

Lindsay Bulman New Zealand Forest Research Institute Ltd

Forest Biosecurity and Protection

Cyclaneusma needle-cast ~ current knowledge and knowledge gaps

March 2005

Symptoms

- Scattered individual trees are affected within a stand – susceptibility varies considerably between individuals
- The same individuals are affected from year to year
- Needles turn yellow, then brown
- Symptoms are visible in September/October, and April/May
- Needles detach very easily

Infection process

- Needles are susceptible to infection when >6 months old
- Main infection period is autumn/early winter
- Needles are cast primarily in spring, but a less severe cast occurs in autumn – resulting in two peak spore periods
- The autumn cast produces spores that continue the infection cycle because current year needles are susceptible to infection then
- Spores are produced throughout the year, after rainfall, on needles that are on the ground. Spores are airborne, so travel long distances
- Therefore: wet mild weather in autumn/early winter will lead to heavy needle-cast in spring

Population variation

- Morphological differences indicate that there are at least two types in New Zealand
- *C. minus* 'simile' is more common than *C. minus* 'verum'
- C. minus 'simile' is found more often in the North Island

Auckland and Northland, East Cape, Bay of Plenty are the most severely affected regions (approx. 20% of trees have disease severity of over 40%)

 Hawke's Bay, Canterbury, Nelson have the least disease

Distribution

Microsite and crop effects

- Disease severity is worst in moist sites (i.e. gullies or high altitude sites prone to mist)
- Disease is most severe in trees aged between 6 and 15 years.
- Trees younger than 6 years or older than 20 years are rarely affected

Impact – volume growth loss

 Cyclaneusma causes significant growth loss – average disease of 80% resulted in 60% volume loss

Impact – diameter growth loss

Impact – value loss

- When 50% of the crop is diseased, revenue reduction of \$3,200-\$3,600/ha may be expected (1984 dollars)
- Average loss in volume of 6.5% per annum is estimated for the national estate aged between 6 and 20 years
- Financial loss is estimated to be \$60m per annum

- Aerial spraying can be effective, but very expensive
- Pruning has no effect, because spores are released from needles in litter
- Genetic selection has focused on needle retention and not specifically Cyclaneusma
- Selections from dry areas had poorer needle retention and growth when planted in Cyclaneusma-prone regions
- However, selection for Cyclaneusma resistance has resulted – *Pinus radiata* from the Cambria provenance was identified as highly susceptible to needle-cast and removed from the breeding programme

- Selective thinning removes susceptible trees
- Selection must be carried out when symptoms are present – in Spring and when trees are at least 6 years old

Treatment		Disease incidence (%)	Disease severity (%)
Thinned age 4 or 5	After first thinning	48	64
Thinned age 7 or 8	After first thinning	23	62
Thinned age 10	After second thinning	25	53
Thinned age 10	After second thinning	3	50

 Selective thinning removes susceptible trees resulting in lower disease and increased increment

Knowledge gaps

Genetics

- Genetic gains specifically for Cyclaneusma
- Inoculation of aged cuttings

Population variation

What is the genetic variability of Cyclaneusma minus in NZ? How many types exist?

Physiological dynamics that cause Cyclaneusma to move from an endophyte to a pathogen

- Cyclaneusma is present in needles of healthy and susceptible trees
 - what initiates and causes disease in susceptible trees?
 - what factors are involved?

Future New Zealand research priorities

Genetics

- Assessing genetic gains trials specifically for Cyclaneusma
- ▶ Establishing new trials in Cyclaneusma-prone areas
- Glasshouse inoculation
- Gene-assisted selection

Selective thinning

- ▶ Examine economics of selective thinning (i.e. pruning all trees, thinning in spring only, delaying thinning)
- Effect of infection on wood properties

Future New Zealand research priorities

Habitat preference modelling

- Development of a GIS-based overlay to identify high risk microsites at a sub-stand level
- Use of disease mapping tools (i.e. hyperspectural, digital photographs) with climate/topography overlays
- Leading to a DSS that enables targeted planting of resistant breeds or alternative species