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Executive Summary 

Background 
 
Nursery managers require new methods to automate tasks such as stock assessments and implement in-field 
phenotyping and trials. Unmanned aerial vehicles have already been shown to offer counts and some 
indication of height in open-grown tree nurseries but methods have relied on orthorectification of highly 
overlapping imagery. The inputs are expensive and time-consuming, and the outputs lack detail, scalability 
and are poorly suited to phenotyping. New methods from modern computer vision could enable rapid, 
scalable stock assessments and improve the prospects for phenotyping in tree nurseries while new cameras 
equipped with time-of-flight image ranging could enable rapid counting and growth assessment. 
 

Methods 
 
A trial containing three beds of open-grown Pinus radiata D. Don seedlings was established. New sensors 
were trialled for measuring seedling heights to develop growth curves. Two new methods for imaging long 
seedling beds using unmanned aerial vehicles (UAVs) were trialled. The first was based on panorama 
generation and the second used direct georeferencing based on high-precision positional information. Two 
deep learning algorithms for counting seedling were developed. The first algorithm focused exclusively on 
accuracy and speed for final seeding counts after topping. The second focused on phenotyping and counting 
applications by detecting and delineating seedling crowns mid-way through the growth cycle and again shortly 
after topping. Lastly, a new technique for automatically extracting high-quality imagery of plot locations in 
large open-grown trial setups was tested for use in forest tree nurseries.  
 

Results 
 
The height measurement trial was inconclusive due to repeated missed measurements during the growth 
period because of COVID-19 restrictions. Initial testing suggested stereo and time-of-flight sensors were most 
promising for direct measurement of seedling height. Methods based on panorama generation and direct 
georeferencing were able to rapidly image long seedling beds using low-overlap (40%) imagery from a UAV 
flying at 2.5-3.5 meters height. Panorama-based imagery retained higher detail but mosaics from direct 
georeferencing were geolocated to decimetre accuracy and had consistent scale and perspective. The first 
deep learning algorithm offered rapid and scalable counting of seedlings, achieving 96% precision and 92% 
sensitivity. The second deep- learning model delineated the crown area of individual seedlings phenotyping 
and automation with 86% accuracy in a bed with moderate weed cover and 91% accuracy in topped 
seedlings. Automatic extraction of micro-plot locations and imagery was successfully demonstrated using a 
simulated block trial and the georegistered orthomosaic. 
 

Conclusions 
 
UAVs combined with modern computer vision algorithms are powerful tools for automation and phenotyping. 
Alternative methods allow single-pass, low-overlap imagery to rapidly image long seedling beds. Deep 
learning algorithms accurately detected seedlings. At the cost of extra training and computation, these models 
were also able to accurately delineate the crown of individual seedlings – a key requirement for phenotyping. 
Combined with the demonstrated techniques for micro-plot extraction, UAVs enable both automation and 
large-scale phenotyping in forest tree nurseries. 
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Next steps - Industry 

For industry adoption, we believe the technology is ready for a commercial pilot. Scion is seeking partners to 
see at least the counting approach implemented in a commercial nursery. The recommended pathway for a 
commercial pilot is: 
 

1) Select two ages at which seedlings counts would be useful for nursery managers. 
2) Develop a pilot based on capturing new data from a larger number of seedling beds at the target 

ages. 
3) Annotate at least 3000-5000 seedlings for each dataset to increase data diversity and model 

robustness. 
4) Test the system against ground-truth inventory counts performed in seedlings beds that were not 

used to develop the model. 
5) Develop an iterative approach to deploy, assess, improve and redeploy the counting method. 
6) Gradually phase-out traditional inventory counts. 

 

Next steps – Phenotyping 

The methods developed for segmenting individual seedling crowns are suitable for both in-field and controlled 
facility phenotyping. The approach is transferable so that seedlings could be segmented in imagery acquired 
from sensors ranging from hyperspectral cameras through to depth sensing cameras. Although the height 
estimation could not be definitively tested in this trial, it is likely that time-of-flight cameras combined with 
segmentation algorithms will enable regular assessments of seedling height. Future goals identified with 
nursery researchers at Scion envision an automated system to monitor height growth in nurseries. This would 
make it possible to use growth data to forecast the numbers and timing of seedlings expected to reaching 
maturity. In containerised nurseries, this concept could be coupled with robotic handling systems to 
automatically sort and select seedlings that had achieved growth targets for dispatch. This approach could 
greatly improve efficiency and negate the need for practices such as topping. 
 
 
 
  



 

3 

RFP-T006 Nursery automation and phenotyping final report_G11.docxRFP-T006 Nursery automation and phenotyping final report_G11.docx 

 
 

Introduction 

Production nurseries across New Zealand face labour shortages and pressures to reduce the use of 
pesticides and herbicides. At the same time, nurseries need to increase total production to meet the 
increasing demand for new plantings (MPI, 2019). To achieve these objectives, tree seedling nurseries will 
require automated approaches to crop management and care. In the agricultural context, automation has 
largely been driven by advances in robotics to tackle in-field tasks such as automated weed control, crop 
counting and crop health assessment (Champ et al., 2020; Shannon et al., 2020; Skovsen et al., 2019). 
Algorithms that can detect the crops/seedlings of interest in real-time are key enabling technologies for robotic 
weed control, automated crop counts and growth monitoring (Dyrmann et al., 2018; Milioto et al., 2018). 
 
The enabling technologies required for automation are closely aligned with those required for crop 
phenotyping. Progress in non-destructive sensors and methods to measure physiological attributes on large 
numbers of plants have led to rapid advances in crop phenotyping (Araus & Cairns, 2014; Yang et al., 2020). 
Combined with advances in genomic methods, these advances are expected to lead to substantial gains in 
global crop improvement efforts (Yang et al., 2020). The ability to accurately identify and characterise 
individual plants is a key requirement for plant-level phenotyping. Dedicated high-throughput phenotyping 
facilities have often addressed the challenges of delineating single plants by housing plants in controlled 
conditions. In a controlled phenotyping facility, plants can be grown and handled individually in pots or trays 
with regular spacing. These can be moved beneath dedicated sensor arrays and data such as images and 3D 
scans can be acquired individually under controlled conditions. While this approach solves many technical 
challenges, it requires expensive specialised facilities with reduced capacity and planting density compared to 
open-grown field trials. 
 
High-throughput, field-based phenotyping has attracted growing interest from research and commercial 
phenotyping programmes. The decreasing cost of off-the-shelf sensors and the much larger number of plants 
that can be grown in densely occupied rows improves the addressed the critical bottlenecks of scale and cost 
faced by many phenotyping programmes (Araus & Cairns, 2014). The increased density and size achievable 
with in-field phenotyping approaches comes with significant challenges. In this setup, the sensors must be 
brought to the plants to capture data under variable conditions. A variety of solutions have been adopted 
including large gantry-mounted sensor platforms, mobile ‘phenocarts’ and unmanned aerial vehicles (UAVs)  
(Crain et al., 2016; Yang et al., 2020). These platforms are used to move a range of sensors such as 
multispectral or hyperspectral sensors over the plants to enable in situ measurements to be obtained. 
 
Echoing the requirements for automation, a key step in the phenotyping process is the ability to identify and 
delineate individual plants within rows and/or treatment blocks and automatically extract measurements for 
quantitative analysis. Traditional image segmentation methods have been successfully used in some 
contexts, but these approaches have typically struggled with the variability of in-field scenes (Thorp & Tian, 
2004). In recent years, deep learning has revolutionised computer vision tasks such as detection, 
classification and even segmentation of objects in imagery (Y. Guo et al., 2016; Rawat & Wang, 2017). 
Recent studies have explored the potential of these new methods to overcome the complexity of in-field 
conditions to assist tasks in phenotyping and automation. Examples include efforts to build weed detection 
datasets (Skovsen et al., 2019) crop health detection datasets (Parraga-Alava et al., 2019; Singh et al., 2020) 
and international efforts such as the Global Wheat Head Detection Challenge aimed at developing algorithms 
to phenotype wheat varieties (David et al., 2020). 
 
Scion has recently begun investing in a research nursery to achieve a high level of automation and, in the 
longer-term, conducting phenotyping research. However, this investment is focused on advancing research 
capabilities and developing new methods for adoption in commercial nurseries. Research done at Scion’s 
nursery has highlighted substantial opportunities to apply advanced sensors and methods to automate 
aspects of crop production in commercial nurseries growing bare-root or containerised seedlings outdoors. 
This work aims to address two areas of research that have applications for both operational and phenotyping 
nurseries. Specifically, we aim to: 
 
Objective 1: Automate radiata pine seedling counts at scale using computer vision techniques and extend 
these beyond counting to segment individual seedling crowns. 
 
Objective 2: Test methods to develop a radiata pine seedling growth/height estimation model using new 
sensors. 
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Objective 3: Write a work plan to extend the trial into a commercial setting with support from an industry 
partner. 

Previous work 

Previous work at Scion has addressed the topic of counting seedlings from high-resolution RGB orthomosaics 
acquired from an unmanned aerial vehicle (UAV). A small pilot project tested a method based on developing 
cross-correlation templates after applying a series of image processing techniques including bilateral filtering 
followed by morphological erosion to enhance the contrast between seedlings (Pearse 2017). This approach 
was successful, achieving 90% accuracy where the quality of the final orthomosaic imagery was high enough 
(Figure 1). 
 

 
Figure 1: Seedling counting using cross-correlation templates. In this example, the upper row was excluded 
from analysis due to poor image stitching. Detection accuracy was 90% in the remainder of the areas. 
 
 
A follow-up study using improved imagery verified these results and demonstrated the potential to extract 
heights from the photogrammetric point clouds produced during orthorectification of the UAV imagery (Figure 
2). This work also confirmed that a wider range of methods such as simple top-hat transforms could be used 
to count seedlings with relative ease. 
 
These approaches, and to the best of our knowledge all commercially available tools or services, rely on the 
use of high-resolution orthomosaic imagery acquired from a UAV. The process of orthorectification removes 
the impact of perspective from the imagery and ensures consistent scale across scenes but it also introduces 
significant obstacles for use in automation and phenotyping. Firstly, the process typically requires up to 90% 
overlap between images to generate good orthomosaics over homogenous crops like tree seedlings. This 
translates to long UAV flight campaigns and significant volumes of raw imagery that must be post-processed 
into an orthomosaic using compute-intensive software such as Pix4Dmapper (Pix4D, Prilly, Switzerland) or 
Agisoft Metashape (Agisoft LLC, St. Petersburg, Russia). This poses a significant challenge in tree nurseries 
where long rows can contain tens of thousands of homogenous seedlings. This approach is also unsuitable 
for automation where image processing must be done in real-time.  
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Figure 2: Extraction of height profiles from photogrammetric point clouds acquired over seedlings growing in 
Scion’s nursery. 
 
Secondly, the resulting orthomosaic imagery is severely degraded in terms of detail relative to the raw input 
imagery (Figure 3A & 3B). Uncertainty and errors arising from the bundle adjustment process used to 
reconstruct scene geometry during rectification, mosaic blending and histogram matching all contribute to lost 
detail and alteration of raw pixel values. This also makes orthomosaic imagery poorly suited to phenotyping. 
Sensors such as hyperspectral cameras or multispectral cameras acquire frame or line-scanned images that 
must be carefully processed to enable retrieval of physiological parameters using the spectral reflectance 
recorded by each pixel (Figure 3B). Likewise, automation requires both real-time detection and fine-grained 
detail for tasks such as weed detection, localisation and control (Figure 3C). 
 
This problem has been widely acknowledged by researchers working with in-field phenotyping data. Several 
approaches have been proposed to avoid orthorectification while still being able to work at the level of 
individual plants (Roth et al., 2018; Tresch et al., 2019). One of the most promising is to use advanced 
positioning techniques to precisely locate imagery and other observations (J. Guo et al., 2018).  Combined 
with image analysis methods, this could allow long rows of crops or seedlings to be imaged in a single pass. 
These methods are being integrated into advanced mobile phenotyping systems developed for row crop 
analysis, but little research has explored applying this approach to data captured from UAVs. 
 
This report presents findings from a project to develop UAV-based methods that can be used in both research 
and commercial tree seedling nurseries. The goal of this work was to develop systems and methods that can 
support automated crop management such as counting and weed control as well as in-field phenotyping for 
tree breeding programmes. 
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Figure 3: Panel A shows examples of orthorectified imagery acquired from high-overlap UAV flights using 
RGB colour and multispectral cameras over Scion’s nursery. Panel B shows the higher level of detail available 
from unprocessed RGB imagery from a comparable camera. The improved detail in B) is required for tasks 
such as detecting and treating weeds as shown in the red box. Panel C illustrates line-scanned imagery from 
a hyperspectral camera. The pixel values record spectral reflectance and must be preserved to perform 
phenotyping at the seedling level. 
 

Objective 1: Height estimation. 

Nursery managers currently top seedlings to ensure they obtain a uniform crop that is suitable for packing and 
transport. This damages the seedlings and creates infection sites for pathogens. For research purposes, 
height estimation from point clouds generated alongside UAV orthomosaic imagery gave only general 
indications of height and was prone to noise and imprecision that made it unsuitable for growth monitoring 
(Pearse et al. 2017). 
 
This objective tested the hypothesis that orthomosaic generation for height estimation is less efficient and 
accurate than methods based on new technologies such as depth-sensing cameras. In this objective, we 
aimed to test a range of depth-sensing camera systems covering the leading technologies. The objective was 
to test the ability of these sensors to acquire height measurements with reduced cost and improved accuracy. 
 

Objective 2: Scalable, automated nursery seedling counts. 

While nursery stocks can be estimated at the time of establishment, conditioning treatments, mortality, and 
poor growth may reduce the final number of seedlings viable for sale or planting of trials. At present, historical 
data or manual inventory are used to estimate the number of seedlings available. Manual approaches can be 
labour intensive and usually require the use of sample-based methods for larger crops, introducing a level of 
uncertainty into inventory figures. Nursery managers have expressed an interest in automating the inventory 
process using imagery acquired from a UAV. Industry providers and Scion’s remote sensing team have both 
demonstrated methods that achieve suitable accuracy of around 90% (Pearse, 2017) but these approaches 
are based on generating high-resolution orthomosaics that are both inefficient and unsuitable for use in 
automation or phenotyping. 
 
The goal of this objective was to test the hypothesis that a combination of computer vision principles and 
techniques and/or high precision position technologies applied to UAV imagery could allow us to generate 
seedling counts without the need for orthomosaic generation. If successful, this approach would allow a 



 

7 

RFP-T006 Nursery automation and phenotyping final report_G11.docxRFP-T006 Nursery automation and phenotyping final report_G11.docx 

 
 

sequence of images or video recordings to be used to generate accurate seedling counts over potentially 
very-large nursery beds. Ideally, these approaches should be suitable for both phenotyping and automation. 
We also aimed to test methods to move from simple detection to segmentation (delineation) of individual 
seedling crowns – a key requirement for phenotyping work where the reflectance spectra from the 
photosynthetic plant elements alone (the crown and the bulk of the needle mass in seedlings) can be used to 
estimate e.g. growth, health and nutrient status. 

Objective 3: Micro-plot extraction 

The final objective sought to trial a recently developed technique called micro-plot extraction (MPE) (also 
referred to as automatic field plot extraction) for use in forest tree nurseries. MPE allows large, open-grown 
trials to be phenotyped using UAV-borne sensors (Khan & Miklavcic, 2019; Tresch et al., 2019). The method 
leverages the precision and spatial consistency of orthomosaic imagery while still allowing rapid, automatic 
extraction of raw imagery covering treatment blocks for use in phenotyping. 
 

Methods 

Trial location and layout 

Scion established a test crop of seedlings for this study. Cuttings were set in the 2019 season and covered in 
frost cloth until late October of the same year. The layout and management regime used on these beds was 
similar to that used in most bare-root production nurseries - 8 evenly spaced rows per bed set out after 
mechanical cultivation (Figure 4). 
 

 
Figure 4: Trial beds containing cuttings of P. radiata for sensor testing at Scion’s nursery. 
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Testing of the in-field sensors and initial development of the methods for the three objectives were carried out 
within these trial beds. A total of 36 permanent measurement locations were established at fixed intervals 
along the beds. Each measurement location was marked and assigned a row code that was also printed on a 
stake that would be visible within any imagery captured during the trial. At each measurement location, the 
eight seedlings within each row were marked for re-identification (Figure 5). A custom measuring board was 
fabricated and used to rapidly measure the heights of seedlings within measurement rows by placing the 
board behind each row and reading off heights. Photographs of the seedlings in front of the height board were 
also recorded. Using this approach, monthly measurements of the trial were scheduled to commence at the 
end of January and run until the crop was lifted at the end of June 2020. These measurements formed the 
ground-truth data that the sensor-based height measurements were compared to. 
 

 
Figure 5: Measurement board for rapid, accurate measurement of all seedlings in a row. 

Height Estimation 

In this objective, we aimed to develop a means of rapidly and repeatedly measuring individual seedling 
heights within entire beds of seedlings. This would allow growth curves to be captured with a view to removing 
the need for topping to achieve final crop uniformity. These measurements could also be used to assess the 
performance of different crops and regimes within nurseries. Scion has demonstrated that methods based on 
photogrammetry can be used to assess height at the bed level, but this approach requires relatively expensive 
input data (high-resolution, high-overlap UAV orthomosaics) and suffered from errors in the input 
orthomosaics. New methods based on advances in sensors and computer vision offer the potential to perform 
rapid, in-field assessment of crop height. Moreover, many new sensors are capable of simultaneously 
capturing RGB colour imagery and depth (RGB+D) at the same time. These sensors potentially offer counting, 
weed detection and height estimation from a single source and could be well suited for use in robotic 
automation. 
 
For this project, Scion identified and purchased three affordable camera systems that offer direct depth 
estimation alongside RGB imagery capture (RGB+D). The first camera was the Intel RealSense D435i depth 
camera (Intel Corporation, Santa Clara CA, USA) (Figure 6, A). The Intel camera allows high-resolution 
imagery to be captured alongside accurate depth estimates at up to 10 m using stereo-enabled vision. The 
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second camera is the Stereolabs ZED camera (Stereolabs, San Francisco CA, USA). This system uses a 
different method for depth estimation based on visual-inertial SLAM (Figure 6, B). 
 
 
 
 

 
 
Figure 6: A) Intel RealSense depth camera based on infra-red stereo vision. B) Stereolabs ZED depth 
camera based on visual-inertial SLAM and C) Microsoft Azure Kinect with time-of-flight sensor. 
 
 
The final camera purchased was a Microsoft Azure Kinect (Microsoft, Redmond WA, USA) (Figure 6, C). This 
system was released after the project commenced but was added to the project outline because the sensor 
offered class-leading depth accuracy and resolution using an advanced time-of-flight (ToF) range imaging 
camera to measure the distance to objects. The full specifications for the three cameras used in the study are 
shown in Table 1. 
 
Table 1: Summary of depth cameras selected to measure seedling growth. 

 Intel RealSense D435i Stereolabs ZED Microsoft Azure Kinect 

Depth range 0.11 – 10 m 0.5 – 20 m 0.5 – 3.8 m 
Max resolution 1920x1080 4416x1242 3840x2160 
Max frame rate 30 fps 100 fps 30 fps 
Technology Active IR stereo Visual Inertial SLAM Time-of-flight 
Output RGB+D+ point cloud RGB+D + point cloud RGB+D+ point cloud 
Est. Price NZ$350-400 NZ$800 NZ$800 

 
The cameras were calibrated and configured for use in the field. Measurements were scheduled to occur as 
close as possible to the monthly ground-truth measurements using the measuring board. Although some of 
the cameras can be adapted to work from a UAV, a mobile platform that could carry a laptop computer was 
needed during the testing phase. A ‘Phenocart’ was fabricated using additional funding provided by Scion to 
facilitate rapid data capture using the depth cameras and to facilitate future nursery phenotyping work at Scion 
(Figure 7). The phenocart was used to mount and operate the depth cameras during data acquisition. This 
allowed the camera settings to be adjusted and monitored during data capture. 
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Figure 7: Phenocart used to collect RGB+D data over seedling beds. 

Scalable counting and segmenting of seedlings in rows 

Radiata seedlings are typically grown in long, dense seedling beds that can hold several thousand seedlings.  
Identifying and segmenting the crowns of every seedling in these beds depends on having efficient methods 
to acquire high-resolution imagery over these long seedling beds. In practice, this means moving away from 
high overlap orthomosaics generated from UAV imagery. Two new methods were investigated for rapidly 
imaging seedling beds while preserving detail and image properties. 

Method 1 for acquiring imagery - panoramas from undistorted imagery 

A DJI Phantom 4 Pro UAV (DJI, Shenzhen, China) was used to capture a sequence of images over the bed. 
The intrinsic properties of the UAV camera were obtained through professional camera calibration; however, 
similar results can be obtained from open source software or commercial solutions such as Pix4Dmapper or 
Agisoft Metashape. The camera parameters allowed the radial distortion of the camera to be modelled and 
removed from the imagery. The camera properties also allowed the field of view for the camera to be 
calculated at different heights. This information was used to set a flight height that would allow the target 
seedling bed to occupy the portion of the camera’s field while minimizing barrel and perspective distortion as 
the UAV flew down each row in a single-pass flight line (Figure 8). The barrel distortion on this wide-angled 
lens was substantial but this is a common property of consumer UAVs and our objective was to develop 
methods using limited specialist equipment. 
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Figure 8: Image with radial distortion removed and target seedling bed located in the central portion of the 
image to minimize barrel and perspective distortion. The impact of barrel distortion can be seen on the 
seedlings in the left-hand side bed. The imagery was further split into two sub-frames (outlined in yellow) for 
use in the deep learning models. 
 
The scale invariant feature transform (SIFT) was used to find common features in overlapping images along 
the flight path. Random sample consensus (RANSAC) was then used to remove erroneous matches before 
using the remaining image tie points to create a seamless mosaic of the seedling beds. This process was 
done using the Python OpenCV 3 (https://opencv.org/) computer vision library. Once the general approach 
was validated, we sought to identify a software tool that could achieve the same outcome with little or no code 
to facilitate uptake by industry. The PTGui (https://www.ptgui.com/) software tool was identified as offering 
similar capabilities and Scion purchased and tested the programme for creating seamless panoramas from 
overlapping UAV imagery. Options such as Microsoft’s Image Composite Editor offer similar capabilities but 
were not tested in this project. 

Method 2 for acquiring imagery - direct georeferencing with high-precision sensors 

The panorama-based approach is simple; however, it does rely on accurate stitching of images using 
common features which can be problematic for homogenous crops that offer few distinctive features. In 
addition, the panorama image does not have consistent scale or perspective and coordinates are not 
georeferenced. This does not prevent seedling counting, but it does make it harder to link the imagery to real-
world locations. An alternative approach combines calibrated cameras with imagery acquired using high-
precision positioning systems such as real-time kinematic (RTK) or post-processing kinematic (PPK) GNSS 
(GPS) data. In this approach, the position of the UAV and camera is known to sub-decimetre accuracy and 
the properties of the camera are also known with a high degree of certainty. The high-precision positional 
information greatly reduces the post-processing uncertainty and allows overlapping imagery to be combined 
into an orthomosaic with far less distortion and fewer artefacts. Crucially, the precise positional information 
allows the overlap required between images to be decreased from 80-95% down to 40-50% - greatly reducing 
cost and flight time. Although more technically demanding, this approach is highly suited for automation and 
large-scale deployment as it offers precise geolocation of the mosaiced imagery without the need for ground 
control points and greatly reduced capture costs due to lower overlap. The approach can also be generalised 
to sensors such as hyperspectral cameras for phenotyping and crop monitoring. For this project, Scion used 
the same DJI Phantom 4 Pro UAV and calibrated camera but a Klau Geomatics PPK solution (Klau 
Geomatics, Nowra NSW, Australia) was added to the configuration. The imagery was acquired using a single 
flight over each bed with just 40% average forward overlap between successive images. The images were 
then geotagged using the post-processed PPK data from the Klau system before being mosaiced in 
Pix4Dmapper. 
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A fast algorithm for counting seedlings 

Several computer vision methods have been shown to produce accurate seedling counts from RGB imagery 
using e.g. correlation templates and image transformations (Pearse, 2017). These methods, and to the best 
our knowledge current commercial methods, are all based on the use of orthorectified imagery. To overcome 
the cost and quality limitations of traditional orthoimagery, we attempted to develop counting algorithms that 
could work on the imagery obtained from the panorama and/or direct georeferencing methods trialled in this 
project. The first model developed focused only on counting seedlings after topping. We chose a deep 
learning object detection model based on the ‘Darknet’ architecture (Bochkovskiy et al., 2020). This neural 
network architecture is both accurate and markedly fast at prediction time, often enabling real-time prediction 
using e.g. consumer smartphones (Redmon et al., 2015; Redmon & Farhadi, 2017). This was an important 
consideration given the scale of many tree seedling nurseries.  
 
The training data for the darknet-based algorithm was obtained from single-pass UAV flights carried out at 
2.5-3.5 m height above the three seedling beds. The target forward/backward overlap between successive 
images was 40%. The images were cropped to include only the seedling bed of interest and then split into two 
sub-frames of 1300 x 800 pixels (Figure 8). This image size was small enough to train the algorithm on 
without any input resizing – retaining the full resolution of the seedlings and detail present in the imagery. The 
images were then hand-labelled by marking the location of each seedling in the imagery using the VGG VIA 
image labelling software (Dutta & Zisserman, 2019). Standard data augmentation processes were applied to 
the training images, including flipping, rotations, shearing, gaussian blurring and variation of image contrast, 
brightness and colour balance. The data from two of the three seedling beds were split to allocate 127 images 
to the training set and a further 5 images to the validation set for hyperparameter tuning and to detect 
overfitting. The test set for this model was imagery from the third seedling bed that was completely withheld 
from training and used only for testing. The panorama imagery was used to test the fast counting algorithm as 
these techniques could be combined to demonstrate rapid acquisition and processing at scale. 

Counting and segmenting seedlings for phenotyping 

For automation and phenotyping, it is valuable to have an image mask that outlines the needles and crown of 
each seedling in the bed. In multispectral or hyperspectral analysis, these pixels represent reflectance spectra 
that in-turn capture physiological properties such as health and nutrient status. To achieve this, we selected a 
deep learning model capable of performing ‘instance segmentation’. Instance segmentation models learn to 
distinguish individual objects of the same class and assign masks to the pixels predicted to belong to each 
object. The instances can be tallied to provide seedling counts while the masks allow the spectral information 
from the pixels belonging to each seedling to be extracted and analysed in phenotyping. In the case of the 
previously described height detection cameras, the segmentation mask from the RGB colour channel can be 
adapted to the depth channel and used to automatically extract the height of each seedling. This is also useful 
for robotic vision systems to ‘understand’ the extent and location of seedlings or weeds. 
 
We were also interested to know if seedlings could be detected and segmented before topping. This could 
provide early counts for nursery managers and enhance precision management such as targeted weed 
control or chemical application. To test this, herbicide was withheld from one of the two beds used for model 
development to allow the weed level to increase. The same UAV system was used to capture video footage of 
this bed from an altitude of 4 m during February 2020. Non-overlapping image frames were extracted from the 
video and cropped to the area covering the seedling bed before manually defining polygons around each 
seedling crown (Figure 9). A total of 25 annotated images were used for training and validation while 5 images 
were withheld for testing. For clarity, this model is hereafter referred to as the ‘early-crop’ detection and 
segmentation model. 
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Figure 9: Examples of imagery used to train segmentation and detection model on early-crop seedlings. 
Moderate levels of weed cover were present within the beds. The left panel shows how seedling crowns were 
manually delineated in the images to train the segmentation model. 
 
For detecting and segmenting topped seedlings, we used the same images and data splits as the Darknet 
algorithm. However, the two beds used for training data were re-annotated so that a polygon outlined the 
inner portion of the crown containing the topped leader as well as the bulk of the needles. This was a labour-
intensive process with each image containing around 100 seedlings to be annotated. 
 
The final model for detecting and segmenting topped seedlings as well as the model testing early-crop 
detection was implemented using the Mask-RCNN algorithm within the Detectron2 deep learning framework 
(Wu et al., 2019). The model used a ResNet-50 backbone model pre-trained on the COCO dataset as 
provided in the Detectron2 model repository. All models were trained on a cloud hosted Nvidia K80 GPU with 
12GB of RAM. 
 

Image preparation for the counting and segmentation algorithms 

The fast darknet-based counting model and the two instance segmentation models were then applied to the 
imagery of the third seedling bed withheld for testing purposes. The test data was in the form of a long, high-
resolution image generating using the panorama or direct georeferencing techniques previously described. 
None of the deep learning models trained to detect seedlings could ingest such large images. Therefore, a 
small Python script was developed to perform the following steps: 

1. For the panorama imagery - register the full image into a local coordinate frame. For the geolocated 
imagery, use the NZTM2000 coordinate projection system. 

2. Tile the mosaic into smaller images (1000 x 1000 pixels) for the chosen deep learning model while 
recording the origin and size of each tiled image within the larger image. 

3. Apply the model to each tile and record the predictions. 
4. Collect local coordinates of detected seedlings with a confidence score >= 0.5 and translate the 

location back to positions in the imagery of the full seedling bed. 
 
This process is summarised in Figure 10. The output of this script is a seamless image of the seedling beds 
with the detected seedling locations overlaid onto the image for visualisation. In the case of the georeferenced 
imagery, the locations correspond to seedling locations in the real-world (+- 10 cm).  
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Figure 10: Visual representation of the approach used to divide long panoramas or georeferenced mosaics 
into small sub-tiles (chips) for input into deep learning models. The results are combined with information on 
the sub tile’s position within the larger image to translate predictions back their locations in the overall scene. 
This is achieved by recording the tile’s upper left corner coordinates (x,y) relative to the larger image’s upper 
left corner and the width (w) and height (h) of the sub tile. 
 

Micro-plot extraction 

In this approach, crop rows or beds are assigned to experimental treatments according to a pre-determined 
trial design. The spatial coordinates of all treatment blocks are recorded using high-grade GPS equipment or 
extracted from precisely geo-registered orthoimagery covering the area. UAV-borne sensors are then flown 
over the trials to capture imagery for phenotyping. In the first processing stage, MPE accepts the high-overlap 
and loss of image quality to generate orthomosaics with consistent scale, perspective and accurate geo-
registration. This process also precisely locates the camera position for each input image. In the second 
phase, a software script is used to extract and combine camera calibration parameters with position and 
orientation information generated during the orthorectification process. Ray tracing from the camera position 
to the digital surface model generated during the orthomosaic generation defines the footprint of every image 
used to generate the mosaic. This allows 3D real-world coordinates of the treatment blocks to be converted to 
2D coordinates defining the block locations in the raw input imagery. This can be used in phenotyping 
workflows to automatically extract the raw, unadjusted pixels values for the crops/seedlings in each treatment 
block. MPE accepts the cost and time penalty of acquiring high-overlap UAV imagery in exchange for the 
ability to perform repeatable and automatic extraction of the raw image values from e.g. multispectral sensors 
flown regularly over the crop. This is an essential workflow for large-scale, in-field phenotyping and we are 
unaware of previous work trialling these methods in tree seedling crops. 
 
The trial beds in this study did not include randomized treatments. Instead, a grid of 10 trial blocks was 
simulated in a GIS. The grid was overlaid onto an orthomosaic generated from the imagery collected to test 
direct georeferencing over the third bed of seedlings. This was the same imagery used to test the counting 
and segmentation models. A script to perform MPE was developed based on the methods described in 
Tresch et al. (2019) & Khan & Miklavcic (2019) and the Pix4Dmapper documentation. The script took as input 
the raw input images used to produce the direct georeferencing test mosaic, metadata produced by 
Pix4Dmapper during orthomosaic generation and the 3D coordinates of the simulated treatment blocks. The 
output of the script was a list of the raw input images that contained the simulated treatment blocks and the 
2D pixel coordinates describing the footprint of the trial block in the raw, unprocessed imagery. 
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Results 

Height estimation 

An initial calibration run for height estimation was completed in December 2019. Based on the results of this 
capture, the Intel RealSense and Microsoft Azure Kinect were best suited to height measurements. Two 
measurement datasets were acquired over the height trial on January 23rd and again on February 23rd. 
Ground measurements and UAV flights to capture co-incident imagery were also carried out. The next capture 
was scheduled for March 23rd; however, the move to alert level 3 in response to COVID-19 prevented the 
capture of this dataset. The April data capture also had to be forfeit due to Alert Level 4 restrictions. Efforts 
were made to revisit the trial at the end of May, but the trial beds had suffered lack of maintenance and with 
two important height measurements missed the decision was made to abandon efforts to recover the trial. 
 
Preliminary analysis was carried out on the datasets captured at the start of the trial. Seedlings within each of 
the measured rows were identified in the RGB imagery from the RealSense and Azure Kinect imagery and the 
lowest value from the depth channel (representing the closest distance between the seedling and camera) 
was recorded. This value was subtracted from the distance to a sample of adjacent ground pixels to compute 
seedling height. The best RMSE of 8 cm was obtained from the Intel RealSense camera. This value was high 
compared to the mean height of seedlings (15 cm). Bright, sunlit conditions appeared to interfere with the 
ability of both sensors to accurately range the top of each seedling. However, the interruption of the trial 
prevented further testing under different conditions. There were also numerous data enhancement methods 
exposed through the software API for both cameras that we were unable to test in the field. Work was then 
refocused on the detection and segmentation models as well as micro-plot extraction methods for 
phenotyping. 

Results generating panoramas from undistorted imagery 

The goal of this approach was to use low-cost methods based on panorama generation to seamlessly 
combine overlapping images of a seedling bed into a continuous image. The results from the manual OpenCV 
code-based approach generally worked well. Most image sequences captured over the beds could be 
combined into a panorama with few mismatches. It was clear that most mismatched tie points were in the 
actual seedling beds, with positive matching features often detected in the imagery of the ground surrounding 
the beds. The PTGui software produced panoramas with the same or higher quality than the code-based 
approach. The software was intuitive and easy to use, allowing the user to refine mismatched points if 
necessary. Figure 11 shows an example of a panorama produced by PTGui with the seamlines and areas of 
uncertainty highlighted in red along with examples of poor image matching. Because of the differences in 
approach to traditional orthorectification, the panoramas lacked geolocation and the scale and perspective 
were not consistent across the image. Despite these limitations, this approach appeared to offer a rapid and 
accessible method for constructing seamless panoramas of long seedling beds. The outputs were primarily 
suitable for use in the counting algorithms. 
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Figure 11: Panorama output from PTGui with seamlines between merged, overlapping images shown in red 
(top). The quality of the panorama was high and retained the detail of the original images (bottom). The yellow 
arrow highlights minor artefacts encountered at the seamlines that caused occasional loss of detail and 
continuity.  

Results generating seamless mosaics using direct geo-referencing 

This method required precision GNSS equipment to reduce the required overlap and improve the final quality 
of the orthomosaic. The data required some post-processing to attach the high-grade GNSS positions to the 
imagery. Image mosaicking was trialled using both Pix4Dmapper and Agisoft Metashape. In both cases, the 
software was instructed to consider camera positions as being highly accurate - constraining the alignment 
and bundle adjustment process. In both cases, high-quality orthomosaics with cm-level precision were 
produced by the software from low-overlap imagery (~40%) acquired in a single flight. The distortions in the 
imagery were greater than in the panorama but still improved from the traditional orthorectification method 
without precise positional information (Figure 12). The mosaic imagery had the advantage of being accurately 
georeferenced, making it suitable for micro-plot extraction. The scale and perspective were also consistent 
across the scene, but some detail was lost from the individual seedlings. 
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Figure 12: Orthomosaic imagery generated using direct georeferencing. The full mosaic (top) was geo-
registered to cm-level accuracy without the need for ground control points. The mosaic was obtained with 
~40% overlap and the quality of the final imagery was improved from orthorectification without direct 
georeferencing but showed some loss of detail (bottom). The imagery was well suited to micro-plot extraction 
where the 3D real-world coordinates could be used to extract undistorted 2D imagery for phenotyping. 
 
In summary, a single flight at 2.5 to 3.5 m capturing imagery with a target overlap of 40% was successfully 
used to generate both panoramas and directly georeferenced orthomosaics of the seedling beds. 
 

Results from Darknet-based counting algorithm 

The Darknet-based algorithm focused on rapid counting of seedlings in the test bed. The model took ~6 hours 
to reach convergence – indicating adequate training time. The tiling methodology described earlier allowed 
the trained model to be applied to sub-tiles without image resizing. Making predictions on all the tiles from the 
entire test bed took around 3 minutes. Inspecting the results on the full test bed showed a high level of 
detection accuracy (Figure 13). The model had a precision of 96% and sensitivity of 92%. The lower 
sensitivity reflected a higher rate of false negatives associated with seedlings at the edge of the bed and 
shorter seedlings that were not topped. The training set overwhelmingly included topped seedlings and the 
model likely did not have enough examples of un-topped and edge seedlings to learn from. The false positives 
were most often caused by seedlings with multiple leaders. Overall, the Darknet-based counting algorithm 
provided fast and accurate detection based on a relatively small training set. 
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Figure 13: Results from Darknet-based counting algorithm. False negatives can be seen along the edge of 
the bed while some seedlings with more than one leader led to false positives. 
 

Results from instance segmentation models 

The first instance segmentation model tested counting and segmentation of seedlings approximately mid-way 
through the crop cycle in a single bed with moderate weed cover. The Mask-RCNN model achieved a 
detection accuracy of 86% on the withheld test images. The model generally provided accurate segmentation 
masks for the individual seedlings (Figure 14). Most errors were associated with false negatives (missed 
seedlings) and no weeds were incorrectly detected as seedlings. These results were a positive indication 
given the small training set. 
 

 
Figure 14: Results from instance segmentation model on seedlings mid-way through the crop cycle. 
Segmentation masks were generally accurate and captured the crown area, but a moderate number of false 
negatives were evident towards the edge of the seedling beds. 
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The segmentation model trained on two beds of topped seedlings had an accuracy of 91% when applied to 
the third, withheld test bed. The required threshold between the ground-truth and model segmentation was set 
at 50% for true positives. The segmentation masks exceeding this threshold produced accurate delineations 
of the bulk of the needles and central crown area (Figure 15). Small seedlings were sometimes missed but the 
rate of false positives due to multi-leader seedlings was lower than the Darknet model. 
 

 
Figure 15: Instance segmentation results on topped seedlings. Segmentation masks for individual seedlings 
are shown as coloured areas within the bounding boxes. 

Micro-plot extraction 

The MPE script was tested on the simulated block-design layout. The method was able to correctly identify 
the raw input images covering the simulated block locations and the process allowed rapid conversion of 3D 
real-world coordinates to 2D coordinates in images covering the same area. The quality of the digital surface 
model was important to the process and required full orthorectification to generate a dense surface model. 
This was likely due to the taller height of the seedlings. This outcome demonstrated that MPE from relatively 
low overlap UAV imagery could be applied to tree seedlings for in-field phenotyping. This also confirmed the 
benefit of direct georeferencing for reducing the required image overlap over dense, homogenous seedling 
beds. 
 

Discussion 

The results from the trial confirmed that UAVs are both robust and practical for large-scale phenotyping and 
automation in tree crop nurseries. Both the panorama and direct georeferencing approaches provided a way 
to rapidly capture imagery over long seedling beds. Both methods required substantially less overlap and UAV 
flight time than typical orthomosaic generation methods. The panorama method had the advantage of 
producing nearly seamless imagery of the beds using only open source or low-cost software but was not 
suitable for measurement and lacked geolocation information. This worked well when counting was the main 
objective.  
 
The Darknet-based seedling counting model performed very well on this imagery and the high level of 
individual detail preserved in this imagery improved detection. The combination of fast inference from the 
Darknet framework and low-cost, fast imaging based on panoramas is likely to offer a scalable solution for 
large-scale nursery stock counting. The training set was small by comparison to many production models and 
the accuracy of the Darknet model could be further improved with additional training data. Additional data 
could also improve the detection of the seedlings at the edge of beds. Scaling of this method could be further 
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improved by batching the images together and using a more powerful GPU. This would reduce or remove 
constraints that may be encountered in very large nurseries. The panorama-based method was sensitive to 
poor image matching – this is a common challenge over homogenous vegetation. In our testing, the images 
could be matched with some quality checking by an operator to remove incorrect automatic tie points. Another 
possible solution is to avoid the use of tie points within the beds and enhance image matching by placing 
temporary fiducial markers alongside the beds. Many custom markers specifically designed to improve image-
to-image matching are freely available and could easily be printed and laid out alongside the beds at regularly 
spaced intervals. 
 
The accurate positional information added to the imagery captured using the direct georeferencing approach 
greatly improved the quality of the mosaiced imagery, although the detail was still poorer than the panorama 
imagery. The advantages of this approach were that high-quality mosaics could still be obtained with only 
around 40% image overlap – less than half the overlap typically required for orthomosaic generation over 
seedling beds. This imagery was also geo-registered to within a few centimetres without ground control 
points. The ability to precisely locate spatial coordinates in the georeferenced imagery made it suitable for 
micro-plot extraction methods. Automatic extracting of raw imagery overlapping the trial blocks using MPE is 
the first step in an automated analysis pipeline of (for example) multispectral data to detect treatment effects. 
Combined with the ability to segment individual seedlings, these tools form the basis for phenotyping research 
in large-scale, open-grown trials. 
 
The segmentation models required substantially more effort to develop due to the need to carefully outline 
individual seedlings. The training set was small by the standards of these models, but accurate results were 
still obtained on topped seedlings as well as on younger ‘early-crop’ seedlings growing in weedy beds. The 
primary application of these models would not be counting but rather for use in the phenotyping pipeline 
described above. Accurately delineating the central crown and surrounding needles in multispectral or 
hyperspectral imagery would facilitate automated detection of treatment effects, health status and nutrient 
deficiencies at the seedling level. Outside of phenotyping, segmentation models are important for use in 
automation where robotic systems might employ machine vision systems that must be able to identify and 
target actions e.g. spraying herbicide only on weeds or fungicide only on seedlings. The results of this work 
suggest these methods are likely to work well in beds of radiata seedlings. 
 
The loss of the trial designed to extract height information prevented conclusive analysis of the depth camera 
systems. Although the initial results showed only modest accuracy, further data may have allowed us to refine 
the capture and/or analysis pipelines to improve the results. Time-of-flight sensors warrant further 
investigation as these sensors are increasingly common in consumer electronics, including many of the latest 
smartphones. This widespread adoption will drive developments in both the technology and algorithms for 
capturing accurate short-range depth data from low-cost sensors. Future experiments with new sensors may 
well provide sensors that allow simultaneous counting of seedlings and height measurements from a single 
device flown along seedling beds under a UAV. 
 

Conclusions 

Labour shortages and restrictions on chemical use are driving increased demand for automation techniques in 
the nursery, with rapid stock assessment being of interest to nursery managers. This study demonstrated that 
existing techniques for counting seedlings can be improved upon by using a combination of computer vision 
techniques and new deep learning algorithms. Methods based on building panoramas and direct 
georeferencing of UAV imagery allow the required imagery overlap to be more than halved to as low as 40% 
forward and backward overlap while still producing high-quality imagery of long seedling beds. Fast, scalable 
counting algorithms based on both detection and segmentation achieved accuracies over 90% and showed 
promise for counting at earlier ages as well. The models accurately distinguished between seedlings and 
weeds and the instance segmentation models accurately delineated individual seedling crowns. This study 
also demonstrated the potential for UAVs to be used to carry out phenotyping at scale in open-grown seedling 
beds using a combination of deep learning and micro-plot extraction to enable rapid, seedling-level analysis 
for phenotyping activities. Future work should revisit new systems that could provide imagery covering 
multiple spectral channels with simultaneous height estimation using emerging ranging sensors. 
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Future steps 

Industry partners are being sought to test these methods in a commercial setting. The most likely avenues for 
this will be through submission as a possible Pre-Seed Accelerator Fund candidate project. If successful, the 
following steps will be required to validate the methods in a commercial setting. 
 
Stage 1: Stakeholder engagement 
During this stage, the exact requirements of commercial nurseries will be identified along with the key factors 
determining the cost/benefit trade-off. Interviews with potential end-users are typically the best path to quickly 
identify end-user requirements for a viable commercial solution, existing approaches and likely roadblocks. 
Partners for the implementation pathway will also need to be identified, with existing commercial service 
providers to commercial nurseries being the most likely choice. 
 
Stage 2: Method validation 
In this stage, it will be crucial to validate the methods tested in this study for use in commercial nurseries. A 
repeatable process that works in a range of settings must be developed. Methods such as the use of fiducial 
markers and streamlined image processing routines will need to be tested for rapid, large-scale imaging of 
commercial seedling beds. The baseline models will also need to be enhanced with substantially more 
training data covering a much wider range of conditions. The image processing and model prediction pipeline 
will also need to be refined to validate the scalability of the models. This may require larger GPUs, simpler 
models, testing lower resolution input imagery or some combination of these elements. This process will 
provide the information necessary to inform the business case. 
 
Stage 3: Deployment 
In this stage, the model will be deployed in parallel alongside existing methods with a large amount of human 
oversight and checking. This will represent a stop/go process before considering a full roll-out as a 
commercial service. If the model achieves acceptable accuracies, a process of continuous improvement can 
be used to further refine the model and gradually replace manual inventories with automated ones. 
 

Addendum 

After the completion of this project. Scion tested an experimental combination of deep learning models to 
enable real-time tracking of seedlings in videos. This system was adapted from models designed to track 
people and vehicles and repurposed to perform dense-object tracking of topped seedlings. Although the 
model lost some precision due to the small dataset available being used to parameterise two deep nueral 
networks, the overall approach worked well. Importantly, this approach removes the requirements for image 
processing completely. All that is required is a UAV equipped with a nadir-facing video camera. The system 
identifies and tracks individual seedlings and adds them to a counter once the seedlings have been tracked 
across a region of interest defined in the video frame. The output records the final seedling count as well as 
metadata on detection confidence and tracking errors that can be applied to the final count if needed. A 
demonstration of the system can be found on Scion’s YouTube channel at 
https://www.youtube.com/watch?v=KUhk2wULENM. 
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