
 
  

 

  

Date: Dec 2020  
Reference: RFP-TN 
 

 

Understanding spatial drivers for Red Needle Cast: An East Coast 
pilot study 

Summary: 
 
This tech note describes what topological factors potentially influence RNC behaviours and how. We use both a 
machine learning and statistical approach to carry out this analysis to provide confidence in our observed findings. 
In this preliminary study, we focus on the East Coast, where satellite images of known RNC infection sites were 
available and data had already been processed. Initial observations derived from this study indicate that the 
following topological variables associated with each plot play a significant role in detecting groups of RNC infected 
trees. The variables are distance of a plot from the forestry boundary, gradient of slope, terrain elevation of each 
plot. For example, observations from the study demonstrated plots with low slope gradient, of around 400m 
elevation, close to forest boundary and that are east-ward facing tend to be more likely to exhibit the presence of 
RNC. However, due to the scope and limitations in the dataset used, these observations need to be validated with 
further, more in-depth studies. This initial study will be used to inform future trial designs for further understanding 
how topological factors drive RNC infection and development of RNC management plans.  
 
Author/s: Alan Yu Shyang Tan, Chanatda Somchit, Ellen Mae Leonardo, Grant Pearse, Stuart Fraser 

Introduction 
 
Red needle cast (RNC), caused by Phytophthora 
pluvialis, is a foliar disease of Pinus radiata and 
Douglas-fir. Sporadic field expression has resulted in 
difficulties in setting up trials for studying and 
understanding the disease. Developing a good 
understanding of the disease is crucial for predicting 
outbreaks and developing control measures.  

Past research on understanding and modelling RNC, 
carried out under the Healthy Trees Healthy Future 
(HTHF) and Resilient Forests programmes, have led 
to initial understanding on the behaviour of RNC and 
external factors driving the disease. An RNC 
Susceptible-Infectious (SI) model (Wake, Williams, & 
Pleasants, 2018; Wake & Zaidi, 2017) has provided a 
theoretical basis to model and quantify the dynamics 
of RNC at a single needle level. For example, Gomez-
Gallego et al. (Gomez-Gallego, Gommers, Bader, & 
Williams, 2019) extended the SI model and identified 
the need to differentiate needle death from pathogen 
death to help understand reproduction of pathogen 
and epidemic development. This theoretical basis 
allowed us to breakdown the behaviour of RNC into 
various aspects for focused studies, as shown in 
Figure 1.  

 

 
Figure 1. RNC infection process at needle level, as 
modelled by the RNC SI model. 

Observations from studies of RNC in the field carried 
out in the Pacific Northwest United States and in New 
Zealand by Gomez-Gallego et al. (Gómez-Gallego et 
al., 2019) have showed climate factors such as 
relative humidity in winter played a significant role in 
explaining the variation in the relative abundance of 
Phytophthora pluvialis in sampled foliage of Douglas 
fir. Similarly, detection of inoculum of Phytophthora 
pluvialis is greater under cooler and wetter conditions 
(Fraser et al., 2020). Previous Resilient Forest studies 
(RA 3.2.3) have also shown climate factors such as 
rainfall and maximum temperature were significant in 
areas observed with RNC.  

Although we now know climate factors play an 
important role in influencing RNC expression, little 
systematic research has been done to understand 
whether topological factors are important in 
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influencing RNC. We had previously attempted to 
model RNC observations gathered from the Forest 
Health Database and long-term site monitoring (Hood, 
Gardner, & Wright, 2017) against site climate and 
topological factors, using a machine learning 
approach. Although the machine learning models 
alluded to climate factors such as rainfall and relative 
humidity as important factors, topological factors such 
as elevation were ranked quite highly too. In this study, 
we will investigate further which topological factors 
that are associated with RNC expression and identify 
factors that can inform further studies on how climate 
and topology drive RNC behaviours.  

Data Preparation 

Satellite image pre-processing 

We focused our study on areas identified with RNC in 
RA 3.1.1 (Leonardo, Pearse, Fraser, & Estarija, 2020),  
using satellite images and machine learning. Three 
sites along the East Coast area of North Island, New 
Zealand, were selected, namely the Waimata Valley 
Road, Wharerata and Tauwhareparae sites as shown 
in Figures 2 and 3. As the regions were obtained from 
satellite images, no information on the stocking and 
age class of the forests were known.  

High resolution satellite images, obtained from the 
Worldview-3, Worldview-2 and Geoeye-1 satellite 
products were pre-processed and annotated. 
Following the workflow used in RA 3.1.1. (Leonardo et 
al., 2020), pixel-wise spectral indices Normalised 
Difference Vegetation Index (NVDI), Green 
Normalised Difference Vegetation Index (GNVDI), 
Red-edge Normalised Difference Vegetation Index 
(RENVDI) and Enhanced Vegetation Index (EVI) were 
computed using spectral band information for each 
image. The spectral indices, along with reflectance 
information and panchromatic band data were used to 
cluster pixels into regions using an object-based   
classifier. Regions were then classified into three 
approximate classes; non-vegetation (i.e. road, plains, 
mountain terrains, etc), healthy radiata pine trees or 
unhealthy radiata pine trees (e.g. infected by RNC), 
using a rule-based classification method. Note that 
due to the approximation, the radiata pine 
classification classes may capture some native 
species and weeds. Non-vegetation classified regions 
were then removed from the dataset, essentially 
leaving only healthy and unhealthy forested radiata 
pine trees regions. Details of the pre-processing, 
object segmentation and rule-based classification of 
regions can be found in the technote submitted under 
the RA 3.1.1. milestone (Leonardo et al., 2020). 

The classified regions were then annotated and used 
to train a random forest model. The aim of the random 
forest model is to improve the classification of 
detected forest areas into RNC infected and non-
infected classes. The random forest model 
implementation in python scikit-learn v0.21.1 was 
used for the classification. Finally, to ensure that we 
are looking at RNC infected regions, we manually 

selected and verified 1716 infected regions and 1716 
non-infected regions and visually inspected the 
images and cross checked regions with records of 
known infected areas obtained from field observation. 

Augmenting topological variables 

Geographic Information System (GIS) shapefiles for 
the 3432 healthy and unhealthy regions were 
generated and used for extracting topological 
information from various Digital Elevation Models 
(DEM) of New Zealand. Separate nationwide DEMs, 
capturing three topological variables, “Aspect”, 
“Slope” and “Elevation”, each of 25 meters resolution 
were used. For each region, the minimum, median, 
maximum and centroid of region for each topological 
variable were extracted. 

Aspect is defined as the direction the terrain feature in 
question is facing with respect to the compass north, 
in degrees. In our analysis, this is an issue as the true 
representation of the directions are not semantically 
represented in the numerical representation used by 
the variable. For example, a region having 350 
degrees is essentially similar with a region having 10 
degrees aspect value – both are north-ward facing. To 
remedy this issue, we discretise aspect into a 
categorical variable with the categories definition as 
shown in Table 1. 

 
Figure 2. Location of the three selected sites, along the East 
Coast of North Island, New Zealand, for this study. 
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Figure 3. Predictions made by the random forest model on the satellite images for each of the three sites. Red regions represent 
unhealthy radiata pine and green regions represent healthy radiata pine.   

Table 1. Category definition for Aspect variable 

Category Numerical range 

North 315 – 45 degrees 

East 46 – 135 degrees 

South 136 – 225 degrees 

West 226 – 314 degrees 

In addition to “Aspect”, “Elevation” and “Slope”, we 
also computed a derived variable to determine how far 
the region is from the edge of a forest, “Forest edge 
distance”. This is calculated by first finding the forest 
in which the region is contained within using a 
separate shapefile that captures the boundaries of 
forest areas in the target sites. The distance of the 
centroid of the region to the boundary of the forest is 
then computed. This distance is captured in metres. 
Table 2 shows the list of variables used for modelling 
in this study. 

Modelling Approach 

Machine learning-based modelling 

The objective of using machine learning to model the 
data is to investigate which variables are of interest 
from a non-parametric approach. Gradient Boosting 
Machines (GBM) (Friedman, 2002; Mason, Baxter, 
Bartlett, & Frean, 1999) have been well-known to 
handle and model structured data well. Given 
categorical variables are present in our dataset (e.g. 
aspect, healthy/unhealthy forest), we choose to use 
CatBoost (Dorogush, Ershov, & Gulin, 2018), an 
implementation of GBM that can handle categorical 
variables for prediction. The python implementation of 
CatBoost was used. 

The “Aspect” and its variations and “Disease 
incidence” were set as categorical variables in 
CatBoost during training and analysis. A logistic 
regression function was used as the model loss 
function due to our predictor, “Disease incidence”, 
being a categorical variable. One hot encoding, with 
maximum size set to six, was used to encode 
categorical variables.  

c) Tauwhareparae site 

a) Waimata Valley Road  

b) Wharerata site 
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Table 2. List of variables used in study 

Variable 
Name 

Variable 
Type 

Variable Definition 

Slope Numerical  
Gradient of slope of the 
centroid of the region, in 

degrees 

Slope min Numerical 
Min gradient of slope for 
the region, in degrees 

Slope 
median 

Numerical 
Median gradient of slope 

for the region, in 
degrees 

Slope max Numerical 
Max gradient of slope 

for the region, in 
degrees 

Elevation Numerical 
Elevation of the centroid 
of the region, in metres 

Elevation 
min 

Numerical 
Min elevation for the 

region, in metres 

Elevation 
median 

Numerical 
Median elevation for the 

region, in metres 

Elevation 
max 

Numerical 
Max elevation for the 

region, in metres 

Aspect Categorical 
Direction the terrain 

feature at the centroid of 
the region is facing 

Aspect min Categorical 
Direction the terrain 

feature, on average, the 
region is facing 

Aspect 
median 

Categorical 
Direction the terrain 

feature, on average, the 
region is facing 

Aspect max Categorical 
Direction the terrain 

feature, on average, the 
region is facing 

Forest edge 
distance 

Numerical 
Distance of centroid of 

region from forest 
boundary 

Disease 
incidence 

Categorical 
Healthy or RNC infected 

To fine-tune the model parameters, a grid-search 
approach, with 5-fold cross-validation was used for 
evaluation. Four parameters of the CatBoost model, 
depth, learning rate, L2 leaf regression and iterations 
were tuned. The parameters are defined as follow: 

• Depth – maximum depth allowed for the trees 
being built. This parameter influences how 
easily the model can be overfitted. 

• Learning rate – Parameter used to control the 
step size to use for internal model parameter 
tuning. Influence how quickly the model 
converges. 

• L2 leaf regression – Parameter for setting 
the coefficient in the L2 regularisation term of 
the loss function. 

• Iterations – Maximum number of iterations to 
run the model. Terminate too early may result 
in model not being able to converge. 

Using the grid-search approach, the parameter set 
(depth=6, learning rate=0.15, l2 leaf regression=9, 
iterations=100) is used. 

Statistical modelling 

A statistical modelling approach was used to verify 
observations derived from the machine learning model 
and to examine the contribution of each variable to 
positive RNC detection in depth. The statistical 
modelling was carried out independently from the 
machine learning model to avoid bias.  

Generalized additive models (GAMs) were used to 
analyse the effect of topological variables on the 
probability of areas being affected by RNC. Disease 
incidence was assessed based on a binary scale (0 
and 1) where areas where RNC were not found were 
classed as non-infected areas (0), and areas on which 
RNC found were classed infected areas (1). Disease 
incidence using binary categories was analysed using 
a GAM with a binomial distribution and logit link 
function. The explanatory variables considered in the 
analysis were ‘Forest edge distance’, ‘Slope’, ‘Slope 
min’, ‘Slope median’, ‘Slope max’, ‘Elevation’, 
‘Elevation min’, Elevation median’, Elevation max’, 
‘Aspect’, ‘Aspect min’, ‘Aspect median’ and ‘Aspect 
max’.  

We used an iterative variable selection method to 
determine which topological variable is of importance 
to modelling unhealthy regions. GAMs were fitted by 
penalized likelihood maximization implemented in the 
mgcv package (Wood & Wood, 2015).  

To determine which variable to add to the model, a 
single smooth binomial GAM model was run for each 
topological variable first. The most significant variable 
which had the smallest P-value with the lowest Akaike 
Information Criterion (AIC) obtained from the first step 
was chosen and added to the model. Then the most 
significant variable was screened for collinearity using 
Pearson correlations. The Pearson correlations 
between the topological and the most significant 
variables were then calculated. Any pairs of the 
variables with a Pearson’s 𝑟 >  0.5 were considered 
collinear. The topological variables correlated to the 
most significant variable were then removed from the 
model. All steps described above were repeated by 
adding the most significant variable to the model, 
screening for collinearity and dropping the correlated 
variables until reaching the stopping rule (i.e. none of 
the remaining variables were significant at α = 0.05).  

For model validation, plots of Pearson residuals 
against the fitted values and each explanatory variable 
and plots of ordered deviance residuals against their 
theoretical quantiles were used. The significant factor 
terms were followed up by applying a multiple-
comparison procedure using Tukey-adjusted contrast. 
We made predictions using all cases in the data to 
evaluate the predictive power of the proposed model.  
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Table 3. Summary of topological variable values for the 
3432 samples 

Variables  Min Median Mean SD Max 

Forest 
edge 
distance  

0.00 28.64 39.36 35.04 264.85 

Slope 0.09 17.61 18.00 8.17 43.35 
Slope min 0.01 9.46 10.11 6.89 34.95 
Slope 
median 

0.45 17.62 17.96 7.06 39.96 

Slope max 1.44 24.58 24.43 7.06 49.33 
Elevation 119.68 404.45 390.11 87.79 620.32 
Elevation 
min 

119.52 394.03 375.80 89.04 609.68 

Elevation 
median 

120.01 403.98 389.91 87.73 616.86 

Elevation 
max 

126.43 419.45 403.94 86.12 620.62 

Table 4. GAM results for the probability of areas infected by 
RNC based on disease incidence data.  

Parametric 
coefficients 

Estimate SE z P  

Intercept -0.23 0.06 -3.81 <0.001 *** 
Aspect min: East 0.72 0.10 7.57 <0.001 *** 
Aspect min: South 0.16 0.10 1.67 0.09  
Aspect min: West 0.03 0.12 0.24 0.81  
      
Approx. significance of smooth 
terms 

edf Chi-sq P 
 

s(Elevation min)  8.06 115.39 <0.001 *** 
s(Forest edge distance)   4.75 83.39 <0.001 *** 
s(Slope min)  3.52 51.78 <0.001 *** 
      
The predictive accuracy   64%    

 
s( ) = smooth term for a continuous variable, SE = standard error of 
the estimate, z = z-statistic, P = P-value, edf = estimated degrees of 
freedom, Chi-sq = Chi Square-statistic. Significant values are 
denoted with P <0.05 = *, P <0.01 = **, P <0.001 = ***. edf values 
>1 indicate a non-linear effect. ‘Aspect min: North’ was included as 
baseline in the model. 
 

Summary of topological variable values for the 3,432 
samples is shown in Table 3. Frequency plots of 
verified infected and non-infected areas, by 
topological variables are given in Figure 4.  

Model Observations 

Based on the trained CatBoost model, a variable 
ranking graph was generated using the SHAP 
evaluation toolkit. The variable ranking graph is shown 
in Figure 5. From the figure, we observed that “Slope 
min”, “Forest edge distance”, “Aspect min” and 
“Elevation min” stood out, in order of importance. 

In the areas investigated, there was greater detection 
of RNC in flatter sites, or in regions closer to the forest 
edge or more elevated areas. We observed that 
“Slope min” and “Forest edge distance” resulted in 
positive RNC detections as those variables 
approached the lower value ranges. Likewise, positive 
RNC detection associates more with lower “Aspect 
min” readings, pointing towards North and East 
orientated slopes tend to more likely present RNC 
detection. The inverse applies for “Elevation min” with 
positive RNC detection increasing with elevation.  

 
Figure 4. Frequency plots of verified infected and non-

infected areas, by topological variables.  

 
Figure 5. SHAP variable ranking graph. Variables are 
ranked from most impactful to least impactful on model 
prediction (based on contribution of variable towards 
splitting of tree in CatBoost). The x-axis represents the 
prediction of the model, with negative being absence of RNC 
and positive being unhealthy and demonstrates the 
association of value range for each variable to the prediction.    
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Figure 6. Predicted probability of areas infected by RNC 
with 95% confidence intervals by ‘Elevation min’ using the 
binomial GAMs. Elevation are in metres. 

 

Figure 7. Predicted probability of areas infected by RNC 
with 95% confidence intervals by ‘Forest edge distance’ 
using the binomial GAMs. Distance are in metres 

 

Figure 8. Predicted probability of areas infected by RNC 
with 95% confidence intervals by ‘Slope min’ using the 

binomial GAMs. Slope gradient are in degrees. 

  

Figure 9. Mean (±SE) areas infected by RNC by ‘Aspect 
min’. Bars followed by different letters indicate statistically 
significant between ‘Aspect min’ (multiple comparison tests 

using Tukey – adjusted contrasts at  = 0.05). 

A GAM with a binomial distribution best described the 
relationship between the probability of areas observed 
with RNC expression and topological variables. There 
was a significant effect of the four topological 
variables: ‘Aspect min’, ‘Elevation min’, ‘Forest edge 
distance’ and ‘Slope min’, on the probability of RNC 
expression (P<0.001; Table 4).  

The fitted function for ‘Elevation min’ indicated that the 
probability of RNC expression peaked at the ‘Elevation 
min’ of about 400m (Figure 6). The probability of RNC 
expression increased steeply when the sample areas 
were very close to the forest edge and reached a 
maximum level when the sample areas was about 30 
m away from the forest edge before decreasing 
sharply (Figure 7). The fitted function indicated that the 
probability of RNC expression peaked at the lower 
slope min and decreased with increasing “Slope min”, 
and then was roughly horizontal between 10 – 30 
degrees (Figure 8). The probability of RNC expression 
was significantly greater in areas with an eastern 
aspect (P<0.05; Figure 9). No statistical differences 
were found between the North, South and West areas 
(P>0.05; Figure 9). The predictive accuracy of the 
proposed model is about 64%.  

Concluding Remarks 

Observations derived from the independent machine 
learning and statistical modelling agreed. Both 
methods identified the  factors of gradient of the slope, 
distance to edge of forest, elevation and aspect which 
all influenced the occurrence of RNC. More 
specifically, forested regions which have the following 
properties: 

• Elevation of approximately 400m 

• Slope gradient of less than 10 degrees 

• Being less than 30m away from edge of a 
forest 

While the ‘Aspect min’ variable had shown that regions 
‘East’ facing seem to witness more RNC infected 
regions, this observation should be taken interpreted 
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with care. This is so because the region is bias to the 
East Coast. As such, it is not certain whether the 
significance is caused by being east facing or because 
of the slope being seaward facing.   

Similarly, summary statistics listed in Table 3 shown 
that Elevation and its derivatives (min, max and 
median) have similar distributions. While this is 
unusual, we attribute this to the approach used for 
clustering pixels into regions prior to classifying 
regions into non-vegetation, healthy and unhealthy 
regions. Due to the use of reflectance and spectral 
indices for clustering, there is a large chance the 
algorithm inherently clustered regions with similar 
elevation together. In saying that, this still does not 
discount the observation that forested regions at 400m 
tends to exhibit RNC infections. 

The observations from both the machine learning and 
statistical models are in agreement and provide us 
with the confidence to design future experiments to 
investigate the influence those four variables. We 
recommend that the spatial analysis be expanded to 
more diverse regions of New Zealand and increase 
the number of random samples of both healthy and 
unhealthy radiata pine forested regions from a range 
of stand ages and silvicultural regimes. 
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