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EXECUTIVE SUMMARY 

Background 
The New Zealand Forest Owners’ Association (NZFOA) surveillance system is presently 
being modified to provide improved information on both forest health condition and pest 
status.  The system is also intended to be capable of detecting new pest organisms. While 
we have a good understanding of the efficacy of individual survey techniques, combining and 
applying the survey techniques in a practical, cost-effective manner is not straightforward.  
Surveillance systems are complex, and there are many possible and plausible combinations 
of plotting intensity, sampling methods (random, systematic, or stratified), and seasonal 
timings.  An effective sampling strategy would employ the minimal amount of effort and 
expense required to provide estimates of forest health condition and pest status that are 
accurate and precise enough to support the forest management objectives of the NZFOA.  It 
would also promptly detect newly arrived pests.  Identifying the optimal sampling strategy 
requires an understanding of the trade-offs between survey intensity through time and space, 
the quality of the disease severity estimates, and the ability to detect new pests.  The aim of 
this project was to support the development of an optimised surveillance scheme for 
estimating pest status and pest detection by quantifying the trade-offs between sampling 
type, intensity, timing and costs, and the benefits in terms of the quality of the collected data. 

Results 
For both forest health status estimation and new pest detection, regular sampling and 
stratified sampling without size restriction outperformed random sampling and stratified 
sampling with size restriction at low sampling intensities (0.1-0.4%).  There was little 
apparent improvement in the precision of pest status estimates by sampling more than 0.5% 
of the forest area. 
 
The ability of a survey regime confined to the plantation forests to detect pests originating 
from high-risk zones improved with additional sampling effort.  However, such a scheme was 
consistently unable to detect pests at population sizes that were small enough to 
contemplate a national eradication programme, as there was too much opportunity for a pest 
to spread before it invaded any of the forests.  When considering just the spread of the pest 
within forests at the time of first detection, the survey system was able to detect pests at 
eradicable population sizes.  This indicates the potential for the scheme to detect pests that 
self-disperse directly into the forests. 

Recommendations 
In an operational situation it is likely that planning costs will be cheaper for regular sampling 
than for stratified sampling, and field activities may also be cheaper when a regular sampling 
system is used.  We recommend that both regular sampling and stratified sampling without 
size restriction are trialled in terms of time taken for preparation and field operations.  We 
also recommend that random sampling and stratified sampling with size restriction survey 
methods are not to be evaluated further. 
 
For successful detection of forest pests at infestation areas small enough for eradication to 
be feasible, it will be necessary to rely primarily on high-risk site surveillance in areas outside 
of the forests for initial detection, complimented by forest surveys to detect those organisms 
that arrive in forests first. 
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INTRODUCTION 
The New Zealand Forest Owners’ Association (NZFOA) forest health surveillance system 
aims to provide information to owners on both forest health condition and pest status 
(Bulman & Kimberley 2005). The system is also intended to be capable of early detection of 
new pest organisms. It is presently being modified, and an independent review was 
conducted in November 2007 (Leibhold & Callan 2007). In devising a surveillance system it 
is necessary to consider the trade-off between running costs and the precision and reliability 
of the collected information in the context of the management decisions that hinge on the 
information. It is obviously prudent to implement a system that minimises the running costs 
whilst still providing information that is of sufficient quality to enable reliable decisions to be 
made (Ben-Haim 2006). 
 
This project aimed to assess the cost and efficacy of different sampling strategies at different 
intensities for (i) estimating disease levels and (ii) detecting the spread of new pests. 
 

MATERIALS AND METHODS 

Forest Health Condition Monitoring 

Data 

In order to compare and assess the different sampling strategies and intensity levels, six 
annual datasets of assessments of Dothistroma needle blight from aerial surveys conducted 
in Kaingaroa Forest (2815955E, 6285715S; New Zealand Map Grid) between 2000 and 2005 
(Nigel Heron, NZFOA, unpub. data) were assembled. The databases consisted of ArcGIS 
shapefiles that included information on stand identification number, year of establishment, 
and a field corresponding to the estimated disease level for each stand sampled that year. 
The range of the values of the disease level field varied from 0 to 100, indicating the disease 
rate of the stand that year. The number of stands and the total area sampled changed 
between years (Table 1). The sampling effort increased through time. The sampling design 
covered all parts of the forest (Figure 1). 
 
Table 1. Description of the datasets from aerial Dothistroma infestation surveys in Kaingaroa Forest 
showing the number of stands and the total area sampled each year between 2000 and 2005. The total 
area of the whole forest is 163 880 ha 

 2000 2001 2002 2003 2004 2005 
Number of 
stands 
sampled 

1 847 1 953 2 538 3 196 3 385 3 925 

Total area 
sampled 
(ha) 

74 130 67 919 80 165 74 784 75 798 82 570 

 
The area-weighted observed mean level of Dothistroma needle blight in Kaingaroa Forest 
increased between 2000 and 2002 (from 4.0% to 23.6%; Figure 2) followed by a net 
decrease in 2003 (2.2%). Disease rate increased again following years to 14.1% in 2005. 
The calculation of mean observed rates on a stand-basis gave similar results (Figure 2). 
Since the area-weighted mean gives the best assessment of the true spatial infestation of the 
forest as a whole, it was chosen as the base with which to compare the sample estimates for 
each strategy being explored here. 
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Figure 2. Average Dothistroma disease levels in Kaingaroa Forest between 2000 and 2005; average rates 

(Mobserved) calculated on a stand basis Mobserved = Σ(ratestand)/number of stands [ ]; and average rates 

(Mobserved) weighted by stand area Mobserved = Σ(ratestand*areastand)/ Σ(areastand) [ ]. 

 
 

Sampling strategies 
 
In order to assess the most cost effective sampling strategy for estimating the average 
Dothistroma disease level across the whole forest, three sampling strategies (random, 
regular and stratified random) were tested on observed yearly data with six sampling 
intensities (0.1; 0.2; 0.4; 0.6; 0.8 and 1% of the total plantation forest area). A pair of key 
assumptions was developed based on input from the NZFOA. Firstly, the area effectively 
sampled at each sample point represented a 1 ha sample, and secondly, where possible, a 
stand would not be sampled more than once (this assumption was relaxed for the regular 
sampling strategy). The sampling strategies to be explored were prescribed by the NZFOA 
(L.S. Bulman, pers. comm.). 
 
Three programs were developed with python (dynamic object-oriented programming 
language) to simulate the sampling of stands in the Kaingaroa Forest following the 18 
sampling scenarios (3 strategies* 6 intensities). The numbers of points to be sampled for 
each simulation varied by year (due to the changing area sampled in the baseline datasets), 
and these are indicated in Table 2. 
 
The number of points that must be sampled in future surveillance survey was calculated 
considering all the planted stands, not just those sampled in the Dothistroma surveys. This is 
because a general forest health survey system would need to consider stands of all ages 
because other forest health issues are being noted at the same time. 
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Table 2. Number of sampling points to simulate different intensity of sampling on existing survey data for 
2000 to 2005 and the number of points that must be sampled in future surveys considering all planted 
stands relative to sampling intensity. 

Simulation on survey data 
 

2000 2001 2002 2003 2004 2005 

Future 
sampling 
design 

0.1 17 35 73 11 33 73 164 
0.2 33 70 145 22 67 146 328 
0.4 66 140 290 43 133 292 657 
0.6 100 209 435 65 200 438 985 
0.8 133 279 580 86 266 584 1 313 
1 166 349 725 108 333 730 1 642 

 

Random sampling 

Description  the random sampling strategy corresponds to the sample of n locations (Table 
2) randomly selected within the surface area of the forest. In order to optimize the cover of 
the forest, the random strategy was defined as sampling without replacement, i.e. each stand 
can be sampled only once per survey (replacement strategy is discussed further in this 
report). This means that sampling is done on a stand basis (a 1 ha area of sampling point on 
the field represents the whole stand). 
 
Simulation  simplified csv datasets for each year were extracted from the geographical 
datasets, including the total sampled area for the year as a headline and for each stand a 
unique ID, the observed disease level, and the area. A python script was developed to 
randomly select n stands for each sample intensity level, calculate the weighted disease 
level per stand and the average disease level for the forest each year. This process was 
replicated fifteen times and a final mean disease level (M) was calculated for the forest from 
the fifteen replicate means (m) together with the standard deviation. The standard deviation 
indicates the level of risk of under- or over-estimating the true disease level. 
 
Quantiles of the normal distribution and the sample mean and standard deviation were used 
to calculate confidence intervals for the mean. The following expression was used to 
calculate Uy,i, uncertainty for a given year (y) and a given intensity (i) with 95% confidence: 
 
Uy,i = 1.96 * SD 
 
where SD is the standard deviation of the sample, and 1.96 is the 0.975th quantile of the 
normal distribution 
 
The simulation process is: 
 
for each year 
 for each sampling intensity 
  calculate n in relation to the total area sampled that year in source datasets 
  while number of replicates <= 15 
   randomly select n stands 
   calculate mr,y,i = Σ(ratestand*areastand)/Σ(areastand) 
 calculate My,i = Σ(mr,y,i)/15; standard deviation and uncertainty Uy,i 

 
The simulated mean infestation rates per year and per sample intensity were compared to 
the observed area-weighted mean rate (Mobserved; Figure 2). 
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Regular sampling 

Description  the regular sampling strategy uses a regular grid of points, the distance 
between points depending on the sampling intensity (Table 3). In each year, where the points 
spatially intersected a stand with a disease rating, the stand was sampled. The intrinsic 
characteristics of regular sampling allow replacement, and so a stand with a larger area has 
a higher probability of being sampled more than once. 
 
Table 3. Calculation of the distance between points of the regular grids in relation to the sampling 
intensity. Total forest area = 164 170 ha. 

Sampling 
intensity 
(%) 

Area that must be 
sampled 

(intensity*total area) 

Number of points 
in the grid 

(a sample is a 1 
ha area) 

Each point 
represents 
(total 

area/number 
of points); 

ha 

Cell size 
(m) 

0.1 164.2 164 1 001.05159 3 164 
0.2 328.3 328 500.525795 2 237 
0.4 656.7 657 249.8819798 1 581 
0.6 985.0 985 166.672549 1 291 
0.8 1 313.4 1 313 125.0361468 1 118 
1 1 641.7 1 642 99.98322823 1 000 

 
Simulation  fifteen independent grids of points were created for each sampling intensity 
following mesh sizes detailed in Table 3. Each grid was generated from a randomly chosen 
point of origin. All grids were oriented directly North-South and East-West according to the 
New Zealand Map Grid. 
 
The original datasets of disease level per year were converted to rasters of stand IDs. A 
python script was written to extract stand IDs that intersected each of the 90 grids (15 
replicates * 6 intensity levels), join the ID information to the csv databases and calculate the 
average disease level (mr,y,i) per replicate (r), per year (y) and per sampling intensity (i) 
together with the average disease level of 15 replicates (My,i) per year (y) and intensity (i), 
standard deviation of replicates and uncertainty (see details in previous paragraph “Random 
sampling”). 
 
for each year 
 for each intensity 
  for each of the 15 grids corresponding to a single sampling intensity 
    extract n values of stand ID from raster corresponding to the year 
    join to csv database to obtain n rates 
    calculate mr,y,i = Σ(rates)/n 

calculate My,i = Σ(mr,y,i) / 15; standard deviation and uncertainty Uy,i 
 
These simulated mean disease levels pe`r year and per intensity were compared to the 
observed area-weighted mean rate (Mobserved; Figure 2). 

Stratified random sampling 

Description  the stratified random sampling strategy is a mix between regular and random 
sampling strategies. The forest area is divided into a 1 000 ha fishnet and b locations 
corresponding to [Σ(area of forest in fishnet’s cell) * sampling intensity] are randomly 
sampled. In order to optimize the cover of the forest, the stratified random strategy was 
without replacement. 
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Simulation  simplified csv databases similar to those created for random sampling were 
developed but included a fishnet ID coming from the intersection between the original 
shapefiles for each year and a 1 000 ha fishnet shapefile. The simulation process is similar to 
the random simulation process except that the number of selected stands is calculated using 
Σ(area) within a fishnet cell. 
 
for each year 
 for each intensity 
  while number of replicate <= 15 
   for each cell of 1000ha 
    calculate b in relation to the area of forest in the cell 
    randomly select b stands 
    store [Σ(rate*area)]cell and [Σ(area) ]cell from sampled stands 
   calculate mr,y,i = Σ([Σ(rate*area)]cell and [Σ(area) ]cell)/Σ([Σ(area) ]cell) 

calculate My,i = Σ(mr,y,i) /15; standard deviation and uncertainty Uy,i  
 
These simulated mean infestation rates per year and per intensity were compared to the 
observed area-weighted mean rate (Mobserved; Figure 2). 
 
A systematic under-sampling problem was uncovered in the original runs where the 
requirement to sample a 1 ha area was included. Subsequently, new scripts were developed 
to simulate the stratified-random strategy with the requirement for the sample to encompass 
1 ha relaxed in order to test the effect of under-sampling. 
 

Comparison of the precision of the sampling strategies 

In order to compare the efficiency of the three sampling strategies, the precision of each 
sampling strategy (P) was calculated for each sampling intensity. This represents the 
minimum interannual variation that can be reliably detected using each method. The formula 
for a given intensity (i) is: 
 
P i = √2 * 1.96 * mSD 
 
where mSD is the mean standard deviation, in this case over six years. 
 
 

Pest Spread Detection 
This part of the project aimed to assess the cost and efficacy of a random and a regular 
sampling strategy at different intensities for detecting the spread of new pests. Simulations of 
sampling were conducted on results from runs of a model of spread of the Argentine ant.  

Study species and data from spread model 

Linepithema humile is a world-wide pest that is regarded as one of the six worse invasive 
ants (Holway et al. 2002). When it was first recorded in New Zealand in 1990 (Green 1990), 
there was no attempt to control this species as it was considered to be already well 
established. The Argentine ant is a successful 'tramp' ant species (Passera 1994) in part due 
to the following characteristics: a strong tendency to move and associate with humans 
(Suarez et al. 2001), unicoloniality (Holway 1998), strong interspecific aggression (Holway 
1999), polygyny (Keller 1990) and budding dispersal, where a queen supported by as few a 
10 workers can establish a new colony (Hee et al. 2000). Linepithema humile is a threat to 
New Zealand's biodiversity because in addition to potential negative impacts on wildlife, it 
readily displaces other ant species (Holway et al. 2002) and the displacement of existing ant 
species can cause existing mutualisms to be disrupted (Bond and Slingsby 1984, Lach 
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2003), and disrupt other ecosystem processes (Harris 2002). Because L. humile was 
considered well established and there were limited means to control it, the species was for 
the most part left to spread unhindered and therefore provides a good example for studying 
the spread of an invasive species. 
 
International data on L. humile distribution were used to parameterise a modular and flexible 
framework called Modular Dispersal in GIS (MDiG) to simulate the species spread from the 
site of its initial invasion. Graphs derived from the New Zealand occurrence data were used 
to guide model creation and check that human-assisted dispersal occurred at the same scale 
between locations. However, explicit spatial locations from New Zealand occurrence data 
were kept for model validation. An extensible, modular, spatially-explicit, and high-resolution 
dispersal simulation model, integrated with a Geographic Information System (GIS), was 
used to recreate the historical spread of L. humile in New Zealand (Pitt et al., unpublished 
data). High resolution probabilistic maps (0 for absence and 1 for presence) simulating local 
and human assisted spread across the study area (63 600 km2 area around Auckland, New 
Zealand, Figure 3) were generated at a yearly time step (Figure 4). 
 

 
Figure 3. The North Island of New Zealand showing the area where simulations of Argentine Ant spread 
were run. 
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Sampling strategies 

In order to assess which sampling strategy is the most cost effective for detecting a 
newly arrived pest, random and regular sampling strategies were tested on five 
simulations from the Argentine ant spread model with five sampling intensities (0.2; 
0.4; 0.6; 0.8 and 1%).  
 
Two programs were developed with python (dynamic object-oriented programming 
language) to simulate sampling all forests present in the study area, following the 60 
sampling scenarios (2 strategies* 5 intensities*5 spread simulations). The numbers of 
points sampled for each simulation per sampling intensity are indicated in Table 4. 
Input spatial layers of forest distribution were generated for the study area in ArcInfo 
from Land Cover Database (LCDB) using classes 63, 64, 65 and 66 of LCDB (Pine 
forest areas; Table 5).  
  
Table 4. Number of sampling points to simulate different intensity of sampling on plantation 
forest present in the study area and the number of points that must be sampled in future 
surveillance surveys considering the total plantation forest area in New Zealand, assumed to be 
1 775 200 ha. 

Sampling 
intensity (%) 

Simulation on study area 
(n) 

Future sampling design, whole NZ 

0.2 362 3 550 
0.4 724 7 101 
0.6 1 087 10 651 
0.8 1 449 14 202 
1 1 811 17 752 

 

Random sampling 

 
Description The random sampling strategy corresponds to the sample of (n) 
locations (Table 4) randomly selected within the surface area of the forest (ArcInfo 
polygons from LCDB).  
 
Simulation a script developed using Python was used to randomly create n points 
(Table 4) within the entire plantation forest area within the study region and extract 
values of the raster corresponding to the pest distribution in a given year at these 
points. The values of presence (1) of Argentine ant were weighted by a probability of 
being detected in the field in relation to seasonality (the probability of detecting a pest 
that is visible all year round during a non-specific survey is higher than the probability 
of detecting a pest species that is only apparent in one season). The weight factor 
was 0.25 (species apparent in only one of the 4 seasons) for seasonal species and 1 
for annual species (species apparent throughout the year). The values of presence 
are also weighted by a factor of visibility (cryptic or obvious) that could be also 
interpreted as effectiveness of the inspector. The weight factor was 0.1 for the cryptic 
species (hardly detected, and poor effectiveness of the inspector) and 0.9 for the 
obvious species (high probability of being detected, good effectiveness of the 
inspector). Field detection trials showed that only 21% of cryptic targets were found 
compared with almost 80% of obvious symptoms (Hosking et al. 1999). For the 
purposes of this project we tested the extremes and therefore took values of 0.1 and 
0.9 for cryptic and obvious symptoms, respectively. The sampling simulations started 
in 1990. If the pest was detected, the sampling stopped and the total area and forest 
area colonised by Argentine ant when it was first detected (equal to the cover area in 
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the simulation raster that year) was recorded. Ten replicates of the process were 
performed. 
 
Table 5. Description of Land Cover Database classes corresponding to Pine forest. 

Class Name Description 
63 Afforestation 

(imaged and 
post-LCDB 1): 

Areas of Pinus radiata forest visible in the imagery and 
located on sites recorded as non-forested in LCDB 1. 
These areas represent young forests that were not 
visible in the imagery used for LCDB 1 or have been 
planted since. Young plantations are identifiable in 
satellite imagery 4-5 years after planting, depending on 
initial stocking. 

64 Pine Forest – 
Harvested 

Areas showing obvious signs of recent harvesting, e.g. 
skid tracking, new roading, landings. The classification 
assumes these sites to have been replanted, and this 
will be checked in the next iteration of the database. By 
this time, if the areas were replanted, the trees will be at 
least 5 years old and identifiable. The purpose of this 
class is to confirm the extent of harvested pine forest 
that is replanted. 

65 Pine Forest - 
Open Canopy 

Plantations of Pinus radiata showing significant 
reflectance of understorey land cover. The reflectance 
values for stand biomass and pine canopy indicate that 
trees are in an age class of approximately 6 - 15 years. 

66 Pine Forest - 
Closed Canopy 

Plantations of Pinus radiata where reflectance is 
dominated by the pine canopy. Reflectance values for 
stand biomass and shadow from canopy texture indicate 
that trees are likely to be older than 15 years. The 
purpose of this class is to highlight stands likely to be 
harvested within 10 - 15 years of the image date. 

 
The simulation process is: 
 
For each spread simulation (5 runs of the Argentine ant model) 

for each year 
calculate the surface area covered by the species 
while number of replicates <= 10 

   for each sampling intensity 
     test if the pest has been detected previous year (warning index <> 0) 
     if not 
     randomly create (n) sampling points 
     for each sampling point 
      extract the value of the raster (year simulation) at that point 
      if value <> 0 (mean presence of the pest detected) 
       -randomly create a number between 0 and 1 

 -it checks if this random number is < or > to the combination: 
(presence * probability to be detected due to seasonality of the species 
* probability to be detected due to pest state) 

                seasonal and cryptic 1*0.25*0.1 
                   seasonal and obvious 1*0.25*0.9 
                    annual and cryptic 1*1*0.1 

                annual and obvious 1*1*0.9 
-it increments the "warning index" for the sampling effort and the state 
(since different from ‘0”, the following year is not processed) 

 
Where (n) is the number of sampling points as in table 4. 
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Regular sampling 

 
Description  the regular sampling strategy uses a regular grid of (n) points, n 
depending on the sampling intensity (Table 4).   
 
Simulation  ten grids of points were created for each sampling intensity. Each grid 
was generated from a randomly chosen point of origin. All grids were oriented directly 
North-South and East-West according to the New Zealand Map Grid. A script was 
developed using Python to extract from each of the fifty grids of regular points (5 
sampling intensities*10 replicates) the values of the raster corresponding to the pest 
distribution a given year. Data were formatted and date of first detection and total 
area covered recorded as for random strategy.  
 
The simulation process is: 
 
For each spread simulation (5 runs of the Argentine ant model) 

for each year 
calculate the surface area covered by the species 

  for each grid of regular points (corresponding to 10 replicates*5 sampling intensities) 
   test if the pest has been detected previous year (warning index <> 0) 
    if not 

for each sampling point of the regular grid 
      extract the value of the raster (year simulation) at that point 
       if value <> 0 (mean presence of the pest detected) 
        -randomly create a number between 0 and 1 

     -it checks if this random number is < or > to the combination: 
(presence * probability to be detected due to seasonality of the 
species * probability to be detected due to pest state) 

                seasonal and cryptic 1*0.25*0.1 
                    seasonal and obvious 1*0.25*0.9 

                annual and cryptic 1*1*0.1 
                  annual and obvious 1*1*0.9 

-it increments the "warning index" for the sampling effort and the 
state (since different from ‘0”, the following year is not be 
processed) 

 

Cost assessment 
For both forest health monitoring and pest detection, the cost of sampling at each 
sampling intensity versus precision (forest health monitoring) and area colonised by 
the pest when it is first detected (pest detection) was assessed using the relationship 
in Fig. 5. This relationship is an approximate estimate, based upon limited 
consultation. Several factors such as the spatial configuration of the survey sites and 
accessibility of the sites could affect the true survey costs. The downward sloping 
relationship in Fig 5 indicates that there are large economies of scale in survey costs, 
and the plateau on the right hand side is indicating the region beyond which per unit 
costs are minimised. 
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Figure 5. Survey costs per sampling plot as a function of survey intensity. Source Brent Rogan, 
SPS Biosecurity (pers. comm.). 

 

RESULTS 

Forest Health Condition Monitoring 

Random sampling 

 
Figure 6 gives an example for a single replicate of a randomly simulated sampling 
design for each intensity of sampling, for 1 year. 
 
Figures 7a and 7b show the results of the 15 simulations of random sampling of 
Kaingaroa Forest for 2000 to 2005 with different sampling intensities, compared with 
the observed weighted disease levels (calculated from all sampled stands each 
year). 
 
The random sampling strategy is not precise enough to reliably discriminate between 
most of the observed levels at 0.1% to 0.2% sampling effort. Whilst the simulated 
mean infestation rates across the fifteen samples almost perfectly matched observed 
mean disease levels at every sampling intensity, uncertainty remained high (≥2%) for 
some years up to a sampling intensity of 0.8%. Average uncertainty is 4.2 for the 
0.1% sampling effort, and decreases to 1.2 for a sampling effort of 1%, with 
intermediate values of 2.7, 2.1, 1.3 and 1.2 for sampling effort of 0.2%, 0.4%, 0.6% 
and 0.8% respectively. 
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Figure 6. Example of simulation 
of a random sampling on 

Kaingaroa Forest in 2005;  
Stands without infestation data; 

 Stands with infestation 

data;  Stands sampled in 
simulation 
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Figure 7a. Results of the fifteen simulations of random sampling on Kaingaroa Forest for 2000 to 

2005 for sample intensity levels of 0.1 to 0.4%; [ ] Simulated mean disease level; [ ] 
Observed mean disease level. Error bars represent uncertainty in the estimate of the mean, 
calculated as 1.96 * standard deviation.  
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Figure 7b. Results of the fifteen simulations of random sampling on Kaingaroa Forest for 2000 to 

2005 for sample intensity levels of 0.6 to 1%; [ ] Simulated mean disease level; [ ] 
Observed mean disease level. Error bars represent uncertainty in the estimate of the mean, 
calculated as 1.96 * standard deviation.  



 

 Page 19 

Regular sampling 

Figure 8 gives an example replicate for a simulation of a regular sample for each 
sampling intensity, for 1 year. Figures 8a and 8b show the results of the 15 
simulations of a regular sample of Kaingaroa Forest for 2000 to 2005 with different 
sample intensities, compared to observed weighted rates of infestations (calculated 
from all sampled stands each year). The regular sampling strategy appears quite 
efficient. Using this method it is possible using a sample intensity of 0.2% to reliably 
(with 95% confidence) detect the difference between disease levels for 2003 and 
2004. 
 
Figures 9a and 9b show the results of the 15 simulations of regular sampling of 
Kaingaroa Forest for 2000 to 2005 with different sampling intensities, compared with 
the observed weighted disease levels (calculated from all sampled stands each 
year). 
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Figure 8. Example of 
simulation of a regular 
sampling on Kaingaroa 

Forest in 2005;  Stands 
without infestation data; 

 Stands with infestation 

data;  sampled point. 
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Figure 9a. Results of the fifteen simulations of regular sampling on Kaingaroa Forest for the 
2000-2005 period for sample intensity levels 0.1 to 0.4%; [ ] Simulated mean disease level; 

[ ] Observed mean disease level. Error bars represent uncertainty in the estimate of the 
mean, calculated as 1.96 * standard deviation.  
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Figure 9b. Results of the fifteen simulations of regular sampling on Kaingaroa Forest for the 
2000-2005 period for sample intensity levels 0.6 to 1%; [ ] Simulated mean disease level; 

[ ] Observed mean disease level. Error bars represent uncertainty in the estimate of the 
mean, calculated as 1.96 * standard deviation.  
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Stratified random sampling 

Figure 10 gives an example replicate for a simulation of a stratified random sample 
for each sampling intensity for 1 year. The number of sampled stands in the map 
corresponding to the sampling intensity of 0.1% (top left) is less than the number of 
stands sampled for the same intensity with other methods (Figures 6 and 8). 
Subdividing the forest landscape into 1 000 ha units for stratification purposes 
resulted in a large number of sample units (forest stands within a stratification cell) 
that were very small. Using the requirement that each field sample must consist of 
1 ha resulted in the situation where for some years and/or some sampling intensity 
levels, the total sampled area of the sampled stands or their area was not big enough 
to meet the minimum area condition [(sampling intensity*area in cell/100)>1ha]. In 
fact nr,y,i is not equal to Σ(bcell). As a result, the simulation of the stratified random 
sampling strategy at 0.1% could not be performed each year (area within a cell < 501 
ha, n < 0.5 and round(n) = 0). This explains the pattern of results observed in Figures 
10a and 10b. The stratified random sampling strategy performed poorly with 
uncertainty values greater than 2% up to a sampling intensity of 0.8%. Average 
uncertainty is 2.1 for the 0.1% sampling effort and decreases to 1.1 for a sampling 
effort of 1%, with intermediate values of 2.3, 1.6, 1.2 and 1.1 for sampling effort of 
0.2%, 0.4%, 0.6% and 0.8% respectively. 
 
When the requirement for a sample to include 1 ha of forest was relaxed, the 
resulting mean disease levels are similar to those from the stratified random strategy 
with the 1 ha size restriction retained, but with markedly lower levels of uncertainty, 
especially for low sampling intensities (Figure 11, Table 6). Figures 11a and 11b 
show the results of the 15 simulations of stratified random sampling of Kaingaroa 
Forest for 2000 to 2005 with different sampling intensities, compared with the 
observed weighted disease levels (calculated from all sampled stands each year). 
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Figure 10. Example of simulation 
of a stratified sample of 

Kaingaroa Forest in 2005;  
Stands without infestation data; 

 Stands with infestation 

data;  Stands sampled in 

simulation;  1000ha fishnet 
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Figure 11a. Results of the fifteen simulations of stratified random sampling on Kaingaroa Forest 
for 2000 to 2005 for sample intensity levels 0.1 to 0.4%; [ ] Simulated mean disease level; 

[ ] Observed mean disease level. Error bars represent uncertainty in the estimate of the 
mean, calculated as 1.96 * standard deviation.  



 

 Page 26 

Sampling intensity = 0.6%

-5

0

5

10

15

20

25

30

35

1999 2000 2001 2002 2003 2004 2005 2006

Year

D
is
e
a
s
e
 l
e
v
e
l 
 (
%
)

Sampling intensity = 0.8%

-5

0

5

10

15

20

25

30

35

1999 2000 2001 2002 2003 2004 2005 2006

Year

D
is
e
a
s
e
 l
e
v
e
l 
 (
%
)

Sampling intensity = 1%

-5

0

5

10

15

20

25

30

35

1999 2000 2001 2002 2003 2004 2005 2006

Year

D
is
e
a
s
e
 l
e
v
e
l 
 (
%
)

 
Figure 11b. Results of the fifteen simulations of stratified random sampling on Kaingaroa Forest 
for 2000 to 2005 for sample intensity levels 0.6 to 1%; [ ] Simulated mean disease level; 

[ ] Observed mean disease level. Error bars represent uncertainty in the estimate of the 
mean, calculated as 1.96 * standard deviation.  



 

 Page 27 

Table 6. Comparison of uncertainty levels between stratified random sampling strategy with 
forced requirement for the sample to encompass 1 ha (“Enforced”) and stratified random sample 
with relaxed requirement for the sample to encompass 1 ha (“Relaxed”) for years 2000 to 2005.  

Year Forced Relaxed Forced Relaxed Forced Relaxed Forced Relaxed Forced Relaxed Forced Relaxed
2000 3.83 1.17 2.25 1.14 1.38 1.46 1.08 0.72 0.84 0.97 0.79 0.84
2001 7.38 3.13 3.14 2.67 2.72 1.84 1.27 1.26 1.10 1.64 1.23 0.96
2002 6.29 3.52 5.21 3.71 3.55 2.71 2.45 2.44 1.44 1.91 1.99 1.75
2003 2.52 0.64 1.63 1.40 1.02 0.81 0.71 0.52 0.47 0.42 0.41 0.53
2004 3.22 1.97 2.21 1.67 1.51 1.26 1.07 1.53 0.92 0.83 0.89 0.96
2005 4.25 2.27 3.45 3.10 1.64 1.46 1.39 0.82 1.09 1.06 1.02 1.26

0.8% 1%0.1% 0.2% 0.4% 0.6%

 

Comparison of the precision of the sampling strategies 

Figure 12 indicates the precision of disease estimates (calculated from simulations 
on 6 years) of the four sampling strategies (random, regular and stratified random 
with and without restriction) for each level of sample intensity. The regular and 
stratified random without restriction sampling strategies appear to give the most 
precise results over the lower levels of sampling intensity. Whilst a sampling intensity 
of 1% give estimates with less uncertainty and less precision error, there is only a 
slight gain in precision between a sampling intensity of 0.4% and 1% with the regular 
and stratified random without restriction sampling strategies. The stratified random 
and random strategies have similar patterns of precision errors, decreasing as the 
intensity of sampling increases up to 0.8%, where all methods converge. It is 
interesting to note that despite the problem of “under-sampling” described above, the 
stratified random sampling strategy performed as well as random sampling. This 
under-sampling bias decreased with the increase of the area sampled in the source 
data. This result highlights the scale-dependent nature of this problem. The precision 
errors of the stratified strategy without size restriction are probably a better indication 
of how the stratified random sampling strategy can perform when the size of the 
stratification mesh is larger compared with the fraction of very small blocks. It 
appears that the stratified random sampling strategy without any size requirement 
performs better than the regular strategy at the 0.1% intensity, and as well as it at the 
other intensities tested.  

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Sampling intensity (%)

P
re
c
is
io
n
 (
m
in
im
u
m
 i
n
te
ra
n
n
u
a
l 
v
a
ri
a
ti
o
n
 

d
e
te
c
te
d
)

Regular

Stratified

Stratified without size restriction

Random

 
Figure 12. Relationship between the mean precision (6 years * 15 replicates) of the three 
sampling strategies (random, regular and stratified) and sampling intensity. 

 
The costs of attaining a given level of precision of disease estimates are given in 
Figure 13. These costs are provided as an approximate indication of the total costs of 
surveying the plantation forest estate at each level of survey effort and the 
corresponding level of precision of the disease estimates. 
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Figure 13. Average cost of survey versus mean precision (6 years * 15 replicates) of the 
three sampling strategies (random, regular and stratified)  

Pest Spread Detection 

Random sampling 

Figure 14 gives an example replicate of a simulation of a random surveillance design, 
for each intensity of sampling, for 1 year (2000). If the pest is a species that is visible 
all year round, the total area colonised by the pest at first detection within the forest 
does not exceed 6 500ha for the lowest sampling intensity of 0.2% if the species 
state is obvious (Figure 15). There is a decrease in the area colonised before 
detection between a sampling intensity of 0.2 and 0.6% (3 200 ha for 0.4%; 2 050 for 
0.6%); there is a decrease in the area colonised before detection of 150 ha between 
a sampling intensity of 0.6% and 1%. If the species is difficult to detect (cryptic), the 
area colonised before first detection reaches 52 280 ha for the lowest sampling 
intensity of 0.2% and largely decreases up to 0.6% of sampling intensity for which the 
area colonised is around 15 000 ha. The total area colonised before first detection 
decreases by 5 000 ha between 0.6 and 1% of sampling intensity. 
 
Considering an obvious seasonal pest species, the total area colonised by the pest 
before it is first detected is around 28 600 ha for the lowest sampling intensity. The 
area colonised decreases to 14 000 ha and 9 200 ha for sampling intensity of 0.4% 
and 0.6% respectively. The area colonised before detection decreases by 4 300 ha 
between a sampling intensity of 0.6% and 1%. If the seasonal species is cryptic, the 
probability of detecting it early appears very low. The total area colonised before first 
detection reaches 91 000 ha at the lowest sampling intensity and decreases almost 
linearly to 38 900 ha colonised for the maximal sampling intensity of 1%. 
 
The plantation forest area colonised by Argentine Ant before first detection is 86 ha 
when the largest sampling effort is applied in combination with the highest probability 
of detection (annual-obvious species/1% sampling effort) and it increases to 300 ha 
with a sampling intensity of 0.2% (Figure 15). The forest area colonised at the time of 
detection is higher for seasonal-obvious, annual-cryptic and seasonal-cryptic species 
(1 980 ha, 2 820 ha and 5 450 ha respectively for a sampling intensity of 0.2% and 
270 ha, 490 ha and 2 140 ha for 1%). 
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Figure 14. Example of simulation of a random sampling on a 

run of Argentine ant spread model in 2000; Forest;  

Presence of Argentine ant;  sampled points 



 

 Page 30 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 0.2 0.4 0.6 0.8 1 1.2

Sampling intensity (%)

T
o
ta
l 
a
re
a
 c
o
lo
n
is
e
d
 (
h
a
)

0

1000

2000

3000

4000

5000

6000

A
re
a
 c
o
lo
n
is
e
d
 w
it
h
in
 f
o
re
s
t 
(h
a
)

ao
ac

so
sc

  
Figure 15. Results of ten simulations of random samples of 5 spread scenarios from the 
Argentine ant spread model: total area (hard line) and forest area (dashed line) covered by 
Argentine ant when first detected for different sample intensity levels; ao = annual obvious; ac = 
annual cryptic; so = seasonal obvious; sc = seasonal cryptic. 

Regular sampling 

 
Figure 16 gives an example replicate of a simulation of a regular surveillance design, 
for each sample intensity for 1 year (2000). Considering annual obvious, annual 
cryptic and seasonal obvious pest species, there is almost a linear decrease of the 
total area colonised by the pest when first detected (Figure 17). Total area colonised 
is around 2 500 ha when the largest sampling effort is applied in combination with the 
highest probability of detection (annual obvious species/1% sampling effort) and it 
increases up to 11 000 ha with a sampling intensity of 0.2%. The total area colonised 
is higher for seasonal obvious and annual cryptic species (27 300 ha and 46 450 ha 
respectively for a sampling intensity of 0.2% and 6 200 ha and 10 500 ha for 1%). 
The total area colonised by a seasonal cryptic pest before it is first detected 
dramatically decreases between sampling intensities of 0.2% and 0.4% (118 000 ha 
vs 64 800 ha) but increasing the sampling effort to 1% only decreases the area 
colonised slightly further (52 150 ha). 
 
The average area of plantation forest colonised by Argentine Ant at the time of first 
detection is 114 ha when the greatest sampling effort (1%) is applied in combination 
with the highest probability of detection, and this area increases to 521 ha with a 
sampling intensity of 0.2% (Figure 17). These values are higher than with the same 
effort applied with a random sampling design. The forest area colonised is higher for 
seasonal-obvious, annual-cryptic and seasonal-cryptic species (1 475 ha, 2 731 ha 
and 7 382 ha respectively for a sampling intensity of 0.2% and 282 ha, 564 ha and 
2 966 ha for 1%). 
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Figure 16. Example of simulation of a regular sampling on a 

run of Argentine ant spread model in 2000; Forest;  

Presence of Argentine ant;  sampled points 
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Figure 17. Average results of ten simulations of regular sampling on 5 spread scenarios from the 
Argentine ant spread model: total area (hard line) and forest area (dashed line) colonised by 
Argentine ant when first detected for different sample intensity levels; ao = annual obvious; ac = 
annual cryptic; so = seasonal obvious; sc = seasonal cryptic 

 

Comparison of the effective costs of the sampling designs 

The benefits of detecting a pest early can be gauged in terms of the amount of 
sampling effort by consulting Figure 18. Whilst the costs of surveying will change 
through time, the relationship between area colonised and the survey effort should 
remain constant. In this figure the infestation areas for the detectability classes have 
been averaged in order to provide a general indication of the areas involved across a 
range of species that vary in their detectability. It is unclear however what proportion 
of the invasive fauna would fall into each of the detectability classes. 
 
To assist in gauging the costs and benefits of surveying effort, sampling intensity has 
been translated into present values (2008) for New Zealand dollars (Figure 19). The 
costs per survey site used here are indicative, and necessarily approximate, and 
should not be used for detailed planning purposes. 
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Figure 18. Average number of sample points vs total area (hard line, left-hand axis) and forest 
area (dashed line, right-hand axis) colonised by Argentine ant at the time of detection for the 
random and stratified sampling strategies. Values have been averaged across the detectability 
classes. 
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Figure 19. Average cost of survey versus total area (hard line, left-hand axis) and forest area 
(dashed line, right-hand axis) colonised by Argentine ant at the time of detection for the random 
and stratified sampling strategies. Values have been averaged across the detectability classes. 

 

DISCUSSION 

Forest Health Condition Monitoring 
The precision associated with each sampling technique clearly varies in a non-linear 
manner (Figure 12). This precision estimate indicates the minimum inter-annual 
variation in average disease levels that could be reliably detected using each of the 
assessed techniques. It is possible therefore to consider the decisions that hinge 
upon the annual estimates that will be derived using this scheme, and to assess the 
impacts of different precision levels on those decisions. These impacts can then be 
traded off against the costs of undertaking sampling at each level of intensity. 
 
The regular sampling strategy appears to be the best performing strategy for 
estimating forest health status, particularly at lower sample intensity levels, with little 
improvement at intensities above 0.4%. The regular sampling approach would also 
capture some internal variation within moderate to large stands. 
 
The effectiveness of random and stratified random sampling of stands with 
replacement could not be tested using the present sampling framework. Because the 
source data included only a single value per stand, no spatial variation within a stand 
is available. A simulation of random or stratified sampling with replacement would not 
therefore provide relevant evidence of the performance of a “with replacement” 
strategy under all field conditions because there is no fine scale spatial information in 
our dataset available to be sampled. A with replacement strategy could decrease the 
breadth of the forest sampled, slightly increasing the risk of missing special patterns 
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in the distribution of health problems (e.g. outliers or rare phenomena) but it could 
provide valuable information about finer scale patterns within stands. 
 
The present results are limited by the nature of the underlying baseline data. 
Because it was sampled at a stand level means that the advantages of random 
sampling for generating unbiased estimates of mean values may be under-
represented. 
 
Despite the comparatively poor performance of the stratified random strategy due to 
the source data on which simulations were run, the mean precision of this strategy is 
as good as the random strategy with a sampling intensity > 0.4%. The stratified 
random sampling strategy without any size requirement indicates that the stratified 
strategy performs better than the regular strategy at very low sample intensities, and 
as well as it at higher intensities. In practice, the stratified random sampling approach 
is likely to cause difficulties due to the splitting of stands into four or even more sub-
units based on the stratification cells. In addition, it is more time consuming to 
establish the sampling maps. 
 
Although not explored in this project, status and trend monitoring techniques may 
also be of more value for this system (e.g., US EPA Statistical Primer, 
http://www.epa.gov/bioiweb1/statprimer/sampling.html). This technique has also 
been described as sampling with partial replacement (Patterson 1950). The status of 
a forest is generally best sampled using a set of sites that are randomly selected 
each period (year). However the trend in a resource such as a forest is best 
assessed by selecting a set of sites using a random or regular system in the first 
period, and then revisiting those sites each year. In order to capture the best 
attributes of each of these approaches, it is possible to combine them, selecting 
some sites randomly each year, whilst maintaining a set of trend sites. In fact, this 
was an element of the surveillance system proposed by Bulman and Kimberley 
(2005). The statistical methods developed for status and trend monitoring draw on 
the strengths of each of the status and trend sub-datasets to provide an efficient 
means of estimating each of the attributes. Scott (1998) describes the development 
of the status and trend methods, and how they can be applied to forest monitoring. 
 

Pest spread detection 
The extent of a biological invasion before the unwanted organism is detected has a 
critical effect on the probability of success of an eradication programme. In the case 
of the Argentine ant simulations, it is apparent that the forest health surveys would be 
wholly inadequate to detect an invasive pest prior to it reaching population levels that 
preclude eradication. This is because the point of origin of the Argentine ant 
population was in Auckland, where there are no commercial forests that would be 
surveyed under the system being discussed here. Given the geographical isolation of 
New Zealand, the most likely pathway for pests to arrive is via sea or air transport 
into the international or regional ports and devanning sites. These areas have been 
identified by MAF Biosecurity New Zealand as the high risk areas. Whilst these areas 
may not have commercial forests immediately adjacent, they do have a wide variety 
of suitable hosts for forest pests in the form of amenity plantings of either commercial 
forest species or closely related species. It seems clear from this study that adequate 
pest detection for forest pests will require complimentary survey effort in the high risk 
zones. 
 
The partitioning of the area invaded into forest and non-forest regions (Figure 17) 
indicates the value of pest detection surveillance conducted in the forests. This 
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indicates the extent to which the forests would be directly affected prior to the 
detection of the forest pests. From these figures, given estimates of per tree pest 
damage it is possible to estimate the immediate direct costs of a pest incursion into 
the forests. 
 
In the analyses where we considered only the area of forest infested by the pest at 
the time of first detection, the relationship between the area infested and survey 
intensity is likely to apply in the event where a pest arrives in a plantation forest via 
air currents. Under these circumstances, the high risk site surveillance system would 
most likely miss detecting the pest. From Figure 17 it appears that at a sample 
intensity of 0.6% it is possible to detect such pests when their infestation areas are 
sufficiently small that it may be technically possible to eradicate them, or at least 
respond with a set of management controls before severe economic damage is 
inflicted. Nonetheless, the probability of a pest first establishing in a forest is very 
much less than that of establishing near ports and devanning sites. This is borne out 
by the fact that between 1 January 2003 to 31 December 2007, most new to New 
Zealand pests have been detected firstly in high risk site surveillance or special 
surveys (14) compared with just 2 within forests (Lindsay Bulman, Scion, Forest 
Health Database, unpub. data). The relative amount of effort spent detecting pests in 
forests and high risk sites should probably reflect this pattern, with the majority of 
effort being expended in the high risk site surveillance. The historical pattern of 
invasion indicates that the human-mediated transport of pests is a more potent route 
for invasive alien organisms to establish in New Zealand. However, the potential for 
aerial dispersal of pests from southeastern Australia is a direct threat to the 
plantation forests of New Zealand. A complete reliance upon the high risk site 
surveillance system to detect newly arrived pests would leave the plantation estate 
more vulnerable to invasion by aerially dispersed organisms. 
 

CONCLUSIONS 
Considering both the forest health estimate and pest detection purposes of the forest 
health surveillance system, it would appear that there are marked increases in 
performance of the system up to a survey intensity to 0.5%. Beyond 0.5% the 
increased benefits of increased search efforts are marginal. There is little difference 
between the performance of regular or stratified random survey (without size 
restriction) methods for forest health condition monitoring. Within the timeframe 
available for this project, we were unable to assess the performance of the stratified 
random sampling effort as a system for pest detection. It is likely that the stratified 
random system would perform similarly to the regular system for pest detection. The 
main difference would appear to be the significant extra effort required to stratify the 
survey at a resolution of 1 000 ha. It may also be the case that the regular surveying 
system is more efficient for field application insofar as the pattern of points to be 
surveyed lends itself clearly to a sampling route composed of a series of parallel 
transects. A regular survey also lends itself to taking on longitudinal study objectives, 
which may be an attractive property as we seek to address climate change issues, 
and we need to track changes in forest properties through time. 
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