningful 
heights for trees with broken tops. This result is not 
surprising as tree identification methods based on 
identification of the local maxima in the CHM will be 
challenged by broken trees. Alternative methods have 
been proposed to identify broken trees within other 
forest types based on the intensity values of ALS data 
(Wing et al., 2015). A similar approach may be 
effective in Pinus radiata plantations and future 
research should investigate this as the intensity values 
from the Riegl scanner appear to contain meaningful 
data. In addition to the broken tops there are several 
other sources of error that contribute to the significant 
variation between tree-level UAV-LS and field tree 
heights. These included positional errors in the 
dGNSS data used to locate the trial, tree matching 
errors resulting from forked or leaning trees, and a 
failure in the tree identification and delineation 
procedures.       
 

 

Conclusion  

This study has shown that Scion’s recently acquired 
Riegl miniVUX-1 UAV1 has the capacity to provide an 
accurate representation of the canopy structure in 
large and mature Pinus radiata trees. We found good 
laser penetration even to the tree stems, understory, 
and ground and characterised the vertical accuracy of 
the dataset to be similar to ALS from commercial 
providers. We compared the tree level height 
measurements at both a plot and tree level. This 
showed that although the results were accurate at the 
plot level significant discrepancies remain at the tree-
level. This was primarily the result of a failure in the 
tree matching process rather than any issues with the 
UAV-LS dataset.  
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