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Summary: With the advent of Unmanned Aerial Vehicles (UAVs) for data capture in forestry, it is becoming 
increasingly practical and cost-effective to collect aerial data. In addition, the ability to collect wall-to-wall data of 
an entire stand, is extremely useful. Due to limitations in size, flight time, and legislative barriers to larger area 
capture, we investigated a particular use case that maximises the ability of UAVs to cover a small area in great 
detail: the measurement of forestry trials. We focused on sites with younger trees as this provides an excellent 
use-case for foresters and there appears to be a gap in the literature on this topic at the time of writing. 
 
In this study, two commercially available UAV-based data sources, UAV-borne lidar (ULS) and structure from 
motion photogrammetry (SfM), were analysed to see how effectively tree heights can be measured remotely.  
ULS offers a fast and reliable way to detect and measure the heights of individual young trees, while UAV SfM is 
a more cost-effective alternative for tree detection. 
 
ULS point clouds and SfM point clouds were produced, from which canopy height models could be generated and 
then a local maxima algorithm applied to detect individual trees. The peaks were then delineated into individual 
trees so that tree-level metrics for height could be calculated and compared with field measurement data to 
evaluate the precision of each point cloud source. 
 
We found that ULS had the greater level of precision, with a very good agreement of R² = 0.96 and RMSE 4.6%, 
with SfM also returning a very good level of agreement (R² = 0.84 and RMSE 15.2%). Both technologies had a 
bias towards the under-estimation of tree heights (MBE = -0.11 m and - 0.50 m for ULS and SfM respectively). 
This technical note has shown that both technologies have the potential to be viable options for carrying out forest 
trial measurements. 
 

Figure 1. Scion genetics trial April 2019 UAV image mosaic at 1:125 scale.
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1. Introduction 

 
Remotely sensed data are widely used in the forestry 
sector and have largely been sourced from satellite or 
airborne sensors. Recently, UAVs have emerged as a 
new platform for acquiring remotely sensed data. In 
contrast to satellites and aircraft, UAVs are relatively 
inexpensive and can be rapidly deployed to collect 
data with greater frequency. UAVs allow for quicker 
data capture, potentially collecting data across a 
whole stand, as opposed to the sampling methods that 
are common with traditional inventory, and can help to 
alleviate issues created by skills shortages and 
hazardous environments by having fewer staff collect 
more data, automating various aspects of the analysis 
processes, and allowing forestry data to be collected 
by staff not trained in forestry disciplines, such as 
mensuration.  
 
Many of the commercially available craft on the market 
have restricted flight times and payload capacity, 
limiting the potential range of applications and the type 
of sensors that can be carried. These attributes are 
likely to see UAVs fill a niche for the collection of 
remotely sensed data to serve a variety of novel 
applications. One such application is to regularly carry 
out comprehensive measurement of forestry trials. 
Although UAVS do fill such a niche that could be 
explored further it is worth noting that UAVs become 
cost-prohibitive over larger areas, in their current form, 
owing to the increased setup and flying times. 
 
To increase yields, plantation forestry uses a variety 
of methods to improve the genetic stock of the trees 
planted. Forest genetic trials are established to 
evaluate the performance of provenances, families 
and individuals (Costa e Silva, et al., 2001). Similarly, 
silvicultural and treatment trials are established to 
determine the optimal growing conditions for the crop. 
Compared to their agricultural counterparts, forestry 
trials can suffer from higher inter-plot variability due to 
their larger size, lower topographic uniformity and 
competition from neighbouring trees (Costa e Silva, et 
al., 2001). Additionally, measurement of forestry trials 
can be time-consuming and difficult, as trials are often 
planted on hilly terrain or hard to access areas. With 
current skills shortages in the sector, trials often 
remain unmeasured or a high turnover of staff can 
result in sub-standard, inaccurate measurements from 
inadequately trained staff.   
 
With the miniaturisation of airborne laser scanners 
(ALS) to be flown from UAVs (UAV laser 
scanning/ULS), it is now feasible to carry out ULS 
surveys for fast and reliable detection and 
measurement of individual young trees. Although 
prices have fallen, ULS sensors remain relatively 
expensive. In comparison, methods based on 
structure from motion photogrammetry (SfM) require 
only densely overlapping imagery from consumer-
grade cameras to generate a 3D point cloud - 

potentially enabling similar assessment from a more 
cost-effective solution. 
 
UAVs provide a means of capturing higher resolution 
aerial imagery (1-30cm resolution) than manned 
aircraft (typically 0.5-1m, but down to ~3cm, subject to 
minimum economical areas) or satellites (2-30m). The 
recent miniaturisation of UAV sensors allows the 
capture of three dimensional (3D) point clouds using 
either Lidar (Jaakkola, et al., 2010; Wallace, et al., 
2012) or through the use of imagery captured from 
digital still cameras (Dandois, et al., 2013; Lisein, et 
al., 2013; Shin, et al., 2018), with data from this latter 
source processed using techniques such as Structure 
from Motion, SfM (Lowe, 2004).  
 
A key limitation of SfM photogrammetry is that, due to 
the passive nature of the sensor, very little of the light 
from beneath the forest canopy reaches the camera. 
Within a mature canopy, these models are not truly 
three dimensional as they characterise the surface of 
the canopy well but provide little information around 
the ground surface. However, within younger trials, 
where the canopy has not yet reached closure, the 
ground may be better characterised. Little research 
has tested whether this is the case in real-world trials 
and how the use of SfM impacts the overall precision 
of the canopy height model (CHM), which is derived 
as the difference between the digital surface model 
(DSM) and digital terrain model (DTM).  
 
ALS or ULS, otherwise known as a light detection and 
ranging (lidar) scanners, on the other hand, are active 
sensors, and as such generate their own light signal, 
which can then penetrate through gaps in the canopy 
to detect spatial information on the ground beneath the 
canopy.  
 
Although the acquisition of point cloud data across an 
entire trial may provide a more cost-effective and 
precise method for collecting difficult-to-measure 
stand attributes, such as tree height, the authors are 
aware of only limited research that has investigated 
this possibility, particularly for small trees, which are 
representative of many trials. 
 
This technote presents results from a comparison of 
ULS, SfM and traditional field measurement methods, 
with the latter considered to be the benchmark for 
measurement of young trials. We then discuss the 
utility of these approaches as practical tools for large 
forestry trials. 

2. Materials  

2.1 Study Area 

The study was carried out using the Scion genetics 
trial, located in the nursery at Scion in Rotorua (Figure 
2).  
 
The highly regular planting within the genetics trial 
site, in the Scion nursery, offered a valuable 
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Figure 2. Map of the study site, the area of interest (blue box) and the layout of GCPs across the site, along with an example of a 
typical GCP marker, as deployed in this trial (inlaid top left). 

opportunity to robustly test the tree height 
measurements. In this trial, each tree is classified as 
its own plot and regular measurements are made at a 
tree level basis. The genetics trial in question was 
made up of 610 live Pinus radiata D. Don trees and 
hence contained 610 plots. The trial has trees growing 
in atypical forestry conditions, planted in exact rows, 
with short-cropped grass and a bounding fence, 
allowing for easy access by trained technicians who 
meticulously measure every tree at three-month 

intervals. The focus of this trial was to define the 
absolute accuracy of alternative point cloud sources. 
This required idealised conditions to minimise other 
error sources. The UAV data contained remarkably 
little ground clutter due to the absence of weeds and 
logging debris found at commercial forestry sites. 
Compared to an average commercial forestry site, the 
genetics trial also contains a good range of young tree 
heights, approximately 1-6 m tall (Table 1) at the time 
of measurement (March 2019).

 
Table 1. Summary Statistics for the Scion genetics trial 

2.2  UAV Methodology 

The Initial stage of the capture involved planning the 
operations. On top of the standard pre-operational 
activities, such as booking in flights, risk assessments 
and managing logistics, this involved accessing a site 
map and establishment records to ascertain the best 
places to set up ground control. Once the initial 
planning was completed, flight plans were created for 

the site, that described appropriate flight parameters, 
including overlap, ground sample distance (GSD), 
altitude, flight line spacing, speed, orientation, 
overflight, and siting of take-off location. This process 
generally takes between four to eight hours to 
complete for a site.  
 
 

Height (m)  Mean  Range  SD  

Actual  4.25  1.6 – 6.1  0.81  

ULS  4.14  1.5 – 6.0  0.86  

SfM  3.74  1.0 – 6.1  0.98  
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During the day of the capture, ground control was first 
established. According to best practice for a small 
site1, a minimum of five GCPs were established on the 
site to achieve even coverage across the area of 
interest (AOI) (Figure 2). Ground control points were 
surveyed in using a Trimble Geo7X handheld GPS 
unit (Trimble Inc., Sunnyvale, CA, USA). 
 
Flight operations were carried out using a combination 
of UAVs to capture the SfM photogrammetry and ULS 
data. The photogrammetry was captured by a DJI 
Phantom 4 Pro (DJI Ltd., Shenzen, China), with its 
integrated 1-inch 20MP RGB camera. The ULS was 
captured by a  
 

combination of a LidarUSA Snoopy V-series system 
(Fagerman Technologies, INC., Somerville, AL,  
 
USA), comprising a Riegl MiniVUX-1 UAV scanner 
(RIEGL, Horn, Austria). This was mounted on a DJI 
Matrice 600 Pro hexacopter (DJI Ltd., Shenzen, 
China). Details of the craft and flight parameters are 
described in Table 2.  
 
 
 
 
 
 

Table 2: Table of UAV Flight Parameters 

 
Flight planning was carried out using Map Pilot 
(Drones Made Easy, San Diego, CA, USA) for the 
photogrammetry, and UgCS (SPH Engineering, Rīga, 
Latvia) software for the Matrice 600 Pro, to capture the 
ULS data. 
 
The field measurements were taken by Scion 
technicians between March 17th and March 29th, as 
part of routine trial measurements. Heights were 
measured using a Vertex hypsometer (Haglöf, 
Langsele, Sweden).  

3. Methodology 

There are three main steps in the processing pipeline 
for UAV point cloud data. Firstly, processing the raw 
data involved taking the raw data from the UAV-
mounted sensor into a geo-referenced point cloud. 
Secondly, the point cloud data must be quality 
checked to remove noise, classify the ground, height- 
normalise the data, and then create a DTM and DSM. 
Finally, the processed point cloud data needs to be 
analysed with a series of algorithms and statistical 
techniques to generate a CHM, detect peaks, 
delineate individual trees, and finally calculate 
individual tree metrics from the point cloud.  
It should also be mentioned that, due to logistics, the 
field measurements were not carried out by the same 
team who captured the UAV data. Consequently, 
some of the UAV data was captured later than the field 
data, or vice versa and so to ensure that the field 
measurements and UAV data were still comparable, a 
height correction was added to the field data to 
account for any potential growth that  
could have taken place during the gap. This was 

                                                      
1 Best practices as described on Pix4D  support website: https://support.pix4d.com/hc/en-us/articles/202557489-
Step-1-Before-Starting-a-Project-4-Getting-GCPs-on-the-field-or-through-other-sources-optional-but-
recommended#label1 
 

done in accordance with growth rates calculated by 
Watt, et al. (2003). 

3.1 Processing Raw Data 

 
ULS 
All ULS data were processed from the manufacturer’s 
native data format into the more universal LAS format. 
For this research, a LidarUSA Snoopy V-Series was 
used, which uses two software packages to process 
the raw data: Inertial Explorer (NovAtel Inc., Calgary, 
AB, Canada), and ScanLook PC (Fagerman 
Technologies, Inc., Somerville, AL, USA). 
The PPK (post-processed kinematic) process involves 
two stages. The first stage involves post-processing 
the trajectory data from the GNSS rover on the 
scanner with the base station GNSS log data using 
Inertial Explorer to increase the accuracy of the GNSS 
data. The second stage involves inserting the post-
processed trajectory data, along with the raw sensor 
data, into ScanLook PC, and processing the two 
together into a point cloud (LAS or LAZ format). This 
stage also allows for some initial quality control and 
basic filtering to be applied to the data to remove 
anomalous data such as points from above a certain 
angle (i.e. above the scanner), or within a certain 
distance from the scanner (for example if the craft was 
flying at least 20m above the target then any points 
falling within 20m of the scanner can be filtered out). 
 
Importantly, the ScanLook PC software also applies 
two crucial factors to the data: boresight calibration 
angles and lever arm offsets. The boresight angles are 
the X, Y and Z offsets between the laser scanner and 
the IMU (inertial measurement unit) of the ULS 
(Gonçalves, et al., 2011), and the lever arm offset is 

Data Craft Sensor Software Altitude 
(m AGL) 

Overlap / 
line spacing 

Point Density 
(Pt/m²) 

Speed 
(m/s) 

GSD 
(cm/pxl) 

RGB DJI Phantom 4 
Pro 

DJI P4p 20MP Map Pilot 60m  85%:80% 938.92 3 m/s 1.57 

Lidar DJI Matrice 
600 Pro 

LidarUSA Snoopy 
V-Series 

UgCS 45m  21m 375.62 5 m/s n/a 

https://support.pix4d.com/hc/en-us/articles/202557489-Step-1-Before-Starting-a-Project-4-Getting-GCPs-on-the-field-or-through-other-sources-optional-but-recommended#label1
https://support.pix4d.com/hc/en-us/articles/202557489-Step-1-Before-Starting-a-Project-4-Getting-GCPs-on-the-field-or-through-other-sources-optional-but-recommended#label1
https://support.pix4d.com/hc/en-us/articles/202557489-Step-1-Before-Starting-a-Project-4-Getting-GCPs-on-the-field-or-through-other-sources-optional-but-recommended#label1
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the X, Y, and Z offset between the IMU and the GNSS 
antenna. When these corrections are applied to the 
data it removes any inherent error within the data, 
which can manifest as mismatching point data from 
opposing flight lines (often referred to as ghosting), or 
errors in the orientation of points in a single flight line. 
 
SfM 
There is a range of software packages available for 
SfM photogrammetry such as Pix4D Mapper (Pix4D), 
PhotoScan (AgiSoft LLC), and ReCap (Autodesk Inc) 
that can be applied to imagery from the majority of 
modern, UAV-mountable digital cameras. Other 
platforms include cloud-based processing software 
suites, such as DroneDeploy (DroneDeploy) or 
freeware such as OpenDroneMap (WebODM) and 
Meshroom (Alice Vision). The SfM process involves 
feeding the raw data (overlapping aerial images) into 
software, which then uses complex algorithms to carry 
out a range of feature recognition and matching steps, 
adding geolocation, and then producing the desired 
2D and 3D outputs.  
 
For this research, Pix4D Mapper was used to generate 
the SfM outputs. The workflow for Pix4D involves 3 
basic phases: 1) initial processing, 2) point cloud and 
mesh generation, and 3) DSM production, 
orthomosaicing and indexing. 
 
In the initial processing stage, algorithms go through 
the raw data and identify characteristic points in the 
imagery that can be found across multiple images in 
the dataset, also called key points. Next, the key 
points are matched, finding which images hold 
common features. The data is then optimised for the 
camera model, assessing the internal (focal length, 
image width and length, lens model etc), and external 
parameters (orientation, angle, direction etc) of the 
camera. The final stage of the phase is to locate the 
model, using the geolocational information, written into 
the metadata from the crafts GNSS. 
 
In the next stage, the point cloud (and 3D textured 
mesh, if desired), is created through a process of point 
densification, in which the overlapping nature of the 
dataset is exploited to create additional tie points that 
are used to build and populate a 3D model.  
The final stage of this process is to create other 
derived products, such as a DSM, orthomosaic or 
reflectance maps. Several studies have compared 
software suites for generating photogrammetric point 
clouds, with Pix4D and PhotoScan often quoted as the 
best for these tasks (Jensen, et al., 2016; Mohan, et 
al., 2017; Morgenroth, et al., 2014; Panagiotidis, et al., 
2017; Wallace, et al., 2016). Niederheiser, et al. 
(2016) found that PhotoScan can produce denser and 
more complete point clouds, however, Gross, et al. 
(2016) found that PhotoScan produced significantly 
more artefacts during image stitching than Pix4D 
across a range of vegetation types. Noting that Pix4D 
and PhotoScan can produce comparable results 
(Niederheiser, et al., 2016), it was decided that Pix4D 
would be used due to a greater familiarity with the 
software and a simplified workflow. 

3.2 Point Cloud Processing and Analysis 

 
The initial point cloud was de-noised and ground 
classified using tools from the LAStools suite, such as 
lasnoise and lasground. 
 
A plot Shapefile was created and georeferenced to the 
documented trial layout. The processed 3D point cloud 
was then clipped to the extent of the trial area to 
compute a CHM, as shown in Figure 3. The CHM is 
then fed into a peak detection algorithm inspired by 
Popescu, et al. (2004) that detects local maxima using 
a moving window with a diameter of 2m. The result of 
the treetop detection algorithm is then fed into the tree 
segmentation algorithm (Silva et al., 2016) available 
within the lidR software library, which combines the 
treetop locations and the CHM to segment individual 
trees within the point cloud (Figure 3). In this study, the 
number of trees and their positions were already 
known so that the algorithm could be fine-tuned until 
the outputs matched the expected values in terms of 
spatial location and count. This was done by 
inspecting omissions and commissions in the data and 
referencing ground measurements in order to get the 
optimum result, matching the peaks with the trees 
from the trial, so that precise comparisons could be 
made between trees. 
 

 
Figure 3. a) Canopy height model (CHM) created from the 
ULS data covering the southern section of the site.  

b) An example of peak detection and tree delineation using 
the selected algorithm. 
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4.  Results 

Once the peaks had been detected, the heights of the 
predicted treetops were compared with the field 
measurements. The results are summarised in Table 
3. 

 
 
 
 

 
Table 3. Error statistics 

Statistics – Height vs LiDAR predicted Statistics – Height vs RGB predicted 

RMSE (m) RMSE (%) R² MBE (m) RMSE (m) RMSE (%) R² MBE (m) 

0.20 4.60 0.96 -0.11 0.65 15.2 0.84 -0.50 

 

4.1 Prediction of measurements  
 
The results for UAV lidar (ULS) showed a very strong 
relationship between predicted measurements and 
field measurements (Figure 4). The R² value of 0.96 
showed a very high level of agreement and the bias 
was also very low with a mean bias error (MBE) of  
-0.11 m, and RMSE% of 4.6%, showing a slight 
underestimation of tree height.  

 
Figure 4. Distribution and fit of sensor data versus measured 
data. Top row: Probability distribution functions graphs for 
the study site. 

The predictions of tree height from SfM 
photogrammetry were markedly less precise than the 
ULS predictions but still showed a strong correlation. 
The R² value for the trial was 0.84 still shows a strong 
correlation, however, there is a marked increase in 

bias, with an RMSE% of 15.4% and an MBE of -0.50 
m. 

5. Discussion 

The results of our research indicate that both 
technologies are showing promise as tools for 
measuring forestry trials. 
 
Figure 5 shows typical cross-sections of the ULS and 
SfM point clouds and the location of these transects 
on the trial map. 

 

 

 

Figure 5. Cross-sections of ULS and SfM (top and middle 
respectively) point clouds from the genetics trial, and 
location of the transect (bottom). 
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5.1 ULS vs field measured heights  
 
The results from this study showed a very strong 
correlation between field measurements and 
predicted heights from the ULS. The regular layout of 
the genetics trial at Scion provided an excellent 
baseline on which to test the efficacy of these new 
technologies. The ULS model showed an R² value of 
0.96, showing that this technology, under ideal 
conditions, produces accurate height estimates with 
low bias (MBE= -0.11 m).  
 
Our results align well with the literature. Wallace, et al. 
(2014) achieved a mean RMSE of 0.52m comparing 
ULS to hypsometer measured heights in Eucalyptus 
globulus plantations that contained trees with heights 
of between ~4-11m. The RMSE for ULS 
measurements in our study was 0.20m, which is an 
improvement on this. However, the trees in Wallace et 
al.’s (2016) study were larger and may not have had 
the same apical dominance of P. radiata.  Wallace, et 
al. (2016) found ALS data from a manned aircraft 
provided an RMSE of 0.92m, a bias of 0.34m and an 
R² of 0.84 – results showing a strong correlation, but 
not to the same extent as those found in our study. 
Sankey, et al. (2017) achieved an R² of 0.90 between 
field-measured tree heights and ULS captured with 
their Velodyne HDL32-E laser scanner (Velodyne 
Acoustics, Inc., Morgan Hill, CA), again similar to the 
results in this study.  
 
The majority of the literature has focused on using 
lidar for measuring larger trees (Birdal, et al., 2017; 
Ota, et al., 2017; Sankey, et al., 2017; Ullah, et al., 
2017; Wallace, et al., 2016; Wallace, et al., 2014), and 
as far as we are aware, few studies have focused on 
ULS or ALS to predict tree heights in smaller trees. 
Our study has proved that it is possible to predict the 
height of trees as low as 1m tall with a high level of 
precision. We have also shown that precision does not 
deteriorate down to a height of     1 m (Figure 4). 
 
There was a noticeable trend in the data for under-
predicting tree heights. This underprediction has been 
identified in previous studies (Andersen, et al., 2006; 
Roussel, et al., 2017). Roussel, et al. (2017) have 
identified that ALS data is prone to a bias in the metrics 
of maximum height and mean height of the canopy 
and that this can be attributed to various combinations 
of the pulse density, scan pattern, and beam footprint; 
which they noted as being especially true of coniferous 
trees where the apex presents a very small target for 
the laser to intercept. These concepts are discussed 
further in Appendix A. 
 

5.2 SfM vs Measured Heights  
 
The SfM data from our site showed a strong 
correlation with the field measured data (R² = 0.84), 
although our results were not as strong as between 
the ULS predicted heights and the field measurement. 
When we compare this to the rest of the literature we 
can see that this is consistent with previous literature 

such as Shin, et al. (2018), who used SfM point clouds 
to model canopy fuel loads in Pinus ponderosa forests 
(R² = 0.71) Wallace, et al. (2016) (R² = 0.68) and Ota, 
et al. (2017) (R² = 0.91). 
 
Like the ULS data, the SfM data also generally tended 
towards underestimating tree heights (Table 3), 
although there was a much lower correlation between 
the SfM data and the field measured data, with an 
RMSE of 0.65 m and an MBE of -0.50 m.  This is 
displayed well in the probability distribution function 
graph (PDF) in Figure 4, where the distribution of the 
heights is clearly lower than the ULS or field measured 
heights. This aligns well with the literature, as other 
studies have found tree height to be less strongly 
related to SfM than lidar predictions (Lisein, et al., 
2013; Wallace, et al., 2016). 
 
One reason for this systematic underestimation could 
be due to the small size of the treetops. The apex of 
young coniferous trees is always going to pose a 
challenge to the SfM algorithms because of its slender 
geometry and small size. The topmost point of young 
P. radiata presents a target of no more than two to four 
pixels width in this imagery. 
 
As well as the actual size and geometry of the apex, 
the background of the imagery could also influence the 
effectiveness of the SfM algorithms in detecting the 
tree tips. It could be understandable that trying to 
identify the tree tip, which may only be a single line of 
pixels wide in the imagery, against a very noisy 
background, could cause difficulties in detection. Even 
trying to pick out a green tree tip against a background 
of other trees within the imagery could be difficult (see 
Figure 6). Further studies could look at ways of making 
the tree tip stand out more clearly, which could include 
assessing the effect of different background textures 
or colours (i.e. what is on the ground surrounding the 
trees), or exploring capture using different spectral 
bands to assess the effect this would have on the 
algorithms’ ability to detect the tree tips against a noisy 
background.  
 

 
Figure 6. ~1.5cm GSD imagery from the GMO trial showing 
the oblique angle of tree tips against a complexed 
background of shadow, other trees or grass. 
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5.4 SfM Data Quality 
Through our research, we have been actively testing 
this equipment out at other forestry sites and have 
found that image quality has a large part to play in the 
precision of the measurements.  
 
When carrying out a thorough QC on SfM and ULS 
point clouds collected at one of the of GCFF (Growing 
Confidence in Forestry’s Future) accelerator trial sites 
located in Rangipo, North Island, NZ, we can start to 
see some errors in the SfM point cloud, which would 
have a significant impact on the precision of the 
measurements. Figure 7 shows an example of a 
cross-section of the Rangipo ULS and SfM point 
clouds, demonstrating a clear error in the SfM. 

 
Figure 7 - Graphs plotting a 45m long cross section of the 
Rangipo point clouds in SfM (top) and ULS (bottom) 
datasets. 

Dandois, et al. (2015) found that there were errors 
introduced into the absolute position of point clouds 
created from imagery on cloudy days as compared to 
clear days. They linked this to a reduction in contrast 
in the camera settings to account for lower light levels. 
They also observed some indication that imagery 
captured at lower sun angles produced a poorer 
quality point cloud. They hypothesised that shadows, 
caused by low sun angles, could have some effect by 
obscuring parts of the canopy Dandois, et al. (2015). 
The sun angle is obvious in both the Kaingaroa 861 
and Rangipo sites, and so this could be a good 
explanation for why we are seeing such a dramatic 
reduction in the model’s precision if parts of the tree 
canopies are not being recreated in the point cloud.  

We recommend future studies into the effect of 
introduced noise (shadow, background objects, 
colour) on the ability to delineate and model narrow 
tree tips using SfM algorithms, and stricter parameters 
for weather and environmental conditions when 
capturing SfM data. 

5.5 Further Work 

This study focused on comparing two methods for 
measuring tree heights in a trial site with highly 
geometric planting, flat ground, and minimal 
background noise (other tall objects). This was a good 
way to benchmark and assess the potential of this 
technology; however, the reality of most commercial 
forestry sites is quite different. 

The next stage is to test this equipment in more 
complex environments, with different terrain, different 
establishment patterns, and background noise, such 
as logging debris, weed growth or regeneration from 
previous rotations. Scion has been busy applying 
these methods to the series of accelerator trials that 
have been established across New Zealand as part of 
the GCFF project and will be looking to publish on this 
soon so that we can see how this technology performs 
on commercial sites.  

From initial trials on these sites, we are seeing a 
significant increase in omissions and commissions on 
sites with logging debris and so our team is fine-tuning 
the algorithms to reduce these errors, as 
demonstrated in Figure 8 below: 
 
 

 
Figure 8. CHM, tree delineation and errors of omission and 
commission from Kaingaroa compartment 861 Accelerator 
trial site, indicating the difficulties faced when computing 
individual tree metrics. 
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The results of this study have also led us to question 
whether other SfM processing software, such as 
Agisoft Photoscan, may be able to reconstruct more of 
the tree peak in the point cloud. Within the various SfM 
software, the user can change the parameters for 
point cloud generation, which may be able to produce 
better reconstructions of individual trees. This project 
was processed on the default settings for Pix4D 
(Image Scale ½ (Half image size, Default); Point 
Density: Optimal; Minimum Number of Matches: 3), 
however, further research is being carried out to 
assess the effect of fine-tuning these settings, and 
comparing these outputs, to comparable outputs from 
PhotoScan. 

 

Conclusion 

 
Our research has shown that both techniques show 
promise for measuring forestry trials and that ULS is 
showed greater precision. There are very strong 
correlations between ULS and SfM-based methods for 
measuring tree heights in point clouds with field 
measurements. ULS and SfM both consistently 
underestimate the height of the trees measured and 
with ULS, there could be some scope for developing a 
metric to account for this underestimation. With the 
SfM measurements, there are still unknown factors 
driving the lower correlations and greater 
underestimation of heights seen with SfM 
measurements as compared to ULS. 
 
More work needs to be done in understanding the 
factors impacting the SfM point cloud generation and 
how this can be affected by the data capture (lighting 
and shadow, surrounding environment, altitude, GSD, 
overlap, point density) and the SfM process itself 
(point density, fine-tuning of the algorithm to suit the 
task, which software works best for detection of tree 
tips). Once these avenues have been explored, and 
the correlation has been fine-tuned to the extent that it 
becomes more consistent, then it might be possible to 
develop some metrics to account for the 
underestimation of tree heights in SfM too. Despite the 
decreasing cost of ULS, a consumer grade UAV, such 
as that used in this study, can be purchased for a 
fraction of the price of the Riegl scanner used in this 
study, and even the less expensive ULS sensors 
would need to be reduced in price ten-fold before they 
could compete with the cost of these consumer grade 
UAVs. SfM provides a cheaper tool for foresters, and 
more research in this space will help to unlock the full 
potential of this method.  
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Appendix A.  

On the effect of canopy shape and footprint 
location on true peak detection 

Achieving sub-decimetre accuracy on lidar-based 
height measurements of young trees is 
understandably challenging from a geometric point of 
view. In fact, from all the uses of lidar height ranging, 
e.g. urban environments, land surface, and even 
broad-leaved trees, it would be harder to imagine a 
more challenging geometric object that is harder to 
measure accurately than a coniferous tree. The 
highest point of a pine tree is, generally, a single thin 
structure pointing skywards. The probability of multiple 
laser beams striking this small surface area and 
enough being returned to register a pulse is very low. 
For near nadir beams it is far more likely that the lower 
top crown stems that have a larger horizontal 
component to their orientation will be hit. For off-nadir 
beams, the probability of hitting the apex increases, 
although again the top of this stem is likely to be 
missed. In their paper on removing bias from lidar-
based estimated of canopy height, Roussel, et al. 
(2017) explored this concept looking at the difference 
between true maximum height and observed 
maximum height. They found that due to the larger 
trees having a wider, flatter apex the laser has a higher 
chance of hitting part of the canopy that is closer to the 
true maximum height than on narrower canopies (see 
Figure 9). Although in their example they compare the 
difference between large canopy trees and smaller-
crowned coniferous trees in a plot-based height 
sampling method, the principles of their findings are 
relevant to our study.  

 
Figure 9 - the effect of canopy shape on the likelihood of the 
true maximum tree height being captured by a lidar scan. 
Adapted from Roussel, Caspersen et al (2017) 
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Figure 10 - effect of footprint size on the observed maximum 
height. The red lines represent smaller footprint beams 
averaging a smaller range of heights, and the orange 
representing a single, wider footprint beam. Adapted from 
Roussel, Caspersen et al (2017)  

Beam divergence and beam footprint size are other 
possible explanations for the underestimation of tree 
heights by the lidar (Disney, et al., 2010; Hancock, et 
al., 2015; Hirata, 2004). Roussel, et al. (2017), explain 
that this is due to the effect of the standard deviation 
of the heights that the footprint senses when coming 
into contact with the canopy. As the size of the 
footprint increases, so too does the potential variance 
in the heights of the surface increase, and when 
expressed as a Gaussian curve, the local maximum 
return from each is averaged out over a potentially 
wider range (See figure 10). 
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