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Disclaimer 
 
This report has been prepared by New Zealand Forest Research Institute Limited (Scion) for Forest Growers 
Research Ltd (FGR) subject to the terms and conditions of a research fund agreement dated 1 April 2014.  
 
The opinions and information provided in this report have been provided in good faith and on the basis that 
every endeavour has been made to be accurate and not misleading and to exercise reasonable care, skill 
and judgement in providing such opinions and information.  
 
Under the terms of the Services Agreement, Scion’s liability to FGR in relation to the services provided to 
produce this report is limited to the value of those services. Neither Scion nor any of its employees, 
contractors, agents or other persons acting on its behalf or under its control accept any responsibility to any 
person or organisation in respect of any information or opinion provided in this report in excess of that 
amount. 
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EXECUTIVE SUMMARY 

A framework for the use of high-resolution satellite imagery for the detection and monitoring of red 
needle cast (RNC) is presented. The methodology was tested for three sites on the east coast of 
the North Island, namely, Waimata Valley Road, Wharerata, and Tauwhareparae, where ground 
observations were made in September 2018 and 2019. Using training samples selected for each 
imagery, a set of threshold-based classification rules for the different surface reflectance bands 
and vegetation indices were identified for each site.  Object-based classification was then used to 
segment the whole images into objects or groups of pixels with the same characteristics and the 
threshold rules were applied to separate different classes and identify unhealthy patches of radiata 
pine trees that are suspected to be affected by RNC. The accuracy of unhealthy tree detection 
within the three sites varied from 60.0 to 93.0% and the false positive rate was estimated to be 
between 6.7 to 9.5%. This work demonstrated the possibility of using single-scene satellite images 
to identify possible forest areas affected by the disease.  
 
The initial results presented in this paper also highlighted the importance of having repeated image 
acquisition and field measurements to generate a more robust classifier. Comparing the recurring 
samples of infected tree patches with the elevation data and derived terrain metrics can help 
identify at-risk surfaces and establish information that can be useful in disease prediction models.  
 
The proposed next steps are to continue the disease observations to identify the severity and peak 
expression then acquire new imagery to produce new classification maps that will guide targeted 
ground truthing. This simple and repeatable method expands the range of annual RNC monitoring 
which is a key requirement for improving predictive models and assessing the landscape-level 
impacts of disease. 
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INTRODUCTION 

Red needle cast (RNC), caused by Phytophthora pluvialis, has emerged as a serious foliar 
pathogen of radiata pine in New Zealand (Dick, et al., 2014). Previous work at Scion involved 
utilising data from forest health monitoring sites to understand drivers of the pathogen and build 
predictive models to inform management activities. Development of these models highlighted the 
need for a greater number of observations of the disease covering a wider range of environmental 
gradients. Existing data lacked spatially explicit information and were often limited to localised 
detections from roadside observation points. The observed symptoms of RNC are variable and can 
range from isolated trees with little needle loss to large stands with extensive defoliation. Remote 
sensing offers a relatively cost-effective means of overcoming these issues by monitoring larger 
areas using imagery with the intended scale of the surveillance determining the required resolution. 
 
Scion has integrated remote sensing-based monitoring techniques at a range of scales. Existing 
trials studying copper control of RNC are routinely assessed using very high resolution (< 5cm) 
multispectral imagery from manned or unmanned aircraft to score severity at the tree level and 
these methods will be extended to the planned sensor network trial outlined in Resilient Forests 
RA3 (Sellier, et al., 2020). Larger scale studies have also demonstrated the utility of open data 
from the European Space Agency’s Sentinel-2 platform for detecting outbreaks, but this work 
highlighted the need for higher-resolution data to detect more localised outbreaks across the 
landscape. 
 

Objective 
 
This Technical Report outlines recent work at Scion utilising high-resolution satellite imagery to 
detect and map moderate to large-scale outbreaks of RNC as a means of increasing surveillance 
efforts and expanding the geographic and environmental gradients covered in the database. With 
the expansion of high-resolution satellite imagery data sources, it is increasingly cost-effective to 
utilise satellite-based observation for forest health monitoring. The resolution of this imagery allows 
detection to be carried out at finer scales ranging from single trees to small patches. This can be 
achieved using two general approaches. Firstly, algorithms such as BFAST (Verbesselt, et al., 
2010) or LandTrendr (Kennedy, et al., 2010) can be used with time-series imagery to detect 
anomalies such as disease outbreaks within broader trends. These methods are most useful with 
data sources such as Landsat or Sentinel-2 that offer free access to long-term datasets. This 
approach will be used for landscape and regional-level monitoring in RA3.2. An alternative 
approach, outlined in this technical note, uses a single scene imagery combined with training data 
to identify areas of forest affected by disease. This method has the advantage of only requiring a 
single image to be purchased and is not affected by issues such as missing or low-quality imagery 
in the temporal image series. The objective of this work was to develop a repeatable and efficient 
process for ingesting imagery acquired at multiple locations across New Zealand and producing 
maps of areas with moderate to severe RNC severity. The intention is to target ground sampling to 
these identified areas to confirm the observations and positively identify the causal pathogen(s). 
These data will then be used for purposes such as expanding the data available to develop risk 
surfaces and predictive models for RNC and to study the longer-term impacts of RNC on forest 
productivity. By repeating this analysis at the sensor network sites, we will be able to establish 
important links between the spectral changes observed (e.g. changes in vegetation indices) with 
changes in foliage dynamics and tree growth measured at these locations. This is important to 
calibrate the sensitivity of imagery-based detection in terms of scale and severity and evaluate the 
potential for scaling impact assessments to the landscape level. 
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Data 
 
Study areas 
Three study sites near the east coast of the North Island, New Zealand were identified as the areas 
of interest (AOIs) for selection of available archived satellite imagery to acquire. These were 
Tauwhareparae, Waimata Valley Road, and Wharerata (Fig. 1). 
 
Field records 
Road-side field observations of RNC severity within the AOIs were recorded in October in 2015, 
and September in 2016, 2017, 2018, and 2019. The data consisted of site name, location in terms 
of Easting and Northing, estimated age, date, and disease index. 
 

 
Fig. 1. Location of the three AOIs: Tauwhareparae (red outline), Waimata Valley Road (green), and Wharerata (blue). 
 

Satellite images 
The field observations were used to identify years with moderate to severe disease expression and 
select satellite images for developing and testing RNC observation and detection methods. 
Therefore, the image searches in the AOIs were limited to 2015 to 2019 in the months of 
September to December when RNC symptoms were most evident. Filters relating to the usability 
and quality of the satellite images were also applied in the search. The first filter was the off-nadir 
angle which determines if the satellite is looking down to the target directly (nadir, 0º) or at angle. 
High off-nadir angles exaggerate shadows in the images due to the terrain variability. The off-nadir 
filter applied included only images with off-nadir angle < 30º. The second filter was the sun 
elevation or the angle above the horizon. Sun elevation angles that are too low can cause the 
images to be too dark, therefore the filter was set to include images with elevation > 30º. Cloud 
filter (< 10%) and AOI coverage filters (> 90%) were also applied. The archived imagery that met 
these criteria were visually inspected using previews to assess the quality and evidence of visible 
RNC symptoms. Two images for Tauwhareparae, one image for Waimata Valley Road, and two 
images for Wharerata were determined to be suitable for RNC detection and were purchased for 
analysis (Table 1).  
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Table 1. Satellite images acquired with their corresponding AOI and dates 

Location Satellite Date 

Tauwhareparae Worldview-3 12-09-2019 

Tauwhareparae Geoeye-1 04-12-2018 

Waimata Valley Road Worldview-3 12-09-2019 

Wharerata Worldview-2 15-09-2019 

Wharerata Worldview-2 13-09-2018 

 
The selected images are products from three different satellites: Worldview-3 (WV-3), Worldview-2 
(WV-2), and GeoEye-1 (GEO). The Worldview products have eight spectral bands while GEO only 
has four. The spectral bands with their specific wavelengths are shown in Table 2. All the products 
have panchromatic bands which is a wide-range band with a higher spatial resolution of 50 cm that 
can be used to pansharpen the other bands to increase their 2 m native spatial resolution to 50 cm. 
 
Table 2. Spectral bands and corresponding wavelengths of the Worldview and GeoEye products 

Worldview-2 & 3 

Spectral Bands Wavelength (nm) 

Coastal 400 – 450 

Blue 450 – 510 

Green 510 – 580 

Yellow 585 – 625 

Red 630 – 690 

Red Edge 705 – 745 

NIR 1 770 – 895 

NIR 2 860 – 1040 

Panchromatic 450 – 800 

GeoEye-1 

Spectral Bands Wavelength (nm) 

Blue 450 – 510 

Green 510 – 580 

Red 655 – 690 

NIR 780 – 920 

Panchromatic 450 – 800 

 
Elevation raster data 
A Digital Elevation Model (DEM) raster dataset at 25 m spatial resolution of the whole of New 
Zealand was downloaded from the Land Resource Information Systems (LRIS) Portal 
(https://lris.scinfo.org.nz/).  
The data were processed to derive slope, aspect, and topographic position index (TPI). 
 

  

https://lris.scinfo.org.nz/
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Method 
 
Processing of satellite datasets 
 
The images provided by the supplier were in the form of atmospherically corrected surface 
reflectance through their proprietary atmospheric compensation (AComp) algorithm. AComp is a 
fully automated method that estimates the surface reflectance of a portion of an image and 
iteratively adjusts the aerosol optical depth (AOD) setting of the image based on this value (Digital 
Globe, 2016; Pacifici, 2016). 
 
Scion’s existing processes have utilised FLAASH atmospheric correction. A comparison of 
FLAASH applied to unprocessed source imagery and the ACOMP products showed the two 
methods to be comparable and ACOMP was selected based on the reduced processing 
requirements. 
 
From the surface reflectance rasters, the vegetation indices were calculated using the 
NDVI/Spectral Indices toolbox in ENVI 5.5.3. Normalised Difference Vegetation Index (NDVI), 
Green Normalised Difference Vegetation Index (GNDVI), Red-Edge Normalised Difference 
Vegetation Index (RENDVI), and Enhanced Vegetation Index (EVI) were calculated using the 
equations: 
 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

 

𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

 

𝑅𝐸𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
 

 

𝐸𝑉𝐼 = 𝐺𝑟𝑒𝑒𝑛 ×
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝐶1 × 𝑅𝑒𝑑 − 𝐶2 × 𝐵𝑙𝑢𝑒 +  𝐿
 

 
where NIR is band 7 for WV and band 4 for GEO, Green is band 3 for WV and band 2 for GEO, Red is 
band 5 for WV and band 1 for GEO, Red Edge is band 6 for WV, and C1, C2, and L are coefficients for 
atmospheric resistance and canopy background. 
 
Masking of shadows was done by applying a threshold to the reflectance values of each pixel. The 
threshold was determined by manually sampling shadow pixels and non-shadow patches from 
areas containing healthy and infected trees, grassland, bare soil, roads, native trees. Histograms of 
the reflectance in different bands were produced and thresholds were selected to maximise the 
separation of shadow and non-shadow pixels. A scene-wide shadow mask was then applied to the 
reflectance maps and derived vegetation indices to exclude all shadow pixels from further analysis. 
 
For further detailed analysis, the reflectance maps were pansharpened using their corresponding 
panchromatic bands. This was executed in ENVI 5.5.3 using the Gram-Schmidt Pan Sharpening 
tool. The process of pansharpening resulted in increased detail in the images but the spectral 
information was altered making it unsuitable for further spectral analysis. 
 
Creation of labelled samples 
 
Labelled samples for six cover classes were created to serve as input for a land cover classifier. 
The actual locations of these were identified based on visual interpretation of the pansharpened 
and native-resolution natural-colour image in ArcGIS Pro 2.5.1, as well as other ancillary sources 
of imagery. 
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The classes were designated as healthy pine trees, unhealthy pine trees which were assumed to 
be infected by the disease, other trees which include native vegetation and other woody weeds, 
grass, roads, and bare soil. Groups of pixels that represented patches of unhealthy pine trees were 
first identified. The total number of samples for this class is based on the land area of each site and 
the severity of the disease infection observed by inspecting the whole satellite image. After this, the 
same number of samples for each of the other classes were added. The total numbers of labelled 
samples were 770 for Waimata, 560 for Wharerata, and 910 for Tauwhareparae. For each site, a 
subset of 30 labelled samples per class were randomly set aside from the training data as a 
validation dataset to assess the accuracy of the classifier. 
 
Classification of red needle cast 
 
The approach to identify the unhealthy trees from other classes were divided into two parts. The 
first part consists of shadow masking the rasters and using zonal statistics to identify the statistical 
distribution of reflectance values for each sample feature. This was implemented using the arcpy 
module in Python 2.7 and the results were used to determine the classification rules. The second 
part utilised object-based analysis to split the images into similar areas or objects (e.g. pixels within 
a canopy), before applying a rule-based classification at the object level rather than the pixel level. 
This improves the consistency and coherence of classification and avoids single misclassified 
pixels surrounded by a majority class. The reflectance rasters, panchromatic band, and vegetation 
indices were all included as input data for the object-based classifier. Segmentation was first 
executed based on the Red, Green, Blue, and near-infrared (NIR) bands, panchromatic band, and 
vegetation indices. The rule-based classification was then implemented to (1) differentiate non-
vegetation from vegetation objects, (2) differentiate grass from trees, (3) differentiate native trees 
from planted radiata, and finally (4) differentiate healthy and unhealthy radiata pine trees. The rules 
were based on thresholds that were identified from the statistical distribution of the values per band 
that fell within the sample objects. They are, therefore, image/site-dependent. The segmentation 
and classification were implemented in eCognition Developer 9.3. 
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Derivation of elevation and terrain metrics 
 
From the 25 m DEM datasets, slope and aspect rasters were derived using the GDAL DEM library 
for raster and vector geospatial data (https://gdal.org/). The default parameters for slope and 
aspect calculations were applied. The DEM and slope rasters were then used to compute the 
topographic position index (TPI) and its classification. TPI was calculated using the SAGA-GIS 
library in terrain analysis and morphometry (http://www.saga-gis.org/). TPI is a metric that classifies 
location within the landscape while allowing for the scale-dependent nature of this exercise. For 
example, at a large scale a site may be flat but at smaller scales (e.g. landscape) it may be 
positioned mid-slope. Position in the terrain has previously been highlighted as a potential proxy for 
RNC severity. Our working hypothesis was that terrain positions that favour formation and flow of 
moist air across the canopy surface may increase the transmission and reproduction of RNC. TPI 
was computed at 1 km scale and each pixel was classified into slope positions, namely, ridge, 
upper slope, middle slope, flats slope, lower slope, and valleys based on the TPI value compared 
to the standard deviation across the whole dataset and slope. 
 

RESULTS 

Forest and Shadow Masking of Satellite Images 
The threshold-based shadow masking approach was applied using the difference between red (R), 
green (G), blue (B), and near-infrared (NIR) surface reflectance in sunlit and shadow areas (Fig. 2).  

 
Fig. 2. Boxplot of Red, Green, Blue, and NIR (RGB-NIR) surface reflectance values for the differentiation between 
shadow and sunlit pixels in the Waimata AOI. 

 
For the remaining sunlit pixels, a vegetation mask was derived using a combination of vegetation 
indices (e.g. NDVI and EVI for the Waimata AOI). From these vegetation pixels, a radiata forest 
mask was derived to exclude grass and other trees. This is to avoid misclassification of unhealthy 
pine trees which also have lower vegetation indices similar to grass and other vegetation. For 
example, the Waimata AOI classification separated grass from other vegetation pixels using the 
yellow, green, and panchromatic band. On the other hand, other trees that include natives, 
invasives, and other woody weeds, were differentiated from radiata pine forest by utilising blue, 
NIR1, GNDVI, and RENDVI thresholds. Fig. 3 shows the distribution of RENDVI values per 
vegetative class as one of the indices used to derive the radiata pine forest mask shown in Fig. 4. 
 

https://gdal.org/
http://www.saga-gis.org/
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Fig. 3. Boxplot of RENDVI for each vegetation class for Waimata AOI 
 
 

 
Fig. 4. A portion of Waimata area showing the RGB image (a) and derived forest and shadow mask (b). Areas classified 
as radiata forest are shown in green with shadows in black in the masked image. Other vegetation areas such as native 
forests are colour white. 

 
Differentiation between healthy and infected trees 
 
Within the remaining radiata forest pixels, there was a clear delineation between healthy vegetation 
and unhealthy vegetation patches that are possibly infected by red needle cast when it comes to 
the vegetation indices, especially NDVI which was used in all sites (Fig. 5). This was the final rule 
that was implemented to create the classification maps in the next sections. 
 



9 

RFP-T008 Red Needle Cast monitoring framework_G11.docx 

 
Fig. 5. Boxplot of NDVI for healthy and unhealthy radiata pine trees for Waimata AOI 

 
Classification of RNC in Waimata AOI 
 
The imagery used to detect RNC in Waimata showed large areas of affected trees (Fig. 6). Using 
the 30 withheld areas labelled as unhealthy for validation, the classifier showed 93.3% accuracy in 
detecting unhealthy trees (Table 4). Fig. 6 shows a close-up view of a heavily affected area, while 
Fig. 7 shows the classification in the whole AOI. Applying the classifier to the whole AOI in Fig. 7 
highlighted other possible localised areas of disease across the AOI. 
 

 
Fig. 6. Close-up view of a heavily RNC infected area in the Waimata AOI. The top image is the pansharpened RGB 
image while the bottom image shows its corresponding classification map where the green pixels represent the healthy 
trees while the red pixels represent the affected trees. 
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Fig. 7. Classification map in Waimata AOI 

 
Table 4 shows the confusion matrix for the rule-based classification method applied to both the 
training and validation data. The classifier correctly identified all healthy tree patches and 
misclassifications into this class were rare. A small percentage of unhealthy tree patches were 
misclassified while objects from other classes (i.e. bare soil, road, native trees, and grass) were 
more often misclassified as unhealthy trees. This suggests that there is a moderate probability of 
false detection of RNC affected areas, strengthening the need for field validation in monitored 
areas. 
 
Table 4. Accuracy assessment for classification in Waimata AOI 

Training Data 

 Reference 

P
re

d
ic

te
d
 

 Healthy Unhealthy Others Total 

Healthy 80 2 2 84 

Unhealthy 0 75 18 93 

Others 0 3 300 303 

Total 80 80 320 480 

Accuracy 100% 93.8% 93.8% - 

 

Validation Data 

 Reference 

P
re

d
ic

te
d
 

 Healthy Unhealthy Others Total 

Healthy 30 2 2 34 

Unhealthy 0 28 6 34 

Others 0 0 112 112 

Total 30 30 120 180 

Accuracy 100% 93.3% 93.3% - 
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Classification of RNC in Wharerata 
 
GNDVI and NDVI were used as thresholds in differentiating healthy and unhealthy pine trees in 
Wharerata for both 2018 and 2019 maps (Fig. 8). For the 2018 classification, the disease detection 
was less accurate than Waimata (73.3%) and 8.3% of the total infected predictions were false 
positives. Therefore, the disease classification in Fig 8a might be overestimated in some areas. 
The healthy trees, similar to the Waimata classification, were all predicted accurately. 
 
The same set of rules were applied in the classification of the Wharerata image in 2019 (Fig. 8b). 
There were no feature annotations in this image as minimal RNC symptoms were visually 
identified. The output map shows some extent of affected areas, but these are most likely 
misclassified grass or trees that are not radiata pine. The overall difference of the 2018 and 2019 
classification supports the field observation where the disease index assigned to 2018 were 14 & 
85.5 and were reduced to 0.75 and 60 in 2019. 

 

 
Fig. 8. Classification map in Wharerata AOI in 2018 (a) and in 2019 (b) 
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Classification of RNC in Tauwhareparae 
 
Similar to the Wharerata classification, GNDVI and NDVI were the key vegetation indices used to 
differentiate unhealthy forest patches from healthy ones in the Tauwhareparae AOI. The classifier 
in this location had a 9.5% rate of false positives and a lower sensitivity to RNC (60%). The 
Tauwhareparae classification map in Fig. 9 shows that there are minimal pixels that represent the 
affected tree patches in the northeast part of the AOI where the roadside assessments were 
undertaken. Furthermore, another area of possible RNC infection that is more severe can be 
located in the southwest part of the AOI (Fig 9). 
 

 
Fig. 9. Classification map in Tauwhareparae AOI in 2019 

 
Terrain Analysis 
 

The distribution of unhealthy tree patches was examined in the Wharerata AOI. The labelled 
sample patches were used instead of the classification results to avoid including the false positives 
and false negatives. Some patterns emerged as shown in Fig. 10. For example, many of the 
sample patches of unhealthy trees were located on mid-slope areas with the slope values are 
higher than 10º. The unhealthy patches also appeared to be located in areas where the aspect 
ranges from 135 to 270º or areas that are facing southeast to west. The results from the analysis 
were added to a database that will be used to provide additional observations for the modelling 
framework developed in RA3. 
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Fig. 10. Sample annotations of affected tree patches (red outlines) overlaid on elevation raster (left), slope position 
calculated from TPI (middle), and aspect (right) in Wharerata AOI. 

 

DISCUSSION 
 
A method for object-based classification created from decision rules for classifying satellite imagery 
and detecting local areas of RNC expression was developed and applied to three study sites 
where ground assessments were undertaken in September 2018 and 2019. This work 
demonstrated the possibility of using single-scene satellite images and training data to identify 
forest areas that are affected by disease. 

 
The accuracy of the classification method in detecting unhealthy forest in all the sites varied from 
moderate to high (60.0 to 93.3%) with a reasonable false-positive rate (6.7 to 9.5%). This is a good 
indication of usability of the satellite image classification in identifying local extents of infection. The 
classification algorithm is currently semi-automated, but it is repeatable and can be further 
improved through replication and addition of verified field data. Some aspects of the current 
results, such as the rule-based shadow mask and forest masks (example shown in Fig. 4), were 
generalised well across sites and can be carried over when new imagery is acquired each year. 
This is useful in future analysis because only the sunlit forest pixels are needed to detect disease 
expression. Instead of manually selecting samples of other classes (e.g. bare soil, roads, grass, 
and trees), the feature selection can be focused on healthy and unhealthy tree patches with 
different severity. Moreover, the current thresholds for differentiating healthy and unhealthy forest 
tree patches depend on the image statistics from each spectral band. This makes the thresholding 
dependent on the image or site. The resulting Wharerata RNC maps did show that the thresholds 
can be applied to a more recent dataset and still produce a reasonable classification (Fig. 8b). This 
is one advantage of using atmospherically corrected products where the reflectance values within 
the same locations are expected to be consistent to some extent over time. Acquiring samples of 
unhealthy patches with varying degree of severity will allow a more robust threshold to be applied 
to images in the same location captured during different years. 
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With repeated image acquisition and measurements, these thresholds can be generalised to be 
more precise and robust for each site. In effect, the effort and time in feature selection can be 
significantly reduced until the method can be efficiently automated eventually. The current method 
is also an exploratory process that is well suited to a low number of training samples. As more data 
are available, the process will be improved by using more sophisticated machine learning 
algorithms such as random forest classifier, neural networks, and support vector machines to 
generate robust classifiers. 
 

Next Steps 
 
An essential part of this methodological framework is the need for validation of the probable areas 
infected with RNC. The current ground-truth data rely on roadside observations of disease severity. 
For the 2020 disease season, this approach will be operationalised as part of Scion’s monitoring 
programme. Disease observations from roadside surveillance will be used to identify the severity 
and peak expression within up to five locations. Imagery will then be acquired and processed to 
identify RNC using the method outlined. These observations will then be followed up with targeted 
ground truthing to verify the severity and causal pathogen through laboratory analysis of samples. 
The maps can guide the field teams in which areas to prioritise over large AOIs such as 
Tauwhareparae (Fig. 9) and as the classification improves over time and false-positives are 
minimised, the time and effort in the field validation can also be significantly reduced. 
 
Different remote sensing data sources are available for continued work in local studies of RNC. For 
instance, the acquisition of satellite imagery can be done frequently and can be targeted with 
satellite tasking. The rise of new satellite constellations through 2020-2021 by different providers 
will also mean greatly increased availability of high-resolution datasets. These new data sources 
can be utilised to enhance regular monitoring of the presence and severity of disease impacts in 
targeted locations. The utility of satellite images with limited bands (RGB-NIR only, such as GEO) 
as input for classifiers can also be assessed. If classifications based on limited bands are proved to 
be in an acceptable level of accuracy, this will further increase the availability of satellite data 
sources. Additionally, Light Detection and Ranging (LiDAR) measurements of elevation and height 
are in progress for most areas in New Zealand, particularly in the East Coast. The addition of 
dense height measurements will be of added benefit for delineating planted radiata forests from 
other land use classes that will further reduce the false-positive rate.  
 
Linking the elevation data and derived terrain metrics, such as slope, aspect, and TPI along with 
recurring samples of disease expression can aid in identifying at-risk surfaces and establishing 
information that can be useful in predictive models. The example shown in Fig. 10, though an 
oversimplification in a local area in one site, gives an overview to the possible utilisation of this 
approach for long-term monitoring. 
 
In summary, a feedback process for RNC detection and mapping is proposed with the following 
steps: (1) ground truthing during the RNC peak season, (2) regular satellite image acquisition of 
the monitoring sites (e.g. annual), (3) extraction of sunlit forest pixels, (4) sampling of healthy and 
infected forest patches with different severity, (5) classification to produce the probability map, (6) 
coordinated field validation of the probability map if needed, and (7) correction in the RNC 
classification. 
 
This ‘virtual’ study on RNC detection using high-resolution satellite imagery demonstrates a 
method to greatly expand the range of annual RNC monitoring using a relatively simple and 
repeatable approach. This will allow us to expand the method to up to five sites to cover a wider 
range of sites across New Zealand. This is a key requirement for improving predictive models and 
assessing the landscape-level impacts. 
 
Outside of this work, a further study using freely available medium resolution time-series imagery 
will explore the potential to expand satellite-based monitoring to regional scales while utilising 
techniques relying on time series analysis to detect RNC. This work is under way in resilient forests 
RA 3.2. 
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