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Summary: This technote describes our proposed framework for quantifying needle disease impacts on tree 
productivity. We focus our research on red needle cast as a use-case for developing and testing our framework. 
Our proposed needle disease impact framework leverages off the disease severity prediction framework 
proposed in Research Aim 3.2.1 and established tree growth models for predicting disease severity and its 
associated impact on radiata pine plantations. The technote also captures plans to use remote sensing 
technology to scale quantifying impacts of needle disease from tree to estate level and summarises existing data 
that can be used to support this work.   
 
 

 

1. Introduction 

Understanding the impact of tree needle diseases on 
forest productivity will allow forest owners to make 
informed disease and operational management 
decisions.  

The main objective of this work was to develop a 
modelling framework for quantifying impacts of 
needle disease severity on tree productivity. We 
focus our studies on RNC as an initial case study to 
help establish the modelling framework. Extension to 
other needle diseases can be done subsequently 
through incorporating relevant data on those needle 
diseases into the modelling process. 

We discuss how the RNC disease severity modelling 
framework (Tan et al. 2020) proposed in Research 
Aim 3.2.1 (referred to as RA 3.2.1 framework) and 
physiological-based growth models such as CABALA 
(Battaglia, Sands, White, & Mummery, 2004) and 
3PG (Landsberg & Waring, 1997) can be used to 
quantify impact of RNC on tree productivity in Section 
2. We then outline a strategy to use remote sensing 
to scale the quantification of impact from tree to 
estate level in Section 3. In Section 4, we summarise 

the data collated for the development of this 
framework and discuss potential gaps. 

2. Quantifying needle disease impact 

In the context of this research, we quantify impacts of 

RNC by relating changes in disease severity to 

changes in tree productivity (e.g. wood volume). We 

leverage the RA 3.2.1 framework for predicting how 

RNC disease severity changes according to factors 

such as tree genetics, climate, terrain and control 

treatments. 

The RA 3.2.1 framework builds on a process-based 
RNC Susceptible-Infectious (RNC SI) model 
developed by Wake et al. (Wake, Williams, & 
Pleasants, 2018). Supported by a suite of models, 
developed using different field datasets, the RA 3.2.1 
framework estimates various key parameters critical 
for modelling dynamics of RNC and to predict 
disease severity. The feedback loop in the RA 3.2.1 
framework allows predicted results to be fed back for 
forward-time prediction of disease severity. 

We extend RNC disease severity prediction to tree 

productivity by incorporating physiological-based  
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Figure 1. Overview of the RA 3.2.1 framework and how physiological-based growth models such as CABALA and 3PG can be 

integrated for predicting impacts of disease severity on tree productivity.  

growth models into the RA 3.2.1 framework. Figure 1 

illustrates how the RA 3.2.1 framework can be linked 

with physiological-based growth models for 

quantifying RNC impacts on tree productivity. The 

forcing of process-based models by the disease and 

defoliation rates calculated by the RNC model will be 

explored in RA 3.1.3B. The information link will help 

the growth model determine the photosynthetic 

capability and the evapotranspiration of the modelled 

trees, allowing the growth and wood quality 

responses to infection to be predicted.  

Due to allometric laws governing tree growth, impact 

on tree growth may also affect tree foliage growth in 

future timesteps. As such, we feed back growth and 

allocation information, generated by the growth 

model, together with disease severity prediction for 

the current time-step to inform the next time-step 

prediction. This information will help the foliage 

performance model to determine the amount of new 

needles generated for the new cycle of infection to 

take place. 

3. Scaling from tree to estate level 

Models in the RA 3.2.1 framework will be developed 
using fine-grained data from localised trials and 
experiments, conducted from individual trees. This 
constrains the accuracy of the needle disease impact 
framework’s predictions to the tree level. A dataset 
that captures different conditions and the respective 
disease severity expression is required to build a 
robust framework. However, manually gathering 
datasets from across large areas and diverse 
environments to build a representative dataset is 
challenging and expensive. This reduces the 

applicability and real-world impact of the framework. 
We will explore how remote sensing technologies 
can be used to overcome these challenges.  

Development of a landscape-level detection 
framework for large-scale disease detection and 
mapping using high-resolution satellite imagery was 
proposed in RA 3.1.1B. Data gathered from up to five 
sites for a virtual study (referred to as virtual trial 
sites) will be used for developing this landscape-level 
detection framework. At each site, spectral signals 
are first extracted from high-resolution satellite 
imagery. These signals are then analysed and used 
as a proxy for classifying and detecting areas with 
RNC at peak expression. Results will be field verified 
at the identified areas. Details of the data to be used 
are described in more detail in Section 4 and 
Appendix A. 

The imagery and methods used in the virtual trial 
sites will also be applied to the sensor network trials 
proposed in RA 3.1.3A (Sellier et al., 2020). This 
provides an opportunity to calibrate in situ 
measurements of growth impacts and foliage 
dynamics using the collected high-resolution satellite 
imagery. The calibration will enable us to define the 
precision of our detection methods. For example, it is 
known reflectance-based methods are less sensitive 
than lidar for measuring foliage dynamics due to 
saturation of spectral indices at high LAI. However, 
no work has established the sensitivity of this 
approach in the context of monitoring disease 
affected forest areas. Investigating these limits will  
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Figure 2. Using the landscape-level detection framework to 
generate a landscape-scale RNC disease severity surface. 
Growth models adapted using the framework in Figure 1 
can then be applied iteratively across the surface to 
generate tree productivity at landscape-scale. Map images 
taken from (Palmer et al., 2010; Watt, Palmer, & Bulman, 

2011). 

allow us to calibrate and understand the relationship 
between measured foliage dynamics and the metrics 
that can be derived from high-resolution spectral 
data. 

Disease severity surface  

Scaling prediction of disease severity impacts on tree 
productivity will require disease severity information 
at landscape or estate scales. We will use the 
calibrated landscape-level detection framework to 
generate a landscape-scale RNC disease severity 
spatial surface. This GIS surface is then used to 
inform growth models calibrated by the framework 
shown in Figure 1. This pipeline is illustrated in 
Figure 2. This approach is similar to those used in 
the past for studying impacts of Dothistroma needle 
blight on radiata pine in New Zealand (Watt et al., 
2011). 

To generate the disease severity surface, data on 
disease severity is gathered from field observations 
and supplemented by the calibrated landscape-level 
detection framework at broader scale. RNC disease 
severity can be predicted using regression kriging 
techniques that are sensitive to bio-physical variables 
(supplied as surfaces) and are able to interpolate any 
residual variation through kriging. 

The framework shown in Figure 1 allows us to adapt 
and calibrate growth models for adjusting predicted 
productivity according to RNC disease severity. 
Alongside the disease severity surface data, other 
variable information, such as climate and terrain, will 
be extracted and provided as input to the growth 
model in the format of GIS surfaces. This will allow 
the growth model to iterate through the surface data 
to generate a landscape-scale tree productivity map 
that accounts for disease severity.  

 

4. Collating and Summarising Available 
Remote Sensing Datasets 

Quantifying needle disease impacts on individual 
trees will be supported by the sensor network trial 
proposed in RA3.1.3A (Sellier et al., 2020). This trial 

is designed 

 
Figure 3. Map of potential locations for the first sensor 
network. Candidate locations include existing copper spray 
trial sites and a breeding trial in Kinleith forest. 

to monitor the growth impacts of foliar diseases 
through a network of sensors such as dendrometers 
and meteorological stations alongside in situ 
measurements and remote sensing (RS) datasets.  

The first phase of the sensor network trial is 
proposed to be co-located with an existing 
experimental trial, which aims to quantify the growth 
impacts of RNC by controlling the disease with 
copper fungicide (Figure 3)(Fraser, Tieman, Baker, & 
Rolando, 2019). RS data are already routinely 
captured for the experimental trial and co-location 
would create efficiencies in data collection. 

The RS data and methods proposed enables the 
development of the landscape-level detection 
framework for detection and assessment of diseases 
at larger scales (Appendix B). RS data in the form of 
high-resolution satellite imagery are also intended to 
provide information on disease severity across a 
broader range of landscapes using a virtual trial 
series based on RS detections, combined with 
targeted ground verification, during peak disease 
expression. The remainder of this section outlines the 
currently held and planned datasets for the RA 
3.1.3A sensor network trial and the link to the 
landscape-level detection framework (Appendix B). 

High-density aerial and terrestrial lidar 

The sensor network trial includes provision for 
repeated capture of high-density lidar (Appendix A). 
These data will be used to characterise the vertical 
and horizontal distribution of needle mass in both the 
treatment and control trees as well as foliage 
dynamics across years. This information will help 
inform the foliage performance model in Figure 1.  

Characterisation of needle mass distribution will be 
achieved by computing leaf area density (LAD) and 
then deriving leaf area index (LAI) for trees within the 
trial. High-density lidar has emerged as the 
benchmark method for determining both attributes 
(Béland, Baldocchi, Widlowski, Fournier, & 
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Verstraete, 2014). This process is complex and 
requires calibration using hemispherical imagery and 
validation using measurements of foliage loss from 
litter traps. Applying the same methods and 
calibration coefficients to co-incident, lower-density 
airborne lidar (Appendix A) will allow us to evaluate 
how accurately LAD and LAI can be scaled to the 
estate level. Previous work in radiata pine suggests 
these attributes can be reliably estimated from these 
data (Beets et al., 2011; Pearse, Morgenroth, Watt, & 
Dash, 2017). The use of lidar also allows us to 
estimate tree height, volume and Site Index. These 
metrics provide indirect measurements of the impact 
of needle diseases on growth when combined with 
historical data sources such as plot records and 
spatially-explicit maps of disease incidence over 
time. 

Multi-spectral UAV imagery 

The sensor network trial will be located within a 
larger trial site where Scion has already acquired 
high-resolution multi-spectral data (Appendix A). 
During the first phase of the trial, we aim to increase 
the frequency and resolution of the RS data collected 
up to a target of five captures per year. This imagery 
will assist with scoring disease impact on the upper 
portion of the canopy as well as allowing us to link 
observed foliage dynamics to changes in vegetation 
indices calculated from the multi-spectral imagery at 
the tree and plot level. These data can then be linked 
to the impacts observed in the coarser resolution but 
larger-scale satellite imagery. 

Oblique UAV imagery 

Scoring disease severity in mature trials is difficult 
due to limited visibility of the crown from below. 
Linking high-magnification oblique imagery with 
precise geolocations will enhance scoring of 
individual trees within trials. This method has been 
tested within the copper spray trials (Appendix A) 
and, where practical, we may extend this approach to 
assist with tree-level scoring within the sensor 
network trial plots or as tools to assist in verifying 
disease outbreaks in the virtual trial series. 

Hyperspectral data 

Scion has an active hyperspectral research 
programme and capability to capture visible and near 
infra-red (VNIR) and shortwave infra-red (SWIR) 
hyperspectral imagery from an unmanned aerial 
vehicle (UAV). Experiments carried out in a pot trial 
have validated detection of nutrient and water stress 
and these methods will be scaled to young trials as 
part of the Resilient Forests programme (Watt et al., 
2020). Success in these experimental methods will 
see them integrated into the sensor network trial to 
provide estimates of nutrient and health status at 
individual tree level. 

Remote sensing data for virtual trial 
series 

Earlier efforts in building predictive models showed it 
is challenging to acquire diversity in data and easy to 
miss localised neighbouring outbreaks when using a 

ground-based sampling approach at fixed locations. 
The virtual trial series aims to address this by 
applying 

 
Figure 4. Location of satellite data acquired for 
development of virtual trial series. Additional locations will 
be added after validation of the method.  

methods to detect RNC at landscape-scale. The trial 
will include sites with ground verifications, gradients 
of disease expression and varying site conditions.  

High-resolution satellite imagery 

RA 3.1.1B lays the groundwork for implementing the 
landscape-level detection framework, a new 
approach to monitoring using satellite-based 
detection to guide ground-based sampling. The 
outputs from this approach will enable moderate-to-
severe RNC outbreaks to be mapped annually at 
larger scales. Existing high-resolution imagery 
(Appendix A & Figure 4) will be expanded to cover up 
to five sites. At present, two of these sites are 
planned for the East Coast.  

If found to be practical and cost effective, a second 
sensor network is planned for deployment within one 
of the areas shown in Figure 4. This will provide 
additional data to link the tree/stand-level impacts 
observed in the sensor network to stand and estate-
level impacts.  

Regional aerial lidar 

The implementation of the new trials will coincide 
with regional lidar captures in many of the planned 
locations (Appendix A). At the lowest pulse densities 
expected (4 pulses m-2) these datasets will still allow 
us to extract fine-grained terrain attributes as well as 
a snapshot of stand characteristics such as height, 
biomass/volume and stocking across the trial sites. 
Previous work has also shown that, with calibration, 
the pulse densities of these captures may provide a 
snapshot of LAI (Pearse et al., 2017). Combining 
these layers with climate data and the multi-temporal 
patterns of disease expression from satellite 
observations will enable better understanding of 
drivers of RNC and provide additional data for 
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predictive models described in Section 3 above. 
Where available, integration of genetic data at the 
stand level will provide additional data on 
susceptibility for genetic improvement programmes. 

 

5. Conclusions 
In this report, we describe our proposed framework 
for quantifying the impacts of tree needle diseases, 
such as red needle cast (RNC), on Pinus radiata D. 
Don plantations in New Zealand and how remote 
sensing may be integrated to inform and scale impact 
estimates from tree to estate level. 

The modelling framework presented represents the 
unification of several streams of work planned for the 
Resilient Forest programme and research 
undertaken at Scion. The implementation of the 
needle disease impact framework will be supported 
by deployment of new trial series such as the sensor 
network alongside existing trials monitored by Scion.  

There is scope to both enhance and expand the 
framework by integrating remote sensing datasets. 
Integrating remote sensing data will offer advantages 
such as increased extent of monitoring and ability to 
scale results to the estate/landscape level. In 
addition, remote sensing can also help build multi-
temporal view of disease severity by analysing 
satellite imagery retrospectively. Having a temporal 
view of how disease severity changes across time 
will benefit the development of more robust disease 
severity models and a disease spread prediction 
model.  
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Appendix A – Available remote sensing datasets 

Collating available remote sensing data for priority trial sites to inform modelling framework. Locations for the Foliar Pathogen Trial are shortlisted  
 

Kinleith Copper Trial – 3 sites containing block design copper spray trial 

Data Description Date and coverage Outcome 

Existing Datasets 

High-resolution 
multispectral imagery 

5-cm GSD NIRGB aerial 
imagery 

October 2018 – 1 site 
October 2019 – 3 sites (full trial) 

Imagery, reflectance maps and vegetation indices for tree 
and plot-level scoring 

UAV full-motion video 
datasets 

High-definition oblique RGB 
video scoring individual trees 

September 2018 – 1 block test Test improved scoring at the single tree level through 
improved views of the canopy profile 

Aerial lidar 4 pulses m-2 October 2019 – 3 sites (full trial) Digital terrain and surface models (DTM, DSM) 

New Datasets 

High-resolution 
multispectral imagery 

<5 cm NIRGB imagery from 
aircraft or UAV 

Minimum of 1 capture per year timed 
for disease peak – 1 site  

Annual scoring of disease severity in treatment blocks. 
Seasonal capture for foliar health assessment to align with 
new sensor network trial 

Foliar Pathogen Sensor Network Trial – Proposed Kinleith Site 

Existing Datasets 

High-resolution imagery and low-density lidar as per Kinleith copper trial above. 

New Datasets 

High-resolution 
multispectral imagery 

<5 cm NIRGB imagery from 
aircraft or UAV 

1 x annual capture under existing 
copper trial + 3 seasonal captures. 

Seasonal dynamics of foliage development and pathogen 
impacts 

High-resolution satellite 
imagery 

< 50 cm pan-sharpened 
multispectral imagery 

Spatially and temporally co-incident 
acquisition for calibrate and validate 
– 2-3 sites  

Calibrate satellite-derived metrics with severity data from 
trials 

UAV lidar >2500 pulses m-2 Annual – 3 sites (full trial) Canopy metrics, height, LAI, LAD 

Terrestrial lidar >2500 pulses m-2 Annual – 3 sites (full trial) Below-canopy stem map and calculation of LAD 

Hyperspectral VNIR Tentative – pending upgraded craft 
range and test in young-trials 

Proxy metrics for nutrient status and pathogen impact 
detection 
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Foliar Pathogen Sensor Network Trial – Proposed RPBC Kinleith Site 

Existing Datasets 

High-resolution 
multispectral imagery 

2-cm GSD RE+NIRGB UAV 
imagery 

September 2019 – 1 site (full trial) Imagery, reflectance maps and vegetation indices for tree 
and plot-level scoring. 

High-density lidar >4000 pulses m-2 UAV lidar September 2019 – 1 site (full trial) DTM, DSM, canopy metrics, height, LAI, LAD 

New Datasets 

High-resolution 
multispectral imagery 

<5 cm NIRGB imagery from 
aircraft or UAV 

4 seasonal captures. Seasonal dynamics of foliage development and pathogen 
impacts 

High-resolution satellite 
imagery 

< 50 cm pan-sharpened 
multispectral imagery 

Spatially and temporally co-incident 
acquisition for calibrate and validate 
– 2-3 sites  

Calibrate satellite-derived metrics with severity data from 
trials 

UAV lidar >2500 pulses m-2 Annual – 1 site (full trial) Canopy metrics, height, LAI, LAD 

Terrestrial lidar >2500 pulses m-2 Annual – 1 site (full trial) Below-canopy stem map and calculation of LAD 

Hyperspectral VNIR Tentative – pending upgraded craft 
range and test in young-trials 

Proxy metrics for nutrient status and pathogen impact 
detection 

Foliar Pathogen Sensor Network Trial – Proposed East Coast Site (Wharerata or Tauwhareparae) 

Existing Data 

High-resolution satellite 
imagery 

<50 cm pan-sharpened 
multispectral imagery 

September – November 2018 / 2019 Disease outbreaks mapped at two locations 

Aerial LiDAR >4 pulses m-2 GDC regional 
capture 

Summer 2018 / 2019 DTM, DSM, canopy metrics, height 

New Datasets 

High-resolution 
multispectral imagery 

<5 cm NIRGB imagery from 
aircraft or UAV 

4 seasonal captures. Seasonal dynamics of foliage development and pathogen 
impacts 

High-resolution satellite 
imagery 

< 50 cm pan-sharpened 
multispectral imagery 

Spatially and temporally co-incident 
acquisition for calibrate and validate 
– 2-3 sites  

Calibrate satellite-derived metrics with severity data from 
trials 

UAV lidar >2500 pulses m-2 Annual – 1 site (full trial) Canopy metrics, height, LAI, LAD 

Terrestrial lidar >2500 pulses m-2 Annual – 1 site (full trial) Below-canopy stem map and calculation of LAD 

Hyperspectral VNIR Tentative – pending test in younger 
trials 

Proxy metrics for nutrient status and pathogen impact 
detection 
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Appendix B – Informing the Landscape-level Detection Framework using the Sensor Network Trial Data 

 
Conceptual link between trial sites. Intensive measurements at the sensor network trial location inform quantification of the impacts observed in one of the large-scale 
‘virtual trial’ series established under RA3. The results from the initial virtual trial study will inform deployment of future sensor network trials. Time-series imagery informs 
study of annual disease expression patterns
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