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Executive summary 

The problem 

Aerial Laser Scanning (ALS or LiDAR) is an extremely valuable form of remote sensing for estimating 
forest inventory attributes, as well as extracting accurate terrain information, and producing canopy 
surface models for a given area of interest. However, it is very expensive to capture at ~ $3-$15/ha and 
can have lengthy turn-around times due to flight delays, provider scheduling conflicts, and long 
processing times. 

Satellite based Interferometric Synthetic Aperture Radar (InSAR) is an active sensor that can provide 
continuous global coverage with the quality of the acquisition largely independent of cloud cover and solar 
illumination conditions. InSAR provides a much more cost-effective potential solution at ~ $0.16/ha and 
has been successfully used to characterise forest inventory attributes and to provide accurate terrain 
information in other countries. New Zealand forestry provides a unique challenge due to the often 
mountainous landscape and the dense canopy of mature plantation forestry which is difficult for radar to 
penetrate. 

 

Client initiatives 

Despite the wide use of satellite based InSAR within the northern hemisphere we are unaware of any 
research that has used these data to predict key forest inventory biophysical variables or to characterise 
the digital terrain model (DTM) within New Zealand forests. 
 

This project  

InSAR and ALS data was collected from Geraldine Forest, which is a 62 km2 plantation, predominantly 
composed of Pinus radiata D. Don, that is located on rolling to very steep topography in Canterbury. 
These data were combined with an extensive set of plot measurements, from which mean top height (H), 
basal area (G), stem density (N) and total stem volume (TSV) were extracted. Using these data, the 
objectives of this study were to (i) compare model precision for these four biophysical variables using 
metrics derived from InSAR and ALS data, (ii) identify the importance of base metrics, metrics derived 
from the canopy height model (CHM) and textural metrics within these models and (iii) quantify how slope 
influences bias and precision of the base surfaces and the final models.  
 
Precision of these models was compared using the co-efficient of determination (R2), root mean square 
error (RMSE) and the RMSE expressed as a percentage of the mean value for each biophysical variable 
(RMSE%) 

Key results 

Random Forest models developed using ALS data were substantially more precise than those developed 
from InSAR for H (R2 = 0.86 vs. 0.60; RMSE% = 5.47 vs. 10.8%), G (R2 = 0.56 vs. 0.32; RMSE% = 21.5 
vs. 30.4%), N (R2 = 0.47 vs. 0.09; RMSE% = 32.3 vs. 43.2%), and TSV (R2 = 0.70 vs. 0.41; RMSE% = 
19.4 vs. 30.7%). Although InSAR models were clearly less precise than ALS models, these models did 
provide a reasonable level of precision for H and TSV, which was significantly improved through inclusion 
of metrics from the mixed Canopy Height Model (CHM), derived from the radar Digital Surface Model 
(DSM) and ALS DTM. The mean errors (RMSE) associated with the InSAR DSM and DTM were, 
respectively, 4.58 and 8.09 m, and these errors increased markedly as slope increased. For instance, the 
RMSE for the DTM was 4.51 m for 10–20° slopes and increased to 10.17 m for slopes ranging from 40–
50°. Although the bias and precision of the underlying and derived InSAR surfaces (DTM, DSM and 
CHM) markedly deteriorated with increasing slope both bias and precision for the final InSAR models 
were invariant to slope.  
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Implications of results for the client 

Although InSAR could not predict the four biophysical variables as precisely as ALS the predictions of two 
of the key variables H and TSV were likely to be of a sufficient precision for inventory purposes. Results 
also show that the DTM derived from InSAR was reasonably precise, particularly at slopes lower than 
20°, for which the RMSE was ≤ 4.5 m. Given the large cost differential between InSAR and ALS ($0.16/ha 
vs. $3 – 15/ha) there may be applications where the lower cost of InSAR is a more important 
consideration than the greater precision afforded by ALS. These situations could include remote or 
scattered forest in which acquisition of ALS is not cost effective or repeat acquisitions for which the cost 
of the inventory does not justify an additional ALS acquisition.  
 

Further work 

Results from this study are likely to be conservative as this study was undertaken over a forest with very 
steep terrain and a key setting during image acquisition, Height of Ambiguity (HOA), was not optimised. 
Further research should investigate if precision gains in predictions of inventory variables are possible 
under acquisitions with optimised HOA. Predictions could also be improved through using an ascending 
and descending stereo pair to derive a digital surface model in which the effect of slope is minimised. 
Even if further improvements are not possible the precision demonstrated within this study does highlight 
the potential of InSAR as a valuable means of supplying an inexpensive DTM and a reasonably precise 
means of predicting key inventory metrics.  
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Introduction 

Forest managers require detailed inventory information to monitor crop health and damage, 
optimise silvicultural treatments, and estimate stand volume and value. Sample based methods 
that estimate biophysical variables of interest, such as height, volume, and stand density, have 
been traditionally used to supply this information at the stand level. However, the last two decades 
have seen a rapid increase in the availability of remotely sensed information which has become 
widely integrated into forest inventories, providing improvements in precision and a means of 
spatially predicting the variance in biophysical variables at a relatively fine resolution (Dash et al. 
2015; Persson et al. 2017). 
 
 The integration of airborne laser scanning (ALS or LiDAR) into forest inventory, primarily 
through the area-based approach (ABA), is now accepted as the most accurate supplemental data 
source for characterising a wide range of biophysical variables (Rahlf et al. 2014; Wittke et al. 
2019; Yu et al. 2015). The high cost of ALS is the key impediment to routine acquisition of this 
data. As a consequence, there has been considerable interest around the use of point clouds 
derived from digital aerial photogrammetry (DAP) for forest inventory that can be supplied at a 
lower cost. Although DAP has generally been shown to have a similar accuracy to ALS this 
technology does require a digital terrain model (DTM), which is often obtained from an earlier ALS 
survey (Goodbody et al. 2019).  
 
 Satellite-based information has also been widely investigated as an alternative to ALS for 
inventory purposes. Photogrammetric point clouds acquired from satellite offer a relatively precise 
alternative to ALS (e.g. Pearse et al. 2018; Persson 2016) but this method requires a DTM to 
normalise the resulting point cloud and acquisition is limited to cloud free conditions which makes 
frequent monitoring difficult particularly in tropical and maritime areas. In contrast, Synthetic 
Aperture Radar (SAR) is an active sensor that can provide continuous global coverage with the 
quality of the acquisition largely independent of cloud cover and solar illumination conditions. Over 
the last half-century, little research was focussed around the use of SAR for forest inventory as the 
precision of this method was limited due to issues around data quality, resolution, and signal 
saturation when estimating forest biophysical variables from backscatter intensity at shorter 
wavelengths (Dobson et al. 1992; Fransson 1999; Rignot et al. 1994). 
 
 However, over the last two decades there have been major advances in SAR-based 
techniques that go beyond the application of backscatter-based methods. Interferometric SAR 
(InSAR) has been widely investigated as a method that can be used for forest inventory. InSAR 
can be used to determine differences in elevation and generate a digital surface model (DSM) from 
the phase differences of two SAR images that are acquired from slightly different perspectives 
(Massonnet and Feigl 1998). This method provides two further observables in addition to radar 
backscatter, that describe the interferometric phase and coherence.  
 
 The accuracy of early forest applications of InSAR were often limited by temporal 
decorrelation that occurs when the SAR images forming the interferometric coherence are acquired 
at different times (Lavalle and Hensley 2015; Lee et al. 2013). The temporal decorrelation is closely 
connected to the wavelength of the SAR and to the scattering objects. Hence, InSAR works better 
for applications with relatively stable scatterers (e.g., buildings, volcanoes or glaciers). Vegetation 
and trees in the forest decorrelate within seconds at X- and C-band, while at longer wavelengths 
(L- and P-band), the decorrelation is less severe with repeat-pass configurations. The spaceborne 
SAR mission TanDEM-X operated by the German Aerospace Centre (Deutsches Zentrum für Luft- 
und Raumfahrt – (DLR)) heralded a new era in InSAR remote sensing. This mission uses two X-
band SAR satellites, launched in 2007 and 2010, flying in close formation to acquire X-band InSAR 
images with single and dual polarizations at a very high resolution (Krieger et al. 2007). The 
simultaneous acquisition of images increases the correlation between the InSAR observables and 
forest variables as temporal decorrelation can be assumed to be negligible (Karila et al. 2019).  
 
 A growing body of research has shown that InSAR data from TanDEM-X provides 
reasonably precise estimates of forest biophysical variables. In almost all studies, ALS data has 
been used as a basis for comparison and, with a few exceptions (e.g. Persson and Fransson 
2017), these studies show predictions of biophysical variables from InSAR to be less precise than 
those from ALS. More extensive comparisons have also shown that predictions from InSAR are 
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less precise than those derived from satellite photogrammetric point clouds (Yu et al. 2015) but that 
InSAR has a higher precision than radargrammetry (Rahlf et al. 2014; Yu et al. 2015). Despite this, 
predictions of forest biophysical variables from InSAR have often been found to be sufficiently 
precise for forest inventory purposes in some contexts. As a consequence, InSAR has been used 
to predict forest biomass and volume, with a reasonable degree of precision across the entire 
spatial extent of Sweden (Persson et al. 2017).  
 
 Interferometric SAR provides a number of variables that can be used to predict forest 
biophysical variables. Relationships between the complex coherence, which describes the 
correlation between two SAR images, and forest height or biomass have been demonstrated using 
TanDEM-X acquisitions (Askne et al. 2013; Askne et al. 1997; Kugler et al. 2014; Olesk et al. 2016; 
Soja et al. 2015b; Treuhaft et al. 2015). As the X-band scattering generally occurs at the top of the 
canopy (Le Toan et al. 1992), the normalised phase height (PH, but commonly known as the 
canopy height model, CHM) can be generated by removing the ground elevation, with the DTM 
usually generated from ALS. The CHM has been shown to be positively correlated to forest height 
and above ground biomass (Abdullahi et al. 2016; Persson et al. 2017; Persson and Fransson 
2017; Solberg et al. 2013). Although much research has investigated the utility of InSAR phase, 
backscatter and coherence (hereafter denoted base outputs), with a few exceptions (e.g. Abdullahi 
et al. 2016), little research has investigated whether the addition of texture metrics, derived from 
the CHM, add to the precision of InSAR models.  
 
 Most research using InSAR has been undertaken within European and tropical forests. 
Forest types that have been studied include boreal forests, located in northern Europe and Canada 
(Askne et al. 2013; Askne and Santoro 2015; Askne et al. 2017; Chen et al. 2016; Karila et al. 
2015; Olesk et al. 2016; Persson et al. 2017; Persson and Fransson 2017; Rahlf et al. 2014; Soja 
et al. 2015a; Solberg et al. 2013; Yu et al. 2015), natural or plantation forests located in the tropics 
(Gama et al. 2010; Hansen et al. 2015; Neeff et al. 2005; Puliti et al. 2017; Treuhaft et al. 2015) 
temperate forests in Germany (Abdullahi et al. 2016; Schlund et al. 2019) or a combination of these 
forest types (Kugler et al. 2014; Qi et al. 2019). Despite the wide use of InSAR from TanDEM-X 
within the northern hemisphere, we are unaware of any research that has used these data to 
predict forest biophysical variables within temperate plantations located in the Southern 
Hemisphere. 
 
  New Zealand plantation forests, which are mainly composed of Pinus radiata D. Don 
(radiata pine), constitute 90% of the 1.8 Million hectare plantation estate (NZFOA 2018). As a 
highly productive system, with relatively short rotation lengths, these plantations require continuous 
monitoring to provide managers with up-to-date information to plan management interventions and 
for operational planning. Although ALS surveys are increasingly used for plantation inventory within 
the larger estates, the use of InSAR is seen as an attractive option as this method could markedly 
reduce costs and allow more regular inventory updates across a larger portion of New Zealand’s 
planted forests. 
 
 Within New Zealand, a significant proportion of plantations (39%) are located on sites with 
rolling to very steep topography that have mean slopes exceeding 15° (Watt et al. 2011). 
Topography, and the associated variations in aspect, are two of the key factors influencing the 
usability of InSAR data. Although both variables have been found to influence predictive precision 
of models describing biophysical variables (Rahlf et al. 2014), little research has examined the 
influence of these factors on the predictive precision of InSAR across slopes that range from flat 
and gently undulating to very steep. Further research is therefore required to understand the 
potential of InSAR for inventory purposes within New Zealand plantations and other countries that 
have a large proportion of their forests located on highly dissected terrain. 
 

InSAR and ALS data was collected from Geraldine Forest, which is a moderate sized 
plantation, predominantly composed of Pinus radiata D. Don., that is located on rolling to very 
steep topography in the east of the South Island, New Zealand. These data were combined with an 
extensive set of plot measurements, from which mean top height (H), basal area (G), stem density 
(N) and total stem volume (TSV) were extracted. Using these data, the objectives of this study 
were to (i) compare model precision for these four biophysical variables using metrics derived from 
InSAR and ALS data, (ii) compare the importance of base metrics, metrics derived from the canopy 
height model (CHM) and textural metrics within these models, and (iii) quantify how slope 
influences bias and precision of the base surfaces and the final models.    
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Materials and methods  

Study Area 

The study was undertaken within the temperate Geraldine Forest (centred at latitude 44º5’S, 
longitude 171º4’W) located in the South Island, New Zealand (Fig. 1). The forest, which covers ca. 
62 km2, is located across terrain ranging from rolling to very steep, with slopes ranging from 0.04 – 
67.0°. Elevations vary widely across the forest from 145 to 860 m with the highest points located in 
the northwest. The forest is predominantly composed of even aged stands of P. radiata that are 
managed for timber production and models were developed in this study for this species.  
 

 

Figure 1: Study area with the field measurements at plot-level. The inset map shows the location of 
Geraldine Forest in New Zealand 

 

Datasets 

Remote Sensing Datasets 

Table 1 summarises the key specifications for all remotely sensed datasets. With the primary 
objective of developing global digital elevation model (WorldDEM) products, the TanDEM-X (TDX) 
satellite was designed after the existing TerraSAR-X (TSX) satellite. Both have X-band SAR 
instruments. The TDX mission utilises two identical spacecraft that fly in a close formation made 
possible by assuming helix orbits. The two satellites never collide due to differences in the along-
track direction, enabling them to be shifted and meet the minimum baseline requirements (i.e. 150 
to 500 m) for generating a precise DEM (Zink et al. 2006). The mission (TSX and TDX together) 
provides a platform for collecting bistatic InSAR data with minimal temporal decorrelation, with one 
satellite transmitting and both satellites receiving the same signal.  
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Table 1: Product specifications for the ALS, InSAR, and the WorldDEM datasets. 
 ALS InSAR WorldDEM 

Description Classified high density ALS 
CoSSC bistatic data 

in raw format 

Pre-processed DTM and 
DSM provided by Airbus 

in raster format 

Sensor System 
Reigl Q1560 scanner system 

onboard an aircraft 
X-band radar sensor onboard TerraSAR-X and 

TanDEM-X satellites 

Date of Capture June 13-14, 2016 March 11, 2014 

Resolution 1 m 5 m 10.7 m 

 
A pair of TDX co-registered single-look complex (CoSSC) bistatic data with HH polarization 
(horizontally transmit, horizontally receive) was captured by the TDX mission overlooking Geraldine 
Forest on March 11, 2014. The images were acquired from a descending orbit, in StripMap (SM) 
mode. With an HH polarization, the InSAR was expected to penetrate slightly more than the vertical 
transmit/receive channel (Kugler et al. 2014; Perko et al. 2011). The single-look complex (SLC) 
resolution was 2.7 m in slant range and 3.3 m in azimuth with a pixel spacing of 1.8 m and 2.1 m, 
respectively. The mean scene incidence angle was 40.5°. Steep incidence angles decrease the 
height sensitivity and increase the penetration depth (Kugler et al. 2014). The overall incidence 
angle was suitable for forest height estimation, but the varying topography caused the local 
incidence angle to deviate from the mean. The height of ambiguity (HOA), which was 216 m, is 
related to the baseline and describes the height sensitivity of the interferometer. It describes the 
altitude difference that generates an interferometric phase change of 2𝜋 𝑥 𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦. It relates to 
the baseline and system configuration as described below, 

𝐻𝑂𝐴 =
2π

𝑘𝑧

=
𝜆𝑅sin𝜃

𝐵⊥

 

where kz is the vertical wave number, λ is the radar wavelength, R is the average distance to the 

satellites, 𝜃 is the average angle of incidence, and B⊥ is the perpendicular baseline.  
 

Processed WorldDEMTM products of the first surface and bare Earth elevations, also known, 
respectively, as the DSM and DTM were also acquired from Airbus Intelligence. These global 
WorldDEMTM surfaces are derived from at least two acquisitions with differing HOA and for these 
surfaces the DTM is generated by filtering out the vegetation and buildings from the DSM (all 
carried out by Airbus). The scene that we used for manual processing was one of at least two 
scenes used for the constructing the WorldDEMTM. The target specifications for the WorldDEMTM 
product include an absolute vertical accuracy of <10 m and a relative vertical accuracy (90% linear 
point to point error) of 2 m for slopes ≤ 20% and 4 m for slopes > 20% (Wessel 2016). Using 
ArcMap 10.6, both WorldDEMTM products were projected to New Zealand Transverse Mercator 
Projection (NZTM 2000) with a resulting spatial resolution of 10.7 m. 

 
High-density ALS data was acquired from the study site on June 13−14, 2016 using a Reigl 

Q1560 scanner system. This scanner recorded an average pulse density of 21.1 pulses m -2 using a 
pulse rate of 330 kHz and maximum scan angle of 14º off nadir. A detailed description of the ALS 
data is given in Pearse et al. (2018). 

Field data 

Plot measurements of diameter at breast height (DBH), total tree height, stem counts, as well as 
tree descriptions were collected from May to June 2016. Field plots were located throughout the 
forest using systematic sampling based on a grid with a randomised start point and orientation. The 
ground sampling unit was a circular bounded plot with a slope corrected area of 600 m2. Plot 
centres were located using a Trimble Geo6/7 Series GNSS (Trimble Navigation Ltd., Sunnyvale 
CA, USA). These measurements served as input to a commercial forest yield prediction software 
package (YTGEN, Silmetra, Tokoroa, New Zealand) which was used to produce plot-level 
estimates for the four modelled forest biophysical attributes, namely, mean top height (H), basal 
area (G), stand density (N), and total stem volume (TSV). A detailed description of the methods 
used to calculate these values can be found in  Pearse et al. (2018). 
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 Field measurements were projected to dates that temporally coincided with the time of the 
InSAR (11 March 2014) and ALS captures (June 14, 2016) using a commercial forest growth 
model used by the forest manager for Geraldine forest. After discarding the plots in unproductive 
areas, those with incomplete measurements, and plots in which these was no data from the InSAR, 
a total of 171 plots were available for model development (Table 2). 

Processing of InSAR and ALS predictive metrics 

The InSAR predictive metrics were divided into four categories that included (1) base metrics, (2) 
CHM metrics, (3) textural metrics based on the Mixed CHM, and (4) textural metrics based on the 
Radar CHM as shown in Appendix 1. The ALS predictors were divided into three categories, that 
included (1) base metrics, (2) CHM metrics, and (3) textural metrics, all of which are summarised in 
Appendix 2. A flowchart showing the process by which each of these metric classes were 
generated is given in Figure 2 and the derivation of these predictors is described in more detail 
below in the following sections.  
 

 
Figure 2. Simplified flowchart showing the derivation of the predictive metrics (bold and underlined) 
from the three source datasets: InSAR, WorldDEM, and ALS. 

InSAR base metrics  

The TanDEM-X data were processed using the software Gamma ver. 2016-12-07 (Gamma 
Remote Sensing AG) and Sentinel Application Platform (SNAP, ESA). One advantage of acquiring 
an interferometric pair of TanDEM-X data (consisting of one image si from each satellite i) was that 
the backscattering coefficient (S0) could be computed from each acquisition pair, as well as the 
coherence (COH) and the interferometric phase (PH).  
 
 The calibration gain provided in the metadata for each acquisition (~50 dB) was subtracted 
from the multi-looked intensity images (βo), before a radiometric normalization based on the pixel-
area method was applied, as described in Frey et al. (2012) and Small (2011). One backscatter 
image per acquisition pair was then computed as the arithmetic mean of the two normalized S0 
images within the image pair. 
 

An interferogram was derived with a spatial averaging of five looks in range and five looks in 
azimuth. This reduced the phase noise standard deviation by approximately a factor of five 
(Moreira et al. 2013). The interferogram was flattened by subtracting the ground phase, derived 
from the satellite orbit data and the ALS DTM. The flattened interferogram was adaptively filtered 
with a function based on the local fringe spectrum and using a coherence kernel of 3 × 3 pixels and 
a 16-pixel fast Fourier transform window (Goldstein and Werner 1998). The output phase was 
unwrapped by applying a minimum cost flow (MCF) phase unwrapping algorithm (Wegmüller et al. 
2002). The unwrapped phase was converted to height using a phase-to-height sensitivity raster, 
which was generated from the differential interferometric phase and the orbital state vectors, using 
Gamma. 
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COH was estimated from the normalized interferogram and the multi-looked intensity 
images, using a coherence window of 3 × 3 pixels as described by, 

 

COH =
|∑ 𝑠1,𝑖𝑠2,𝑖

∗
𝑖 |

√∑ |𝑠1,𝑖|
2

𝑖 ∑ |𝑠2,𝑖|
2

𝑖

 

 

 

where subscript i denotes pixel i. In order to compensate for the antenna gain loss at the scene 
sides due to the decreasing signal-to-noise ratio (SNR), a correction based on the noise floor 
polynomial (available in the TanDEM-X meta data) was applied, as previously described (Chen et 
al. 2016; Kugler et al. 2014; Persson et al. 2017).  
 

The local incidence angle (INC) was computed based on the satellite system geometry and 
the ALS DTM. An initial estimate of the system geometry is based on the state vectors (TanDEM-X 
meta data), and it was then improved with a cross-correlation procedure between the multi-looked 
intensity images and the ALS DTM which was converted to range-doppler coordinates (RDC) and 
used to simulate the assumed intensity response, based on the satellite configuration. 

 
In summary, five InSAR observables were generated and used as base metrics. These 

included PH and its standard deviation PH SD, INC, COH, and S0. 

ALS base metrics 

TerraSolid (Terrasolid Oy, Espoo, Finland) was used for initial data processing and ground 
classification of the ALS data. Subsequent processing was carried out in the LAStools software 
(RapidLasso, Gilching, Germany) and included noise removal, height normalisation, and 
generation of widely used forest inventory predictive metrics describing the height distribution of 
returns (e.g. percentile, skew, kurtosis, standard deviation, and modal heights) along with metrics 
capturing information on the vertical forest structure that are often described as the key advantage 
of ALS (e.g. vertical complexity index or VCI, canopy cover and canopy density). A detailed 
description of the processing of the ALS base metrics is given in Pearse et al. (2018). 

Canopy height models 

Two types of CHM raster datasets were derived for the InSAR predictors. The Radar CHM was 
constructed by subtracting the WorldDEMTM DTM from the Radar DSM. The Mixed CHM was 
computed as the difference between the ALS DTM bilinearly resampled to 10.7 m and the 
WorldDEMTM DSM (Fig. 2). Both of the two CHM products had a ground resolution of 10.7 m and 
average height, within each plot from both CHMs, was used as the predictor from the CHM. 
Erroneous values less than zero were discarded. Raster processing was undertaken using the 
arcpy module in Python 3.6. 
 

For the ALS counterpart, a CHM raster that was free of data pits caused by deep laser 
penetration into tree crowns was derived by implementing the algorithm of Khosravipour et al. 
(2014). Standard CHM metrics (e.g. average, maximum, minimum, median, standard deviation) 
and heights of different quantiles were extracted from each plot and used within the modelling. 

Textural metrics 

The textural attributes of canopy surface models have previously been shown to be related to 
forest biophysical variables in this forest type (Pearse et al. 2018). To capture these attributes, 
textural metrics based on the grey-level co-occurrence matrix (GLCM) statistics were derived using 
a 3 x 3-pixel windows size applied to each of three CHM datasets (Radar CHM, Mixed CHM, and 
ALS CHM) at directions of 0º, 45º, 90º, and 153º. These textural predictors included contrast, 
correlation, dissimilarity, entropy, homogeneity, mean, second moment, and variance. GLCM was 
implemented using the glcm package (Zvoleff 2019) in R statistical software 3.5.3 (R. Core Team 
2019). 
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Data analysis 

All the InSAR and ALS predictors, in raster format, described above, were reprojected to the 
national coordinate system (NZTM2000) and heights to a consistent reference ellipsoid (GRS80). 
Mean values per metric were extracted per plot using a circular feature with a radius of 14 m with 
the centre defined by the field GPS coordinates. This process was executed using the zonal 
statistics using ArcGIS 10.6 (ESRI, Redlands CA, USA). 

 

Relationships between Radar and ALS surfaces 

Visual comparisons were made between the DTM and CHMs extracted from InSAR and ALS. 
Using ALS surfaces as the observed reference, plot level values of DTM, CHM, and DSM, were 
regressed against their InSAR counterparts (both based on the WorldDEM and the InSAR base 
metrics). Residuals from these relationships were plotted against ALS slope estimates produced 
using the DEM analysis tools from the Geospatial Data Abstraction Library (GDAL) 2.2.4 
(GDAL/OGR contributors 2019). The ALS DTM was bilinearly resampled to 10.7 m before being 
used to compute the slope values using a 3 x 3-pixel neighbourhood. 
 

The errors between the reference and InSAR products were characterised using all data, 
and data categorised within four slope classes, using root mean square error (RMSE), the 
coefficient of determination (R2), and the mean bias error (MBE), which were calculated, 
respectively, as,   
 

𝑅𝑀𝑆𝐸 = √
∑ (𝒚̂𝑖

𝑛
𝑖=1 − 𝑦𝑖)2

𝑛
 

 

𝑅2 =
∑ (𝑖 𝒚̂𝑖 − 𝑦̅)2

∑ (𝑖 𝒚𝑖 − 𝑦̅)2
 

 
 

𝑀𝐵𝐸 =
1

𝑛
∑ 𝑦𝑖 − 𝑦̂𝑖

𝑛

𝑖=1

 

 
where 𝑦𝑖 is the observed value, 𝑦̂ is the predicted value in plot 𝑖, 𝑦̅ is the average of the observed 

values, and 𝑛 is the number of plots. 
 

Prediction of Forest Inventory Variables 

The precision of bivariate correlations among the four biophysical variables and all metrics derived 
from the InSAR and ALS datasets were examined to gain insight into the predictors within each of 
the two datasets that were most strongly related to H, G, N, and TSV.  
 

The random forest (RF) regression approach was then used to estimate the four biophysical 
variables of interest. Predictive variables that were used in the modelling are given in Appendices 1 
and 2. Separate models were created using InSAR and ALS data and precision of these models 
were compared. The five created InSAR models included variables from the following groups (i) 
base metrics, (ii) base metrics and the Radar CHM, (iii) base metrics and the Mixed CHM, (iv) base 
metrics and the Radar CHM and texture metrics, (v) base metrics and the Mixed CHM and texture 
metrics. The ALS models included metrics that were selected from the following three groups (i) 
base metrics, (ii) base metrics and CHM metrics and (iii) base metrics, CHM metrics and textural 
metrics.  

 
There is an increasing interest in using RF to predict forest inventory attributes (Karila et al. 

2015). RF adds a random element to bootstrap aggregation or bagging in the sense that each node 
of the regression trees is split using the best randomly chosen predictor. It is also known to be 
robust to overfitting though hyper-parameters that can be tuned to prevent this occurring. The RF 
approach draws random regression trees with replacement from two-thirds of the data and retains 
one-third for testing. The samples that are left out become the out-of-bag samples and act as the 
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test set. While this removes the need to set aside a test set, it is empirically proven to be as 
accurate as using a test set with the same size as the training set (Breiman 2001). 

 
RF model fitting and accuracy assessment were implemented using the machine learning 

module scikit-learn 0.20.3 (Pedregosa et al. 2011) in Python 3.6. In this study, three hyper-
parameters were selected using a 10-cross fold grid search for each model. These were: the 
number of decision trees in the forest (from 200 to 1000 by increments of 50), minimum number of 
samples required to split an internal node (3, 4, 5), and the minimum number of samples at a leaf 
node (3, 4, 5). For each biophysical variable, each predictor was randomly permuted one at a time 
then RF was applied to the dataset to determine which features result in the highest gain in 
information based on R2. Predictors with a greater impact on R2 were considered to be the most 
important features. Each model was run 100 times to take the randomness into account. The mean 
out-of-bag samples for all the runs were used to test the accuracy of the model through R2, RMSE 

and the percent RMSE% that was calculated from RMSE% = 100 (RMSE/𝑦̅), where 𝑦̅ is the average 
of the observed values. 
 

Results 

Data range 

Wide variation was noted between all stand biophysical variables (Table 2). Variation in the earlier 
acquired Radar dataset was broad, with variation in H, G, N, and TSV ranging, respectively four-
fold, 25-fold, 13-fold and 37-fold. Similar variation was noted for the later acquired ALS with 
variation in H, G, N, and TSV, ranging, respectively, three-fold, 15-fold, 12-fold and 22-fold. 
Between the Radar and ALS acquisition there were small increases in H, G and TSV with these 
variables increasing, respectively, on average by 6.92, 8.74 and 13.3%. In contrast, N declined by 
1.49% over the period between these acquisitions as the growth model simulated tree mortality 
(Table 2).  
 
Table 2. Summary statistics for inventory plot data. Shown are the mean, standard deviation (SD) 
and the range from 171 plots.   

Variable Mean SD Range 

Radar    
Mean top height (m) 29.6 5.07 10.8 – 39.4 
Basal area (m2 ha−1) 49.1 18.1 3.41 – 86.6 
Stand density (stems ha−1) 340 153 66.7 – 842 
Total stem volume (m3 ha−1) 469 188 23.9 – 894 

ALS    
Mean top height (m) 31.8 4.88 13.2 – 41.2 
Basal area (m2 ha−1) 53.8 17.4 5.71 – 88.5 
Stand density (stems ha−1) 335 149 66.7 – 815 
Total stem volume (m3 ha−1) 541 193 45.1 – 974 

 
Similarly, wide variation was noted in the predictive metrics used within the InSAR (Appendix 1) 
and ALS datasets (Appendix 2). Variation within metrics for the InSAR metrics was wide, averaging 
14-fold across the 24 generated variables, with mean variation ranging from 13-fold for the base 
metrics, to 16-fold for the CHM metrics to 11-fold and 18-fold for the textural metrics derived, 
respectively, from the Mixed and Radar CHM. The variables that showed the greatest variation 
were the textural metrics variance (61-fold range) and contrast (49-fold range) for the Radar CHM 
and the textural metric variance for the Mixed CHM (39-fold range).  
 
 The 45 metrics extracted from the ALS ranged by an average of 17-fold, with metric variation 
ranging between the three metric classes from eight-fold for the textural metrics to 16-fold for the 
base metrics to 28-fold for the metrics extracted from the CHM. The metrics demonstrating the 
most variation were: CHM p25 (225-fold range), p25 (125-fold range) and b10 (124-fold range). 
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Relationships between the ALS and Radar DTM, DSM and CHM 

Across the area of interest, the Radar DTM and DSM were both highly correlated to their ALS 
counterparts, with respective R2‘s of 0.998 and 0.999 (Fig. 3a, b). These high correlations and the 
apparent visual similarity in these surfaces (Fig. 4) predominantly reflected the wide range in 
elevation (148 to 812 m) covered by these surfaces which inflates values for the R2 and masks 
subtle fine-scale changes in elevation. In contrast the RMSE, which is more reflective of the utility 
of these surfaces, showed only a moderate degree of precision (Table 3), with mean values of, 
respectively, 8.09 m and 4.58 m for the Radar DTM and DSM. The RMSE for both surfaces was 
sensitive to slope with values increasing two to three-fold between slopes of 10 – 20° to slopes of 
40 – 50° for which values for the DTM and DSM were, respectively, 10.17 and 6.02 m (Table 3). 
 
 The DTM and DSM surfaces derived from the radar were biased. Overall, the reference ALS 
DTM and DSM were, respectively, on average 5.93 and 0.92 m lower than those of the 
corresponding Radar surfaces (Table 3; Figs. 3e, f). The degree of this bias increased markedly 
with slope (Table 3). The difference between the ALS and Radar DTM ranged from a mean of -0.09 
m for slopes of 10–20° to -9.44 m for slopes of 40–50, while the differences between the ALS and 
Radar DSM ranged from 0.08 m for slopes of 20–30° to -4.33m for slopes of 40–50° (Table 3; Figs, 
3e, f). 
 
 The ALS CHM was only weakly related to the CHM derived from the Radar (Fig. 3d) base 
layers (R2 = 0.14; RMSE = 11.1 m). The mean RMSE of 11.1 m reflected the poor precision of this 
relationship and the RMSE showed some increase between slopes of 10 – 20° but stabilised after 
this point (Table 3). The relationship between these surfaces was very biased with values for the 
ALS CHM exceeding those of the Radar by an average of 10.1 m. This mean bias error was 
sensitive to slope and increased to 20° after which point it stabilised (Table 3; Fig. 3h). 
 
 The Mixed CHM, derived from the Radar DSM and ALS DTM, was more strongly correlated 
to the ALS CHM but the correlation was only of a moderate strength with R2 of 0.49 (Fig. 3c). The 
mean RMSE was 5.95 m and values for RMSE were relatively unaffected by slope (Table 3). This 
surface was biased and values for the ALS CHM exceeded those of the Mixed CHM by a mean of 
4.09 m, with values for this bias declining as slope increased (Table 3; Fig. 3g). 
 
 Maps of the three CHMs clearly show the restricted height range in the surfaces derived 
from Radar (Fig. 5). Although height from the Radar surface broadly corresponded to features 
evident in the ALS CHM, the height range was considerably reduced (max. heights of 37.6 m vs. 
45.0 m). The Mixed CHM did demonstrate a wider height range, more closely aligned to that of the 
ALS CHM (max. heights of 45.1 m vs. 45.0 m), and closer correspondence in height changes were 
evident throughout the forest. 
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Figure 3. Relationship between the Radar (a) DTM, (b) DSM, (c) Mixed CHM, (d) Radar CHM with 
their corresponding ALS counterparts. Shown on the right-hand side are residual values from these 
four relationships plotted against slope derived from the ALS DTM.  
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Figure 4. Comparison of (a) 10.7 m resolution Radar DTM sourced from the WorldDEM with a (b) 
1.0 m DTM captured by ALS. The inset map highlights the differences between the two DTMs at a 
finer scale. 
 
Table 3. Summary statistics showing the influence of slope on root mean square error (RMSE) and 
mean bias error (MBE) for the four surfaces derived from radar data (Radar DTM, Radar DSM, 
Radar CHM and Mixed CHM). For each of the four radar surfaces the errors were determined 
using the corresponding ALS surface as a reference. The number of plots within each of the four 
slope classes was 17 (10–20°), 59 (20–30°), 74 (30–40°) and 21 (40–50°). The RMSE and MBE is 
also shown for all plots.  

Statistic Slope  All 

 10–20° 20–30° 30–40° 40–50°  plots 

Radar DTM       
RMSE (m) 4.51 6.81 8.95 10.17  8.09 
MBE (m) -0.09 -4.69 -7.27 -9.44  -5.93 
       
Radar DSM       
RMSE (m) 2.96 4.57 4.41 6.02  4.58 
MBE (m) 1.74 0.08 -1.37 -4.33  -0.92 
       
Radar CHM       
RMSE (m) 7.31 10.59 12.15 11.27  11.11 
MBE (m) 6.17 9.71 11.18 10.43  10.08 
       
Mixed CHM       
RMSE (m) 6.58 6.58 5.70 4.12  5.95 
MBE (m) 6.07 4.88 3.90 0.95  4.09 
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Correlations between biophysical variables and metrics derived from ALS 
and Radar  

Bivariate relationships between the four biophysical variables and metrics were generally stronger 
for variables derived from ALS than those derived from Radar (Table 4). When averaged over each 
biophysical variable the mean R for these bivariate relationships ranged from three-fold to five-fold 
higher for ALS than those for Radar, with the largest absolute differences evident for H (mean R = 
0.59 vs. 0.23), and TSV (mean R = 0.58 vs. 0.25) but substantial differences were also evident for 
G (mean R = 0.47 vs. 0.25) and N (mean R = 0.25 vs. 0.16). Similarly, the maximum correlation for 
each biophysical variable was also markedly higher for metrics derived from ALS than those 
derived from Radar (Table 4), with the smallest absolute differences occurring for H (max. R = 0.95 
vs. 0.73) and TSV (max. R = 0.83 vs. 0.59) with larger differences occurring for G (max. R = 0.76 
vs. 0.46) and N (max. R = 0.63 vs. 0.29). 
 
 Using metrics derived from ALS, H was most closely correlated with the upper percentiles 
(90th to 99.5th), derived from either the point cloud or the CHM (Table 4). These five predictors were 
strongly and positively related to H (R  range of 0.92 – 0.95). Basal area was most strongly 
predicted by positive relationships with the two canopy cover metrics, CCov 10 m and CCov 5 m, 
which had, respectively, R values of 0.76 and 0.72. The standard deviation of the canopy height 
model was most closely correlated with N and this relationship had an R of -0.63. The mean height 
derived from the point cloud and CHM and the two textural metrics, mean and variance, were most 
strongly related to TSV. All of these four bivariate relationships were positive and had R ranging 
from 0.81 – 0.83 (Table 4).  
 
 Using metrics derived from the Radar data, the mean height from the Mixed CHM and the 
textural metrics mean and variance, derived from this CHM, were most strongly related to H (Table 
4). These relationships were all positive and had R ranging from 0.70 – 0.73. Similarly, these three 
variables were also most strongly related to TSV and the correlation coefficients of the positive 
relationships between these variables and TSV ranged from 0.55 – 0.59. In contrast, the Radar 
CHM, the associated textural metric mean, and the S0 were the variables most strongly related to 
both G and N. The R for the three most important predictors of G ranged from 0.43–0.46, while the 
three strongest predictors of N had R ranging from 0.26 – 0.29 (Table 4). 

Models of biophysical variables 

Models using ALS data 

The range in precision of random forest models created from ALS varied widely between 
biophysical variables (Table 5). The most precise models created for H, G, N, and TSV had 
respective RMSE values of 1.80 m, 11.6 m2 ha−1, 108 stems ha-1, 105 m3 ha−1, RMSE% of 
respectively 5.67, 21.5, 32.3, and 19.4%, with respective R2 of 0.86, 0.56, 0.47 and 0.70. Among 
the four biophysical variables, the most precise model for N was created using all the available 
metrics while the most precise models of H and TSV used only the base and CHM metrics and the 
model of G used only the base metrics (Table 5). Gains in precision achieved using all metrics over 
the base metrics were minor as evidenced by respective changes in the RMSE% between these 
two groups of -0.25, 0.09, -1.04 and -0.10% for H, G, N, and TSV. Measured values for the final 
models showed little apparent bias when plotted against predicted values (Fig. 6). The residual 
values from these models also showed little apparent bias when plotted against slope (Fig. 7).  
 
 The key metrics within the most precise of the four ALS models are given in Table 5. For H, 
the key metrics predominantly describe the upper canopy percentiles (p90 – p99.5) of the CHM. 
The model of TSV was most sensitive to mean height from either the point cloud or CHM and b10. 
The most important metrics for G were predominantly canopy cover or the ALS metrics from within 
the lower canopy (i.e. b10). The model of N was most strongly influenced by the standard deviation 
of the CHM and canopy cover metrics (Table 5).  
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Figure 5. Maps of the (a) ALS CHM, (b) mixed CHM derived using the ALS DTM and radar DSM, 
and (c) Radar CHM derived using the Radar DTM and DSM. 
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Table 4. The predictive precision of simple bivariate relationships between Mean Top Height (H), 
Basal Area (G), Stand Density (N) and Total Stem Volume (TSV) and metrics derived from ALS 
(left columns) and Radar (right columns). Predictive precision is given between the correlation 
coefficient (R) which has been categorised by grayscale into either positive or negative 
relationships of very high (R = 0.800 – 1.000), high (R = 0.600 – 0.799), moderate (R = 0.400 – 
0.599), weak (R = 0.200 – 0.399) and very weak (R < 0.200) strength. For each biophysical 
variable the underlined bolded values show the metrics with the highest R. The full name of each 
variable is given in Appendices 1 and 2.  
 

Predictor Predictions using ALS data  Predictor Predictions using Radar data 

 H G N TSV   H G N TSV 

Base Metrics  Base Metrics     
Max Height 0.92 0.30 -0.38 0.57  PH 0.46 0.04 -0.18 0.17 
Mean Height 0.76 0.64 0.08 0.82  PH SD 0.00 0.12 0.05 0.10 
Quadratic M 0.84 0.59 -0.03 0.79  COH -0.27 0.07 0.09 -0.03 
SD 0.88 0.24 -0.40 0.50  INC -0.08 0.15 0.09 0.17 
Skew -0.33 -0.69 -0.44 -0.69  S0 -0.19 -0.43 -0.26 -0.42 
Kurtosis -0.22 -0.23 0.00 -0.19       
CV -0.28 -0.69 -0.45 -0.66  Canopy Height Model 

Mode 0.53 0.61 0.11 0.71  Mixed CHM 0.70 0.41 -0.12 0.59 

p99.5 0.95 0.32 -0.37 0.60  Radar CHM 0.11 0.43 0.29 0.36 
p99 0.95 0.33 -0.35 0.61       
p95 0.94 0.40 -0.29 0.66  Texture derived from Mixed CHM 

p90 0.92 0.46 -0.22 0.71  Contrast 0.16 -0.27 -0.15 -0.17 
p75 0.81 0.57 -0.04 0.76  Correlation -0.03 0.05 0.03 0.05 
p50 0.68 0.65 0.15 0.79  Dissimilarity 0.17 -0.28 -0.17 -0.19 
p25 0.40 0.63 0.32 0.71  Entropy 0.22 -0.20 -0.23 -0.10 
b99 -0.02 0.20 0.26 0.12  Homogeneity -0.18 0.26 0.18 0.18 
b95 -0.20 -0.16 -0.03 -0.25  Mean 0.73 0.39 -0.15 0.59 

b90 -0.26 -0.24 -0.06 -0.33  Sec. moment -0.22 0.20 0.24 0.09 
b80 -0.29 -0.37 -0.16 -0.44  Variance 0.71 0.34 -0.17 0.55 
b75 -0.31 -0.42 -0.20 -0.49       
b50 -0.35 -0.58 -0.33 -0.63  Texture derived from Radar CHM 

b25 -0.37 -0.66 -0.33 -0.67  Contrast 0.10 -0.23 -0.09 -0.17 
b10 -0.35 -0.66 -0.27 -0.65  Correlation -0.23 -0.34 -0.17 -0.35 
CCov DBH 0.11 0.41 0.40 0.36  Dissimilarity 0.11 -0.24 -0.13 -0.17 
CCov 5m 0.36 0.72 0.42 0.69  Entropy 0.13 -0.21 -0.18 -0.12 
CCov 10m 0.47 0.76 0.38 0.78  Homogeneity -0.12 0.20 0.15 0.13 
VCI 0.75 0.57 -0.01 0.68  Mean 0.16 0.46 0.28 0.41 

      Sec. moment 0.01 0.05 -0.12 0.22 
Canopy Height Model  Variance 0.11 0.39 0.24 0.34 
CHM Max 0.93 0.30 -0.39 0.57       
CHM Mean 0.72 0.68 0.16 0.83       
CHM Median 0.68 0.65 0.17 0.78       
CHM SD 0.47 -0.29 -0.63 -0.10       
CHM p99 0.95 0.32 -0.36 0.60       
CHM p95 0.95 0.37 -0.31 0.65       
CHM p90 0.94 0.43 -0.25 0.69       
CHM p75 0.83 0.57 -0.04 0.76       
CHM p50 0.68 0.65 0.17 0.78       
CHM p25 0.49 0.68 0.33 0.77       
           
Texture       
Contrast 0.63 -0.04 -0.48 0.18       
Correlation 0.33 -0.02 -0.44 0.04   Key R range        
Dissimilarity 0.67 0.14 -0.37 0.32     0.800 – 1.000; -1.000 – -0.800  
Entropy 0.51 0.57 0.18 0.61     0.600 – 0.799; -0.799 – -0.600 
Homogeneity -0.63 -0.43 0.08 -0.54     0.400 – 0.599; -0.599 – -0.400 
Mean 0.72 0.68 0.16 0.83     0.200 – 0.399; -0.399 – -0.200 
Sec.  moment -0.44 -0.56 -0.25 -0.59    0 – 0.199; -0.199 – 0 
Variance 0.80 0.60 0.03 0.81     
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Table 5. Variation in the precision of models of biophysical variables created using either InSAR or 
ALS data and using different combinations of the available metrics. Statistics describing precision 
include the coefficient of determination (R2) and root mean square error (RMSE) expressed as 
value and as a percentage of the mean (RMSE%) for each biophysical variable. The top three most 
important features for each model are also shown. For each biophysical variable the underlined 
bolded values show the best performing models. 
     

ALS 

Biophysical Variable RMSE RMSE% R2 Most important variables 

     
Base Metrics     
Mean top height (m) 1.88 5.92 0.85 p99, p95, p99.5 
Basal area (m2 ha−1) 11.6 21.5 0.56 CCov 5m, CCov 10m, b10 

Stand density (stems ha−1) 112 33.3 0.43 CCov 5m, CV, Max Height 
Total stem volume (m3 ha−1) 106 19.5 0.70 Mean Height, CCov 10m, CCov 5m 
     
Base Metrics + CHM     
Mean top height (m) 1.80 5.67 0.86 CHM p90, CHM p95, p99 

Basal area (m2 ha−1) 11.7 21.7 0.55 CCov 5m, b10, CCov 10m 
Stand density (stems ha−1) 109 32.4 0.46 CHM SD, Max Height, b25 
Total stem volume (m3 ha−1) 105 19.4 0.70 CHM Mean, b10, Mean Height 

     
Base Metrics + CHM + Texture     
Mean top height (m) 1.80 5.67 0.86 CHM p90, CHM p95, CHM p99 
Basal area (m2 ha−1) 11.6 21.6 0.56 CCov 5m, CCov 10m, b10 
Stand density (stems ha−1) 108 32.3 0.47 CHM SD, CCov 10m, CCov 5m 

Total stem volume (m3 ha−1) 105 19.4 0.70 CHM Mean, b10, Mean Height 
     

InSAR 

Biophysical Variable RMSE RMSE% R2 Most important variables 

 
Base Metrics 

Mean top height (m) 4.21 14.2 0.31 PH, COH, INC 
Basal area (m2 ha−1) 16.8 34.2 0.16 S0, PH SD, PH 
Stand density (stems ha−1) 157 46.0 0.02 S0, PH SD, PH 
Total stem volume (m3 ha−1) 169 36.1 0.19 S0, PH SD, PH 
 
Base Metrics + Radar CHM 

Mean top height (m) 4.23 14.3 0.30 PH, COH, INC 
Basal area (m2 ha−1) 15.8 32.2 0.24 Radar CHM, S0, PH SD 
Stand density (stems ha−1) 149 43.7 0.08 Radar CHM, S0, PH SD 
Total stem volume (m3 ha−1) 166 35.4 0.22 S0, INC, Radar CHM 
 
Base Metrics + Mixed CHM 

Mean top height (m) 3.27 11.1 0.58 Mixed CHM, INC, COH 
Basal area (m2 ha−1) 15.1 30.7 0.31 Mixed CHM, S0, COH 
Stand density (stems ha−1) 154 45.2 0.03 S0, Mixed CHM, PH SD 
Total stem volume (m3 ha−1) 144 30.8 0.41 Mixed CHM, S0, PH SD 
 
Base Metrics + Radar CHM + Texture 

Mean top height (m) 4.25 14.4 0.29 PH, COH, INC 
Basal area (m2 ha−1) 15.4 31.4 0.28 Radar CHM, S0, PH SD 
Stand density (stems ha−1) 147 43.2 0.09 Radar CHM, PH, S0 

Total stem volume (m3 ha−1) 164 34.9 0.24 S0, PH SD, INC 
 
Base Metrics + Mixed CHM + Texture 

Mean top height (m) 3.18 10.8 0.60 Mean, Variance, INC 

Basal area (m2 ha−1) 14.9 30.4 0.32 S0, Mixed CHM, COH 

Stand density (stems ha−1) 153 44.9 0.03 S0, PH SD, PH 
Total stem volume (m3 ha−1) 144 30.7 0.41 Mean, S0, Mixed CHM 

     

  



 

21 

 
Figure 6. The relationship between predicted and observed values for biophysical variables 
predicted using metrics extracted from Radar (left panels – a, b, c, d) and ALS (right panels, e, f, g, 
h). Shown within the figure are relationships for mean top height (a, e), basal area (b, f), stand 
density (c, g) and total stem volume (d, h). The 1: 1 line is shown on each panel as a diagonal 
dashed line.  
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Figure 7. The relationship between slope and residual values (observed – predicted) extracted from 
the final models that use metrics obtained from Radar (left panels – a, b, c, d) and ALS (right 
panels, e, f, g, h) using the Random Forest approach. Shown within the figure are relationships for 
residuals extracted from models of mean top height (a, d), basal area (b, f), stand density (c, g) and 
total stem volume (d, h). The dashed horizontal line is shown for reference at y = 0. 
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Models using InSAR data 

Compared to the use of ALS, predictions of the four biophysical variables using metrics derived 
from InSAR were considerably less precise (Table 5). The most precise models created for H, G, 
N, and TSV had respective RMSE of 3.18 m, 14.9 m2 ha−1, 147 stems ha-1, 144 m3 ha−1, with 
respective R2 of 0.60, 0.32, 0.09, and 0.41. These models had respective RMSE% of 10.8, 30.4, 
43.2, and 30.7% and these values were respectively, 5.13, 8.90, 10.9, and 11.3% higher than 
RMSE% values obtained from ALS models. (Table 5). Plots of predictions against measured values 
for the final models showed more bias than the corresponding plots using models derived from ALS 
metrics (Fig. 6). The extent of this bias was most marked for G, N, and TSV, with overprediction 
occurring at low measured values and underprediction occurring at high values for each of these 
three biophysical variables (Fig. 6). However, there was little apparent bias when residual values 
for each of the four models were plotted against slope (Fig. 7).  
 
 The extent of gains noted in the RF models as a larger number of predictors were added 
ranged widely between the four biophysical variables (Fig. 8). The most precise models for H, G, 
and TSV used all of the metrics. Addition of metrics from the Mixed CHM resulted in respective 
reductions in RMSE% of 3.1, 3.5, and 5.3% for models of H, G, and TSV with addition of textural 
metrics providing further reductions for H and G models of 0.3% for both variables (Fig. 8). The 
most precise model of N included base metrics and metrics from the Radar CHM. Addition of 
metrics from the Radar CHM reduced the RMSE% of the base model for N by 2.3% with addition of 
textural metrics reducing the RMSE% further by 0.5% (Fig. 8).  
 
 The key metrics within the model of H included the textural metrics mean and variance, and 
the local incidence angle from the base Radar metrics (Table 5). Radar backscatter (S0) was the 
strongest predictor for G, followed by Mixed CHM and COH, while it was also included in the most 
important predictors for N along with Radar CHM and the standard deviation for PH. The key 
metrics for the model of TSV included the textural metric mean, S0 and mean height from the mixed 
CHM (Table 5). 
 

 
Figure 8.  Changes in the percentage RMSE (RMSE%), relative to models that include only base 
variables, for the four groups of metrics that include various combinations of the Radar CHM 
(CHM), Mixed CHM (CHMmix) and Textural metrics (Tex.). The four biophysical variables, mean 
top height (H), basal area (G), stand density (N) and total stem volume (TSV) are denoted by, 
respectively, black, red, green and yellow columns.   
 

Discussion 

In this study, we compared the utility of InSAR with ALS-derived metrics to predict the forest 
inventory variables H, G, N, and TSV for a temperate plantation forest with steep and variable 
terrain. Overall, the ALS models were more precise and less biased than the InSAR models in 
prediction of the four biophysical variables. Although InSAR models were clearly less precise than 
ALS models, the precision was consistent with previous studies and these models did provide a 
reasonable level of precision for H and TSV, which was significantly improved through inclusion of 
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metrics from the Mixed CHM. Despite the sensitivity of the InSAR derived surfaces to topography, 
prediction errors from the final InSAR models of biophysical variables were found to be insensitive 
to variation in stand slope.  
 

The precision of models developed from ALS were broadly consistent with those that have 
been previously developed. The RMSE% of the best H model (5.67 %) was comparable to the 
results of earlier studies which ranged from 3.0–9.6% (Holmgren 2004; Persson and Fransson 
2017; Stone et al. 2011; Yu et al. 2015) while the precision of the best model of TSV (19.4 %) was 
within the reported range of 11–20% found in previous studies (Holmgren 2004; Rahlf et al. 2014; 
Yu et al. 2015). Our model of G had a slightly lower precision (RMSE% = 21.5%), than many other 
reported studies where RMSE% ranged between 10–17% (Holmgren 2004; Yu et al. 2015) but was 
comparable to a study by Shang et al. (2019) which had an RMSE of 20%. The least precise ALS 
model among the four forest biophysical variables was stand density (RMSE% = 32.3%) which was 
markedly less precise than previous stand density models where RMSE% ranged from 23.4 – 
25.0% (Shang et al. 2019; Stone et al. 2011). 

 
Though the InSAR models had markedly lower precision than the ALS models the precision 

of the best models were generally consistent with those that have been previously developed. The 
InSAR model for H (RMSE% = 10.8%) was at the upper end of the precision range reported by 
Karila et al. (2015) which had RMSE% of 20.0–25.2% and Persson and Fransson (2017) where 
RMSE% ranged from 9–16%. These studies were based on measurements from plots with 
respective areas of 300 and 315 m2. In contrast, the H model of Yu et al. (2015), which used plots 
with an area of 1 024 m2, had a slightly superior RMSE% of 9.53%. The best TSV model in this 
study (RMSE% = 30.7%) was found to be more precise than most studies which had an RMSE% 
ranging from 32.2 – 44% (Karila et al. 2015; Rahlf et al. 2014; Solberg et al. 2013) but was less 
precise than the model developed by Yu et al. (2015) which had RMSE% of 21.0%. Very little 
research has developed models of N and G based on InSAR metrics. However, Solberg et al. 
(2017) noted a positive weak correlation between N and InSAR height (R = 0.23). 

 
The most precise InSAR models of H, G, and TSV were developed using a combination of 

base metrics, the Mixed CHM, and textural metrics. Inclusion of metrics from the Mixed CHM 
resulted in the greatest gains, over the base model, for models of H, G, and TSV. As noted in our 
study the interferometric SAR height, coherence, and the CHM were previously found useful in H 
estimation (Karila et al. 2015; Persson and Fransson 2017). The best model of TSV relied on the 
Mixed CHM and its texture mean, as well as S0. Previous studies have shown the mean CHM and 
InSAR height to be useful for predicting TSV (Karila et al. 2015; Rahlf et al. 2014; Solberg et al. 
2013). The gains caused by the inclusion of CHM variables were similar between both CHMs for G 
and higher when using the radar CHM for N. Although bivariate relationships showed textural 
metrics to be most strongly related to H, TSV, and G, and these metrics were included as top 
predictors within many of the best models, inclusion of textural metrics as a group resulted in little 
change in RF model precision for any of the four biophysical variables. Despite this ambiguity, our 
results suggest that textural metrics should be used for models developed from InSAR given their 
importance in many of the models that we constructed.  

 
The information provided from the TanDEM-X mission proved more useful for forest 

estimation than past SAR data in many studies, mainly due to the use of phase height and its 
strong correlation to tree height and forest density (in terms of biomass or volume per hectare). 
However, we found that for this test site, and especially for the TanDEM-X scene that was used to 
generate the base metrics, the phase height exhibited a relatively weak correlation to H (R =0.46). 
This may attributable to several factors; one crucial factor is the satellite configuration – the 
baseline – and the height sensitivity (expressed as HOA) thereof, which was 216 m. Ideally, the 
HOA should be slightly larger than the tree heights to be estimated which within our study ranged 
from ca. 13 – 41 m. The HOA of our pair was three to seven-fold larger than most of the more 
precise results presented for European forests which predicted H with greater precision than our 
study (Kugler et al. 2014; Olesk et al. 2016; Persson and Fransson 2017; Soja et al. 2015a; Yu et 
al. 2015) but not always (Karila et al. 2015). Using five acquisitions with HOA ranging from ca. 26 – 
218 m, a Canadian study within a boreal forest clearly showed the highest RMSE between the 
InSAR and ALS CHM was associated with an acquisition with HOA of 218 m (Sadeghi et al. 2017). 
In the context of these studies the relatively weak correlation that we found between phase height 
and H does appear reasonable.  
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The use of the Mixed CHM derived from the WorldDEMTM product and ALS data may have 
overcome this issue to a large extent, since the WorldDEMTM is constructed from at least two 
acquisitions with differing baselines. However, since this is a global product, and the processing 
was not optimized for the local conditions, the accuracy is usually not as high as for scenes picked 
and processed specifically with the purpose of forest mapping. Another potential reason for our 
lower precision predictions of H from phase height was the steep slopes present within the forest. 
This influences both the WorldDEMTM base products and the base metrics. With 97% of our plots 
located on slopes > 10 degrees, the long-known geometrical challenges with any SAR system play 
an important role. Both foreshortening, layover and shadowing effects were evident in the rasters 
and these effects clearly degrade the estimates as well. Since X-band mainly interacts with the top 
of the canopy, and the trees grow vertically and smoothen the ground slope effects, we would hope 
that InSAR would still be suitable in terrain with steep slopes, which is supported by the invariance 
of our InSAR model predictions to slope.  

 
The results from this study clearly demonstrated the limitations of the DTM and DSM derived 

from InSAR at greater slopes. Most studies that have evaluated the precision of WorldDEMTM 
products have been undertaken in reference areas that were generally homogeneous (e.g. unbuilt 
areas or locations with flat uniform vegetation) and RMSE values from these studies were within 
the target relative vertical accuracy of 2 m (Becek et al. 2016; Cranston et al. 2018; Koppe et al. 
2015). Fernandez-Diaz et al. (2018) recently extended these studies to quantify the effects of 
vegetation heights and terrain slope on the WorldDEMTM using ALS data as a baseline for 
comparison. Their study found the DSM and DTM to have mean respective RMSE values of 5.30 
and 8.41 m which were similar to our mean RMSE values of, respectively, 4.58 and 8.09 m. While 
their results allowed differentiation of RMSE between vegetation areas with low slopes (< 20°) and 
high slopes (> 20°), our study extended this analysis to a greater slope range showing RMSE 
increases for the DSM and DTM to values of respectively 6.02 and 10.17 m, on slopes ranging 
from 40 – 50°. Although errors reported in this study were generally within the 10 m absolute 
vertical accuracy target set by WorldDEMTM they did slightly exceed this target on the steepest 
slopes. The lack of precision in these surfaces clearly limited the precision of the CHM derived 
solely from InSAR and highlighted the utility of using ALS to create a mixed CHM which had 
considerably higher mean precision than the Radar CHM (5.95 vs. 11.11m) and was markedly 
more useful for predicting H and TSV. 

 
 Results from this study are likely to be conservative as this study was undertaken over a 
forest with very steep terrain and, as previously discussed, the HOA was not optimised during 
image acquisition. Further research should investigate if precision gains in predictions of inventory 
variables are possible under acquisitions with optimised HOA. Predictions could also be improved 
through using an ascending and descending stereo pair to derive a DSM in which the effect of 
slope is minimized. 
 
 However, even if further improvements are not possible the precision demonstrated within 
this study highlights the potential of InSAR as a valuable means of acquiring terrain and inventory 
information within temperate plantations. InSAR is markedly less expensive than ALS (NZ $0.16/ha 
vs. $3 – 15/ha) and does not suffer from many of the disadvantages of ALS that include lengthy 
turn-around times due to flight delays, provider scheduling conflicts, and long processing times. 
Satellite based photogrammetric point clouds are also widely researched for forest inventory 
purposes and within our study forest predicted the four biophysical variables with a similar 
precision to ALS (Pearse et al. 2018). However, InSAR is less expensive than this data source and 
does not require cloud free conditions for acquisition. Furthermore, while InSAR can be used to 
produce a DTM, photogrammetric point clouds do not have sufficient penetration to create a DTM 
over forested area and this data source can only be used to precisely predict biophysical variables 
if a previously acquired DTM is available. Consequently, there may be instances when the 
advantages of InSAR outweigh the greater precision afforded by ALS and photogrammetric point 
clouds. Forest managers should take all of these factors into consideration when deciding on the 
best remote sensing approach for acquiring terrain and forest inventory information for their 
plantations. 
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Recommendations and conclusions 

Models were developed for the biophysical variables H, G, N, and TSV in a temperate forest with 
rugged terrain using ALS and InSAR predictive metrics. The ALS models were found to be more 
precise and less biased than the InSAR models. Despite this, the models of H and TSV created 
using InSAR were found to be more precise than most previously reported studies and these 
models may have utility for management use. This study also quantified the precision of the CHM 
created from the Radar DSM and either the Radar DTM or ALS DTM. The precision of the Radar 
DTM and DSM, and to a lesser extent the Radar CHM, deteriorated with increasing stand slope. 
The integration of the ALS DTM allowed construction of a Mixed CHM which had lower error than 
the Radar CHM, and with the exception of the model of N, was a more important predictor of 
biophysical variables.  
 
 The precision demonstrated within this study highlights the potential of InSAR as a valuable 
means of supplying an inexpensive DTM and a reasonably precise means of predicting inventory 
metrics, particularly if data can be used in combination with a previously generated ALS DTM. 
InSAR is markedly less expensive than ALS ($0.16/ha vs. $3 – 15/ha) and does not have many of 
the other disadvantages of ALS that include lengthy turn-around times due to flight delays, provider 
scheduling conflicts, and long processing times. Compared to the use of satellite based 
photogrammetric point clouds, which for the forest in our study has been found to have similar 
precision to ALS (Pearse et al. 2018), InSAR is less expensive, does not require cloud free 
conditions and is unaffected by solar illumination conditions. Furthermore, while InSAR can be 
used to produce a DTM, satellite based photogrammetric point clouds do not have sufficient 
penetration to create a DTM and this data source can only be used to precisely predict biophysical 
variables if a previously acquired DTM is available. 
 
 Although this research does show predictions of inventory variables from InSAR to be less 
precise than from ALS and the use of satellite based photogrammetry there may be instances 
where the lower cost of InSAR is a more important consideration than the greater precision 
afforded by these other two methods. Forest managers should take all of these factors into 
consideration when deciding on the best remote sensing approach for acquiring terrain and 
inventory information for their plantations. We recommend further research into InSAR as an 
inventory tool that focusses on optimising the acquisition settings as this is likely to result in gains 
in the precision with which this data source can predict inventory metrics.  
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Appendix A 
Summary statistics for Radar variables classified under four categories: base metrics, CHMs, and 
textural metrics derived from the Mixed CHM and Radar CHM. Shown are the mean, standard 
deviation (SD) and the range from 171 plots. 

 

Variable Abbrev. Mean SD Range 

Base Metrics     
Phase Height PH 16.3 6.46 0.93 – 49.5 
Phase Height Standard Deviation PH SD 3.24 2.03 1.06 – 15.0 
Corrected Coherence COH CORR 0.85 0.08 0.44 – 0.95 
Local Incidence Angle INC 0.79 0.26 0.14 – 1.27 
Radar Backscatter S0 -11.6 1.74 -16.7 – -6.62 

Canopy Height Models (CHM)     
CHM derived from Radar DSM and ALS DTM  Mixed CHM 15.9 5.99 2.05 – 31.0 
CHM derived from Radar DSM and Radar DTM  Radar CHM 9.92 2.44 0.10 – 17.4 

Textural Metrics derived using Mixed CHM     
Contrast Contrast 6.88 5.01 1.17 – 30.4 
Correlation Correlation 0.31 0.22 -0.25 – 0.88 
Dissimilarity Dissimilarity 1.93 0.69 0.79 – 4.41 
Entropy Entropy 2.02 0.13 1.53 – 2.18 
Homogeneity Homogeneity 0.41 0.10 0.18 – 0.65 
Mean Mean 0.37 0.13 0.11 – 0.69 
Second Moment Sec. moment 0.14 0.03 0.11 – 0.28 
Variance Variance 151 92.4 12.1 – 470 

Textural Metrics derived using Radar CHM      
Contrast Contrast 5.15 4.55 0.58 – 28.5 
Correlation Correlation 0.20 0.19 -0.24 – 0.79 
Dissimilarity Dissimilarity 1.58 0.70 0.41 – 4.06 
Entropy Entropy 1.88 0.22 0.99 – 2.20 
Homogeneity Homogeneity 0.49 0.12 0.20 – 0.81 
Mean Mean 0.28 0.05 0.05 – 0.46 
Second Moment Sec. moment 0.17 0.05 0.11 – 0.45 
Variance Variance 80.8 26.5 3.36 – 206 
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Appendix B 

Summary statistics for ALS variables classified under three categories: base metrics, CHMs, and 
textural metrics. Shown are the mean, standard deviation (SD) and the range from 171 plots. 

Variable Abbrev. Mean SD Range 

Base metrics     
Maximum height Max Height 35.3 5.07 16.4 – 46.6 
Mean height Mean Height 14.6 3.71 3.30 – 21.9 
Quadratic mean height Quadratic M 17.3 3.72 4.35 – 24.6 
Standard Deviation of height SD 9.16 1.57 2.83 – 12.4 
Skewness of height values Skew -0.17 0.53 -1.39 – 1.92 
Kurtosis of height values Kurtosis 2.21 0.66 1.45 – 6.21 
Coefficient of variation CV 0.66 0.17 0.41 – 1.37 
Mid-point of most frequent 1 m bin from a 
histogram of points > 1.4 m 

Mode 
17.4 8.16 1.50 – 28.5 

Height of quantile h p99.5 32.2 4.84 12.8 – 42.3 
p99 31.2 4.76 12.0 – 41.0 
p95 28.1 4.56 9.08 – 37.4 
p90 26.0 4.60 7.18 – 34.6 
p75 21.7 5.05 4.02 – 29.9 
p50 15.7 5.02 1.26 – 24.2 
p25 7.38 4.60 0.16 – 20.0 

Canopy density metrics at h% of height b99 99.2 0.09 98.7 – 99.4 
b95 98.1 0.41 96.7 – 99.0 
b90 95.6 1.24 91.3 – 98.4 
b80 86.4 4.43 70.9 – 96.8 
b75 79.9 6.43 57.3 – 95.6 
b50 43.2 13.8 9.77 – 90.5 
b25 17.3 13.6 1.90 – 74.5 
b10 8.51 10.4 0.53 – 65.7 

Canopy cover as number of 1st returns > h/total 
1st returns 

CCov DBH 90.6 8.69 47.9 – 99.5 
CCov 5m 83.3 15.2 25.6 – 97.7 
CCov 10m 76.1 18.0 4.51 – 96.8 

Vertical complexity index (1 m bins) VCI 0.85 0.06 0.58 – 0.94 

Canopy Height Models (CHM)     
Maximum height of CHM pixels CHM Max 34.3 5.06 13.7 – 44.7 
Average height of CHM pixels CHM Mean 20.0 5.01 5.06 – 30.5 
Median value of CHM pixels CHM Median 20.9 6.07 2.26 – 30.5 
Standard Deviation of CHM pixels CHM SD 7.37 2.03 2.90 – 13.0 
Height of quantile h of CHM pixels CHM p99 32.4 4.88 12.7 – 42.3 

CHM p95 30.3 4.68 11.0 – 39.9 
CHM p90 28.7 4.69 9.48 – 38.2 
CHM p75 25.5 5.35 6.66 – 34.6 
CHM p50 20.9 6.07 2.26 – 30.5 
CHM p25 15.1 6.35 0.12 – 26.8 

Textural metrics     
Contrast Contrast 8.94 3.86 0.98 – 20.1 
Correlation Correlation 0.56 0.05 0.39 – 0.68 
Dissimilarity Dissimilarity 2.06 0.49 0.63 – 3.30 
Entropy Entropy 1.94 0.17 1.27 – 2.12 
Homogeneity Homogeneity 0.42 0.08 0.28 – 0.72 
Mean Mean 0.46 0.11 0.13 – 0.70 
Second Moment Sec. moment 0.17 0.05 0.13 – 0.42 
Variance Variance 244 91.6 19.9 – 479 

 


