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EXECUTIVE SUMMARY 

 
Phenotyping has been a reality for aiding the selection of optimal crops for specific environments for 
decades in a number of horticultural industries. Until recently, phenotyping for forest managers and 
tree breeders has been difficult due to the size of the crop and the length of rotation making 
measurement and study difficult. With the advent of affordable, accurate and non-destructive 
technologies, phenotyping is becoming a reality for forestry. These tools must now be refined and 
harnessed to benefit forestry. 
 
In this study, two novel, high-density laser scanners are assessed for their ability to derive phenotypic 
measurements from a mature stand of Pinus radiata. Mobile laser scanning (MLS) under the forest 
canopy and UAV laser scanning (ULS) above the forest canopy are combined and contrasted to 
assess their efficacy in deriving tree form measurements including tree height, diameter at breast 
height, stem volume, and whorl detection. Deep learning-based methods are also assessed as a 
means of streamlining the delineation of individual trees. 
 
The findings of this study indicate that the technology shows strong potential for increasing 
throughput for phenotyping platforms. A key finding of this study has been that, from the ground, 
MLS is able to derive canopy heights at a comparable level of precision and accuracy to a high-end 
ULS scanner from the air (R² = 0.94, RMSE = 3.02%), negating the need for capturing above-canopy 
data to obtain accurate tree heights and canopy height models. We also observed strong agreement 
between field measurements and MLS-derived estimates of stem volume (R² = 0.99, RMSE = 
10.16% and DBH R² = 0.90, RMSE = 9.95%). 
 
Our findings indicate that ULS is less useful for the characterisation of stem form; however, deep 
learning methods to delineate individual trees from ULS data show promise for characterising these 
attributes in the future. 
 
Overall, the work presented in this technical note demonstrates that these technologies hold strong 
potential for advancing tree measurement practices in forestry, with exciting implications for 
phenotyping our forests. 
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1. INTRODUCTION 

Digital phenotyping is an emerging science that uses non-invasive techniques such as laser 
scanning to assess the interaction between genetics, environmental factors and silviculture (GxExS) 
to guide the selection of the most productive trees for a given environment (Costa, et al., 2018). In 
forestry, phenotyping is emerging as a means of selecting the right tree, for the right place, for the 
right purpose, and to increase the efficiency of tree breeding programmes (Dungey, et al., 2018). 
Current phenotyping methodologies require the combination of GxExS data with the physical 
description of tree form (Pont, et al., 2020). The traditional methods for the physical description of 
tree form are manual, time-consuming, costly, and error-prone, severely limiting the throughput 
(Bombrun, et al., 2020; Dungey, et al., 2018). 
 
Remote sensing is a useful tool for in situ tree phenotyping, with data from sources that include 
airborne laser scanning (ALS) being useful for deriving information such as slope, aspect, and 
geographical location (Pont, et al., 2020). ALS has been researched extensively for tree height 
assessment, stand density and crown metrics (Hartley, et al., 2020; Pearse, et al., 2019; Pont, 2016; 
Pont, et al., 2020; Watt, et al., 2014). However, ALS is limited in its ability to describe stem form. The 
heavy occlusion caused by the dense forest canopy and the lower pulse density of ALS provides 
extremely sparse characterisation of the tree stems that make it unsuitable for comprehensive tree 
form assessment (Windrim, et al., 2020). 
 
Alternate methods for the description of tree form have largely been focused on terrestrial laser 
scanning (TLS). Statically-mounted TLS has been explored for forestry applications for nearly two 
decades (Hopkinson, et al., 2004; Lovell, et al., 2003; Thies, et al., 2004; Watt, et al., 2005). 
Research has focused on topics such as scanning forestry plots, deriving tree form metrics and 
assessing the efficacy of TLS as a tool for carrying out forest inventory (Abegg, et al., 2017; Kankare, 
et al., 2014; Liang, et al., 2016; Mengesha, et al., 2015; Newnham, et al., 2015; Raumonen, et al., 
2015). This research has shown that TLS is capable of very accurate measurement of tree form 
metrics (Liang, et al., 2016) but the technology has not seen broad operational use due to the 
impractical nature of capturing and aligning multiple scans from a static scanner to achieve plot-level 
coverage (Newnham, et al., 2015). TLS also produces less stem returns from the upper stem due to 
occlusion from branching (Liang, et al., 2018). This can also lead to reduced accuracy in height 
measurement if the tree tip is occluded (Cabo, Del Pozo, et al., 2018). 
 
Mobile laser scanning (MLS) as an alternate technology to TLS has been developed for forest 
environments since 2013 (Holopainen, et al., 2013). These systems are similar to ALS, in that they 
combine a laser scanner with an inertial measurement unit (IMU) and global navigation satellite 
system (GNSS) onto a moving platform (Bauwens, et al., 2016). Arguably it was not until the GNSS 
component was replaced with simultaneous localisation and mapping (SLAM) algorithms that these 
systems became truly suited to the forest environment. SLAM algorithms are GNSS-independent 
and enable the creation of spatially accurate point clouds in GNSS-denied environments such as 
beneath a forest canopy. These more lightweight MLS systems are often referred to as personal, 
handheld or backpack laser scanners depending on the configuration of the unit. In recent years 
there has been a growing body of research focused on MLS application within forestry (Bauwens, et 
al., 2016; Cabo, Del Pozo, et al., 2018; Holopainen, et al., 2013; Hyyppä, et al., 2020; Ryding, et al., 
2015). By their very nature, MLS systems achieve more complete coverage of a forest environment 
in a shorter timeframe, addressing the issues that make TLS impractical for forest inventory (Shao, 
et al., 2020). The increased mobility of these units comes at a price, however, as MLS are often 
restricted to integrating lightweight scanners that have large beam divergence and lower power, 
which limit their range and accuracy (Bienert, et al., 2018; Tang, et al., 2015), specifically when 
characterising the upper part of tree stems to a greater extent than TLS (Bienert, et al., 2018). 
 
Another alternative to traditional tree form description techniques is UAV laser scanning (ULS). ULS 
takes advantage of the miniaturisation of airborne laser scanning technology in recent years, 
allowing for close-range aerial captures over forested areas with much higher pulse densities. ULS 
systems vary in their accuracy depending on the scanner utilised, with high-end options including 
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the Riegl VUX range, and more affordable options utilising re-purposed automotive laser scanners, 
such as the Velodyne Puck range (Kellner, et al., 2019). As with ALS, ULS still suffers from the same 
occlusion issues caused by the forest canopy. However, owing to the closer range, and vastly 
increased pulse density, stem characterisation methods for TLS data have been effectively adapted 
to ULS data (Bruggisser, et al., 2020; Hyyppä, et al., 2020; Torresan, et al., 2020). 
 
Algorithms for tree form description from point clouds have been developed for a range of metrics 
including tree stem segmentation (Zhang, et al., 2019), diameter at breast height DBH (Bu, et al., 
2016), stem straightness (Mengesha, et al., 2015), stem volume (Buck, et al., 2019), and branch 
characterisation (Boudon, et al., 2014). The majority of these algorithms work on heuristic principles, 
or what can be thought of as “traditional algorithms”. Increasingly, machine learning and especially 
deep learning (DL) are being applied to TLS data. Studies have been devoted to the application of 
DL for individual tree crown delineation, stem delineation and stem volume from TLS and even ALS 
point clouds (Braga, et al., 2020; Windrim, et al., 2019; Windrim, et al., 2020; Xi, et al., 2018). 
 
This tech note presents the results from a comparison of tree form metrics derived from MLS and 
ULS data utilising various algorithms with traditional field measurements. The traditional 
measurements are considered to be the baseline for this study. The results of this study will then be 
discussed with relevance to the applicability of these tools in the context of commercial forestry. 
 

2. Materials 

2.1. STUDY SITE 

The study site selected for this research was a genetics trial archive located in the Scion nursery in 
Rotorua (Figure 1). The trial stand was approximately two hectares in size and comprised Pinus 
radiata D. don with an age range of eighteen to twenty years. Details of the tree size in the trial can 
be found in Table 1 and Figure 2. 
 

 
 
Figure 1. Map of the study site showing the area of the trial stand (purple box) and the locations of tree stems in the study 
(blue polygons). Insets show location of trial site in relation to the Rotorua region and New Zealand (NZ). 
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Table 1. Table showing height and diameter distributions of the studied trees with mean and standard distribution (in 

brackets). 

No. Trees 
DBH Range 
(cm) 

Mean  
DBH (SD)  
(cm)  

Height Range 
(m) 

Mean  
Height (SD)  
(m)  

884 2.2-67.1 34.65 (12.81) 1.7-34.4 23.9 (7.93) 

 
The stand is located on a very flat site and is regularly mowed for access. Consequently, it has very 
little understory, which is limited to small patches of low-growing blackberry between the lines of 
trees. The aim of this study was to assess the absolute accuracy of phenotypic measurements from 
laser-scanned point clouds against field measurements. This site was, therefore, an ideal choice for 
this study, providing idealised conditions with little noise from understory or terrain undulations to 
confound the measurements. 

 
Figure 2. Plots showing distribution of diameter (a) and height (b) for the 884 trees in this study. 

2.2. FIELD DATA 

Ground validation for this study was carried out in the form of traditional forest mensuration. Pre-
harvest inventory (PHI) was conducted on every tree within the stand following the PlotSafe 
methodology and utilising the RAD05 cruising dictionary (CNI Regional YTGEN User Group, 2007). 
Phenotypic traits were measured at the tree level and included DBH measured at 1.4 m, tree height, 
stem straightness, branch size, green crown height, and stem malformation. PHI was conducted 
between the 12th and 16th October 2020. Due to the time elapsed between field measurements and 
laser scanning, remeasurement of DBH was carried out between the 11th and 13th August 2021.  
 
In addition to the mensuration data, a sub-sample of twelve trees were intensively measured using 
a crown mapping procedure. For this exercise, more intensive phenotypic measurement was 
undertaken for selected trees including measurements of internodal diameters, internodal distances, 
whorl height above ground level (AGL) and branch diameters for the entire stem up to a height of 20 
m. This involved a crew of two certified climbers climbing each tree to collect measurements. Heights 
and internodal measurements were measured with a 50 m nylon measuring tape that was secured 
at the base of the tree and in the tree crown (Figure 3). Internodal diameters were measured with a 
DBH tape and branch diameters were measured with electronic Vernier callipers with an accuracy 
of 0.2 mm. 
 



5 

RFP-T014 Capture and extraction of phenotypic traits_G11.docx 

 
Figure 3. Image showing measurements being recorded to a mobile application during crown mapping. 

2.3. GROUND CONTROL: CLOUDREG 

Aligning the inventory measurements with field measurements in mature forestry trials is traditionally 
a difficult exercise owing to the low accuracy of GNSS data captured beneath the forest canopy 
(Dash, et al., 2019). Throughout the Resilient Forests programme, Scion has developed a system 
called CloudReg to achieve highly accurate co-registration of airborne and terrestrial remotely 
sensed data sets. This allows for precise plot maps, and in turn the confidence to enable tree-level 
comparisons of field and remotely sensed data sets. 
 

 
Figure 4. Image of target deployed to the site as a ground control point. 

Prior to data capture, ground control was established across the site utilising Scion’s CloudReg 
methodology. Ground control points (GCPs) were established on paths and open ground around the 
perimeter of the stand (Figure 1) utilising six 1 m² targets coated in highly reflective material (Figure 
4). These targets were then left on site for both the UAV and Hovermap data captures. These targets 
are clearly visible within all of the intensity-colourised lidar point clouds to allow for accurate co-
registration of the various data sets. 
 
Once the data had been captured and the ULS and MLS point clouds were processed, the two data 
sets were loaded into the CloudCompare software package (CloudCompare, version 2.12 alpha; 
CloudCompare, Paris, France). The point clouds were coloured by backscatter intensity values and, 
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using the Align (point pairs picking) tool, were co-registered by aligning the GCPs within both data 
sets. Hovermap data from the backpack configuration does not contain GNSS data, and therefore it 
is important to align the Hovermap data to the MiniVUX data, which is georeferenced. 

2.4. UAV DATA 

ULS data for this study were captured using a LidarUSA snoopy V-series lidar system, with an 
integrated Riegl MiniVUX-1 UAV laser scanner (hereafter referred to as MiniVUX). MiniVUX data 
capture was carried out using a DJI Matrice 600 Pro hexacopter (DJI Ltd., Shenzen, China). 
 

 
Figure 5. Flight plan for MiniVUX data capture was planned in four directions to achieve optimal coverage throughout the 
stand. 

Flight planning was undertaken using the UgCS flight controller software (SPH Engineering, Riga, 
Latvia). In order to maximise point coverage throughout the stand, a flight plan was created to 
maximise point density. In line with recommendations from Wallace, et al. (2012), flights were carried 
out at 55 metres AGL to ensure a 20 m vertical separation between the tallest tree in the stand and 
the craft, whilst ensuring minimal beam divergence and higher point accuracy. The stand was flown 
in four directions with a 10-metre line-spacing between flight passes to increase pulse density and 
incidences of pulses penetrating gaps in the canopy. The first flight plan included flights both along 
and perpendicular to the rows of trees. This flight plan was then duplicated and rotated by 45° to 
create the second flight plan (Figure 5). MiniVUX data was captured on the 5th May 2021 and the 
resulting point cloud had an average pulse density of 1818 pulses per square metre (ppm²). 

2.5. MLS DATA 

Ground-based lidar data were captured using the Hovermap mobile laser scanner (MLS) (Emesent, 
Milton, QLD, Australia). The Hovermap comprises a Velodyne Puck-LITE (VLP-16) laser scanner, 
which houses an array of 16 lasers that spin 360° about a single axis. The scanner is also mounted 
on a rotating arm, which allows the whole scanner to rotate about 360° on a perpendicular plane 
giving the unit full spherical 360° coverage while the system is in a stationary position. The system 
is SLAM-based, enabling capture of coherent point clouds below the canopy independent of GNSS 
signal availability. The Hovermap can be utilised in multiple formats, as a handheld, backpack, 
vehicle-mounted or UAV-mounted MLS system. When integrated with a UAV, the Hovermap can 
simultaneously collect data and act as an advanced collision avoidance system for the craft it is 
mounted to. These collision avoidance strategies can be further broken down into two key modes: 
autonomy levels 1 and 2 (AL1, AL2). In AL1 mode the pilot flies the craft manually with the Hovermap 
enabling collision avoidance and altitude lock. AL2 is a waypoint-based autonomous flight mode that 
utilises the Hovermap to provide detect and avoid capabilities for the craft. 
 
To assess the practicality of the Hovermap, the stand was scanned utilising three of the scanner 
configurations: backpack, AL1 and AL2 models. The Hovermap was integrated with a DJI Matrice 
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210 (DJI Ltd., Shenzen, China) for the AL1 and AL2 flights. To test the limitations of the scanner, a 
path was planned so that the Hovermap went along either side of each row of trees within the stand 
approximately shoulder height. To create an accurate point cloud, the SLAM algorithm requires a 
process of “closing the loop” in which the scanner is required to regularly revisit areas previously 
scanned to aid in tying new scenes to the existing point cloud. The selected flight and walking path 
conformed well with these specifications. The trajectory of the backpack capture plan can be found 
in Figure 6. The same path was followed with the AL1 and AL2 flights. 
 

 
Figure 6. Trajectory of the Hovermap backpack scan (in black) overlaid on stem locations within the trial, coloured by height 

(blue = low, green = high). 

Due to battery limitations of the craft, a total of 19 flights were required with the Hovermap in AL1 
configuration to cover the site, averaging a little over one row of trees per flight (approximately 170 
m). Consequently, multiple raw data files were created, which exponentially increased processing 
time further along the data processing pipeline. AL2 configuration utilised more battery power than 
AL1 and resulted in 40 raw data files, covering only half of a row per flight (approximately 85 metres). 
Due to these constraints, it was decided to use the backpack data set for this study, which created 
a point cloud with a pulse density of 22,256 ppm². Backpack data capture was carried out on the 28th 
July 2021. A comparison of the capture and processing constraints associated with each 
configuration of the Hovermap trialled can be found in Table 2.  
 
Table 2. Table showing the capture and processing times for the assessed Hovermap configurations along with time for 
capture of PHI measurement. 

Configuration Time to 
capture 
(hrs:mins) 

No. raw 
files 
created 

Processing 
time 
(hrs:mins) 

Time to 
merge 
(hrs:mins) 

Total time 
(hrs:mins) 

Backpack 0:45 1 4:00 NA 4:45 
AL1 2:30 19 2:15 4:00 9:00 
AL2 12:30 40 11:15 4:30 28:15 
Field Inventory 36:00 NA NA NA 36:00 
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3. METHODOLOGY 

3.1. PROCESSING RAW DATA 

3.1.1.    MINIVUX 

To derive point clouds in the universal LAS data format, all ULS data were processed from the 
manufacturers native data formats utilising the Inertial Explorer (NovAtel Inc., Calgary, AB, Canada), 
and ScanLook PC (Fagerman Technologies, Inc., Somerville, AL, USA) software packages. The 
Snoopy V-Series system utilises a PPK (post-processed kinematic) GNSS system to enhance the 
accuracy of the output point clouds. As such processing involves two stages, first the GNSS rover 
data is post-processed utilising the data from the GNSS base station within the Inertial Explorer 
software. During this initial step, filtering was also applied to remove noise points within a minimum 
distance from the scanner. Finally, the ScanLook PC software was used to apply boresight 
calibration angles and lever-arm offsets to the point cloud data, removing any inherent errors. 

3.1.2.    HOVERMAP 

Raw data files from the Hovermap were processed utilising the Emesent software package version 
1.5 (Emesent, Milton, QLD, Australia). Data files were loaded into the software package, which then 
uses Emesent’s proprietary SLAM algorithms to generate a point cloud in the LAS format. To 
increase the quality of matches, some parameters were adjusted from the default, including setting 
a spherical search radius of 1.5 m, a sliding window size of 8 seconds, and global iterations for 
registration set to 14.  
 
For trials with the AL1 and AL2 Hovermap configurations, the multiple point clouds were merged 
using the Emesent software. There are two main methods for merging point clouds using Emesent’s 
SLAM-based software package: one utilises the GNSS tracklog from the data capture; the other 
option for point clouds without a GNSS feed, involves a process of manual alignment within 
CloudCompare prior to merging within the Emesent software. There was sufficient GNSS data 
recorded below the forest canopy in this study and so the former option was utilised. Neither of the 
AL1 or AL2 data sets were analysed within this study, further than for the assessment of processing 
times (see Table 2). 

3.2. POINT CLOUD PROCESSING AND ANALYSIS 

Processed MiniVUX point clouds were then denoised, ground classified, and height normalised using 
a combination of various algorithms within the LAStools software (Isenburg, 2019). Processed 
Hovermap data sets were first co-registered using Scion’s CloudReg methodology. Co-registered 
point clouds were then put through a segmentation pipeline developed utilising multiple algorithms 
within the SimpleForest software package (Hackenberg, et al., 2021). The segmentation pipeline 
consisted of four main steps: (i) ground classification and height normalisation, (ii) stem cloud 
generation, (iii) individual tree segmentation, and (iv) segment post-processing. The stem cloud 
generated in step three was used to create a stem map of the study site, which was later validated 
in the field using a GIS-based mapping app and field observations. 

3.3. DERIVED METRICS 

The individual tree segments produced by the SimpleForest pipeline were used as inputs to a stem 
delineation algorithm in the TreeLS library in R (de Conto, et al., 2017). The detected stem points 
were then isolated and segmented into chunks using defined height intervals (5, 10 and 20 cm). 
Spheres were fitted to each chunk and fitting parameters, including the diameter, centre coordinates 
and fitting error for each sphere were calculated. The resulting diameter profiles for each individual 
stem were then used to derive phenotypic metrics including DBH, volume, swellings in the stem 
(nodes) and stem height. Individual tree point cloud processing and parameter derivation was done 
in R statistical software package (R Core Team, 2020).  
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A custom algorithm was developed in R to derive volume from the stem profiles. The algorithm fits 
spheres to the stem, checking first if there are enough points in each stem segment (5 /10 /15 cm) 
to fit a circle or sphere. If there are insufficient points, an “NA” value is assigned to that segment and 
the algorithm continues to the next segment. A volume calculation algorithm then combines the 
individual volumes of these stacked spheres moving up the stem profile into a single stem volume. 
The algorithm only combines consecutively stacked spheres, and so the algorithm stops combining 
segments when it detects an “NA” in the stem profile, even if there are additional spheres above this 
gap (Figure 7). 
 
It is common practice in NZ to move the measurement of the DBH height from 1.4 m by a maximum 
of ±10 cm to avoid taking the measurement over swelling. Additional guidelines are followed when 
moving the DBH height along the stem to ensure accuracy of measurement (CNI Regional YTGEN 
User Group, 2007). In accordance with these guidelines, a variable height estimation method that 
used stem diameter profile to detect significant changes in stem shape at every 10cm interval was 
instigated when extracting DBH from individual tree segments.  
 
We used the stem diameter profile (5/10/15 cm) of each tree to detect the segments that showed a 

significant increase in diameter compared to their neighbouring segments and marked them as 

potential nodal swellings. The heights of these nodal swellings were later matched with field 

measured whorl heights. 

 
Tree heights calculated from the SimpleForest pipeline displayed a strong negative bias due to 
aggressive noise filtering. To assess the height accuracy of each laser scanner, tree height was 
derived instead through a peak detection methodology. First, stem locations from the SimpleForest 
pipeline were used to create a shapefile of the stem locations at ground level. A buffer of 1 m was 
applied to each of the stem circles to create a new shapefile representing a search radius for the 
tree peak. Point clouds from the MiniVUX and Hovermap were then ground classified, height 
normalised and noise filtered to remove spurious points above the canopy using the lidR package 
(Roussel, et al., 2018) in R. The shapefile of potential tree peak locations was then used to calculate 
the maximum point height for each of the trees. 
 

 
Figure 7. Image showing sphere fitting to a delineated tree stem (left), and stem points (right). 
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3.4. DEEP LEARNING SEGMENTATION METHODOLOGY 

The use of deep learning (DL) was explored to automate stem segmentation in individual tree point 
clouds. Stem and foliage points from 135 MiniVUX tree point clouds were manually identified in 
CloudCompare as accurately as possible for use as annotations for model training. Due to the small 
data set size, 3-fold cross validation was implemented, with 10 trees for validation in each fold, and 
8 for testing, giving a total of 24 trees to evaluate the models performance on the two classes – stem 
and foliage (branches and needles). 
 
A 3D convolutional neural network Voxel 3D-FCN, which is a fusion of VoxNet (Maturana, et al., 
2015) and V-net (Milletari, et al., 2016), was implemented in Forest3Dapp (Windrim, et al., 2020), 
and trained using the Python Tensorflow library (Abadi, et al., 2016) to segment voxels into stem 
and foliage. For input into Voxel 3D-FCN, individual tree point clouds are first voxelised into a 150 x 
150 x 100 grid. At prediction time, the tree is voxelised and ingested by the trained model for 
segmentation. The K-D Tree algorithm (Bentley, 1975) is then used to map the segmented point 
clouds back to their original resolution by finding the nearest points. 

3.5. ACCURACY STATISTICS 

Statistics for precision and bias were calculated using statistical methods common to studies for the 
comparison of field and laser scanning metrics (Bauwens, et al., 2016; Hartley, et al., 2020) including 
root mean square error (RMSE) and mean bias error (MBE): 
 

𝑅2 =
∑ (𝑖 �̂�𝑖 − �̅�)2

∑ (𝑖 𝑦𝑖 − �̅�)2
 

 

 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖

𝑛
𝑖=1 − 𝑦𝑖)2

𝑛
 

 

 

𝑀𝐵𝐸 =
1

𝑛
∑ 𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

 

 

where 𝑦𝑖 represents field measurements, �̂�𝑖 represents predicted measurements from point clouds, 

�̅� is the average of the observed values and 𝑛 represents the sample size. The relative RMSE 
(RMSE%) was calculated through the expression of the RMSE as a percentage of the average 
observed values: 100(RMSE/�̅�). 
 
Metrics used to evaluate the per-point 3D tree segmentation accuracy were the, precision, and recall 
for classi (stem and foliage) and the intersection over union (IoU) for stem segmentation: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
 

 
 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
 

 
 

𝐼𝑂𝑈𝑖 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛
=

𝑐𝑜𝑢𝑛𝑡(𝑦𝑖 ∩ �̂�𝑖)

𝑐𝑜𝑢𝑛𝑡(𝑦𝑖 ∪ �̂�𝑖)
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Where TP are the number of correct predictions, FP are the number of false predictions and FN are 
the number of false omissions. 𝑦𝑖 ∩  �̂�𝑖 represents the correctly predicted point classifications for 
classi and  (𝑦𝑖 ∪ �̂�𝑖) represents the union of predicted and observed points for classi which is the 
summation of TP, FP, and FN. Scores for IOU range from 0 to 1 with 1 being a perfect prediction. 
 
For assessing the accuracy of the whorl detection, percentage accuracy was calculated as per 
Pyörälä, et al. (2018): 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =  
𝑛𝑎

𝑛𝑚 + 𝑛𝑓𝑝
 

 
Where 𝑛𝑎 represents the number of identified whorls, 𝑛𝑚 represents the number of field measured 
whorls and 𝑛𝑓𝑝 represents the number of falsely predicted whorls. 

4. RESULTS 

4.1. TREE STEM SEGMENTATION USING DEEP LEARNING 

Table 3. Table showing results of stem segmentation along with foliage and branching segmentation as IoU, precision and 

recall. Results displayed as mean value across all trees with standard deviation in brackets. 

 
 
 
 
 
 
 

 

 
Figure 8. Figure showing profile view of 4 of the study trees with stems segmented in red manually (a) and by Voxel 3D-
FCN model (b). 

The results of the tree segmentation algorithm (Table 3) showed a high level of recall for stem 
identification (0.91) and branch and foliar identification (0.85). There was a high level of precision for 
branch and foliar point identification (0.99); however, precision for stem classification was relatively 
low (0.27). The IoU for the point classification of foliage and branching was also high at 0.84, with 

Tree 
component 

IoU Precision Recall 

Stem 0.26 (0.11) 0.27 (0.16) 0.91 (0.16) 

Foliage and 
branching 

0.84 (0.17) 0.99 (0.01) 0.85 (0.17) 
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IoU for stem point classification again performing relatively poorly at 0.26. Figure 8 shows a 
comparison of four of the trees segmented in the test data set. 

4.2. DIAMETER AT BREAST HEIGHT 

Comparison of predicted diameter at breast height (DBH) from the Hovermap with field measured 
DBH returned a strong correlation of R² = 0.9 (Figure 9f). The precision of the Hovermap 
measurements was relatively high with RMSE of 3.42 cm/9.95%, and an MBE of ~0 cm. 

4.3. TREE HEIGHT PREDICTION 

The results for both MiniVUX and Hovermap data both showed a relatively weak correlation with 
field-measured heights (R² = 0.24 and 0.22 respectively) (Figure 9a and 9c). The RMSE was high 
for both scanners at ~28.6% with a mean bias error of -3.57 m for the MiniVUX and -3.46 m for the 
Hovermap  
(Table 4). Further analysis highlighted that most of the significantly over-estimated heights were for 
suppressed trees, or trees with broken tops. Once suppressed and broken trees (anything <20 m in 
height) were removed from the analyses, correlation with field measurements increased to R² values 
of 0.42 for MiniVUX and 0.41 for Hovermap (Figure 9b and 9d), and improvements to RMSE and 
MBE with 10.14% and -1.32 m for MiniVUX and 9.9% and -1.18 m for Hovermap (Table 4). 
Correlation between the MiniVUX and Hovermap sensors was very strong with an R² value of 0.94 
(Figure 9e), an RMSE of 3.02% and an MBE of 0.11 m (Table 4). 
 

Table 4. Table showing the precision and bias for comparisons between point cloud-derived height estimations and field 
measured heights. 

 

Variables R² RMSE (m) RMSE (%) MBE (m) 

MiniVUX vs Field 0.24 7.19 28.60 -3.57 
MiniVUX vs Field (minus 
suppressed) 

0.42 2.85 10.14 -1.32 

Hovermap vs Field 0.22 7.19 28.57 -3.46 
Hovermap vs Field (minus 
suppressed) 

0.41 2.78 9.90 -1.18 

MiniVUX vs Hovermap 0.94 0.87 3.02 0.11 
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Figure 9. Correlation between field measurements and predicted height from MiniVUX data with (a) and without (b) 
suppressed trees, and from Hovermap map data with (c) and without (d) suppressed trees. Plot (e) shows correlation 
between MiniVUX and Hovermap heights. Plot (f) shows correlation between field measured and Hovermap predicted 

DBH. Dashed lines represent 1:1 line and red lines represent a fitted linear model with linear equation and R² shown. 

Table 5. Tree-level results of the volumetric calculations and whorl detection from Hovermap data. Results include the 
maximum height of stem included in the volume calculations by the algorithm, calculated stem volume, and the height of 
the highest whorl predictions for 5 cm, 10 cm and 20 cm configurations, with the mean heights. 

 Individual Tree Identifier  

A8 B23 C7 D14 E8 F19 G18 H7 J5 K1 L8 M7 Mean 

Max Ht (m) 13.9 14.0 10.5 
10.1
0 

17.9 10.8 12.9 9.1 17.1 15.8 18.9 17.9 14.07 

Stem volume (m³) 2.77 1.59 0.99 0.97 2.15 1.03 1.27 0.69 2.69 3.80 3.90 2.80 NA 

Max Ht Whorl (5 cm) 15.38 
16.0
3 

13.1
8 

16.3
8 

17.6
3 

16.6
8 

16.7
3 

14.7
3 

13.7
8 

15.4
3 

18.4
8 

17.4
8 

15.99 

Max Ht Whorl (10 
cm) 

16.1 16.9 15.4 18.1 17.5 18.8 18.1 
13.5
1 

17.1 15.9 18.6 17.6 16.97 

Max Ht Whorl (20 
cm) 

16.15 
17.1
5 

15.1
5 

19.1
5 

18.7
5 

18.9
5 

18.7
5 

15.1
6 

17.1
5 

16.3
5 

18.5
5 

19.3
5 

17.55 
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4.4. STEM VOLUME 

 

Figure 10. Correlation between field measurements for volume with volumes predicted from Hovermap data. Dashed line 
represents 1:1 line and red line represents a fitted linear model with linear equation and R² shown. 

Stem volume estimates from the Hovermap data showed a very strong correlation with field-
measured volumes with an R² value of 0.99 (Figure 10). Results had an RMSE of 0.21 m³ or 10.16%, 
with a mean bias error of 0.16 m³. Cylinder-fitting failures occurred at various heights for the trees 
assessed (Table 5). Consequently, stem volume is directly linked to the height up to which the 
algorithm was able to calculate volume.  

4.5. WHORL DETECTION 

Analysis of whorl detection was measured in two ways. First, the accuracy of whorl height 
measurements as predicted by the algorithm was assessed via a linear regression (Figure 11). This 
involved assessment of true positive whorl predictions only. Second, the ability of the algorithm to 
correctly identify whorls on each tree stem was assessed. The algorithm assesses stem diameters, 
averaged over a specified stem length, with neighbouring stem diameters. For assessment, the 
algorithm was tuned with 5 cm, 10 cm and 20 cm stem lengths.  
 
All three settings for the algorithm returned a very high strong correlation for whorl height prediction 
(R² = ~1.0), with an equally high level of precision (RMSE % ranging from 17 cm/1.88% to 26 cm 
2.73%) and a low level of bias, with all algorithms showing an MBE of ~1 cm (Table 6). The detection 
accuracy was, however, only moderate, ranging from 40.25% for the 5 cm tuning, and 42.41% for 
the 10 cm tuning (Table 6). The 20 cm configuration was able to characterise branches higher up 
the stem to a mean height of 17.55 m and a maximum of 19.35 m, compared to a mean of 16.97 m 
and maximum of 18.8 m for the 10 cm configuration, and 15.99 m and 18.48 m for the 5 cm 
configuration (Table 6). 

 
Figure 11. Correlation between field measured whorl heights with predicted whorl heights from the Hovermap data with 
whorl detection algorithm configured to stem segments of 5 cm (a), 10 cm (b) and 20 cm (c). Dashed lines represent 1:1 
line and red lines represent a fitted linear model with linear equation and R² shown. 
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Table 6. Results for whorl detection accuracy along with values for precision and bias for each of the three configurations 

of the detection algorithm. 

Tuning 
(cm) 

No. whorls 
measured 

No. Whorls 
detected 

No. True 
Positives 

No. False 
Positives 

No. False 
negatives 

R² 
RMSE  
(m) 

RMSE  
(%) 

MBE  
(m) 

Detection 
Accuracy 
(%) 

5 410 602 289 313 108 0.999 0.17 1.88 -0.01 40.25 

10 410 265 201 64 209 0.997 0.26 2.73 -0.01 42.41 

20 410 193 175 18 235 0.998 0.22 2.10 -0.01 40.89 

5. DISCUSSION 

In this study, a comprehensive data set was successfully captured, combining ultra-high density lidar 
point clouds, from both above and below the forest canopy, with field measurements. Additionally, 
the CloudReg methodology developed within this study enabled the accurate combination of all three 
streams of data at the individual tree level, which to the best of our knowledge has not been done at 
this scale before. Ancillary field measurements from crown mapping allowed for more intense 
scrutiny of metrics derived from the below-canopy laser scanning and give us greater confidence in 
the abilities of this technology. The results of our study overall were very promising for these novel, 
high-density laser scanning technologies. Methods for the extraction of a variety of phenotypic 
metrics were assessed and will be discussed below. 

5.1. TREE STEM SEGMENTATION USING DEEP LEARNING 

As a part of this study, one of our objectives was to assess the applicability of deep learning (DL) 
algorithms to single tree phenotyping.  
 
The ULS data captured as a part of this study, was captured in partnership with data utilised in 
another project (Puliti, et al., 2021). Using MiniVUX data only, this project took 135 trees from the 
data set and manually annotated them into their individual component parts: stem points and branch 
plus foliage points. Due to resource constraints and the large amounts of annotated data required to 
train DL models, it was decided to utilise this resource as training data for the study. Future study 
should be focused on application of these DL methodologies to Hovermap data to see how they 
compare. 
 
The results for the MiniVUX data set showed high recall for stem points, and low IoU and precision. 
The high recall score for the stem class means that most stem points manually identified in the point 
cloud were correctly predicted by the model. Precision and IoU scores were relatively low for stem, 
but high for foliage. This means that many foliage points were incorrectly segmented into the stem 
category. There are two likely key reasons for this (i) the up-sampling of the voxelised model 
predictions introduces errors as foliage points near the stem are assigned to the stem  class and (ii) 
the model was not able to properly learn what a stem looks like, likely due to the small training data 
set available (117 trees). For example, a few stems in the training data set had heavy leaning and 
forking which can be confusing for a model when these situations are underrepresented in the 
training examples. Despite low precision and IoU for the stem class, with the high recall score we 
would expect that robust stem reconstruction algorithms will be able to fit coherent stem models to 
the derived stem point clouds. In the same manner as circles are fitted to stem points, the mis-
segmented foliage points will be ignored as outliers, likely yielding good estimates of stem diameter 
from ULS in the future. Future investigations should focus on training these algorithms with much 
larger data sets, including additional variables in the model e.g. backscatter intensity values, and 
applying stem-reconstruction algorithms to the outputs to assess whether ULS data is suitable for 
deriving metrics such as DBH and stem volume. 
 
Our results were compared with Windrim, et al. (2020) who used the same methodology tested on 
31 (26 year old) and 39 (23 year old) P. radiata trees in plantation forests in NSW, Australia. Point 
cloud density was approximately 300-700 points per square metre. Windrim, et al. (2020) also report 
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relatively high scores for all metrics for foliage, and lower scores for stem. Their performance scores 
were generally better (e.g. foliage recall of 0.97-0.98 compared with 0.85 for this study), particularly 
for IoU and precision for the stem class; however, there was still room for improvement of stem 
detections. Differences in results may be due several factors such as (i) the appearance, variation 
and complexity of the trees – some of ours were leaning and forking; (ii) data capture 
parameters/point density; (iii) possible differences in manual annotation techniques (iv) size of 
training data sets – ours was twice as large, and (v) the way the training, validation, and testing sets 
were chosen.  
 
Their results suggest a better trade-off between precision and recall for the stem category, with recall 
values of 0.64-0.77 (compared to 0.91 in this study), and precision values of 0.51-0.60 (compared 
with 0.27). However, it could be argued that this is an undesirable trade-off as lower recall values 
mean that proportionately more stem points were mis-classified by the model compared to this study. 
This is likely to have negative flow on effects for post segmentation analysis, e.g. computing DBH 
via stem reconstruction when stem points are already sparse in the raw data. 

5.2. DIAMETER AT BREAST HEIGHT 

Attempts were made to derive DBH measurements from the MiniVUX data. Despite the substantial 
pulse density, there were still not enough stem returns to fit circles and derive a measurement. This 
finding is supported by a previous study using the MiniVUX in a lower-stocked stand of radiata that 
could not obtain sufficient stem points to derive any metrics other than height (Dash, et al., 2019). 
Other studies have had more success in characterising stem points using the MiniVUX in other forest 
types (Bruggisser, et al., 2020) which could suggest that species has a greater influence over the 
number stem returns. Future study should be focused on assessing this technology in different forest 
environments.  
 
Only 544 stems (61.5%) of the trees in this study were able to be segmented using the SimpleForest 
pipeline. We speculate that reasons for this could involve the inclusion of 79 trees that had a DBH 
of <10cm. The rigorous filtering required to derive stems from the larger trees could have removed 
a lot of these smaller diameter trees, which have previously been noted as difficult to measure with 
MLS (Ryding, et al., 2015). The stand also was planted in a 1.5 m x 5 m spacing and was never 
thinned, resulting in areas of high stem density, which caused some issues for the algorithm. Future 
study to refine the methods for stem delineation and particularly utilising DL methods is encouraged. 
 
Results of this study showed a high level of correlation between field and Hovermap measurements 
for DBH (R² = 0.90). Compared to the literature, our results fall short of the reported correlations of 
R² = 0.99 for other SLAM-based MLS studies (Bauwens, et al., 2016; Giannetti, et al., 2018) and 
studies focused on TLS, with an R² range of 0.93-0.99 (Bauwens, et al., 2016; Calders, et al., 2015; 
Chen, et al., 2019; Giannetti, et al., 2018). The precision of the DBH measurements (RMSE = 3.42 
cm/9.95%) was also towards the lower end of results reported in the literature for TLS studies (RMSE 
= 1.13-3.37cm/5.4-13.4%) (Bauwens, et al., 2016; Calders, et al., 2015; Čerňava, et al., 2017; Chen, 
et al., 2019; Giannetti, et al., 2018; Hyyppä, et al., 2020) and for SLAM-based MLS studies (1.11-
2.9 cm/3.4-23%) (Bauwens, et al., 2016; Giannetti, et al., 2018; Hyyppä, et al., 2020; Ryding, et al., 
2015).  
 
Tuning of the variable height DBH algorithm developed in this study could be one reason for the 
lower levels of correlation and precision In accordance with field measurement practice in NZ (CNI 
Regional YTGEN User Group, 2007), DBH was measured within 10 cm of 1.4 m above the ground. 
If there was swelling, DBH was calculated from measurements were taken from two internodal 
sections at equal distances above and below the swollen 1.4 mark in what is termed a “split”. When 
removing the split measurements from the data set, improvements to the RMSE of 0.08cm/0.18% 
were observed. Another reason could be due to the accuracy of field measurements. Although the 
utmost care was taken to ensure the accuracy of measurements, human error cannot be discounted 
from the field measurements and some obvious errors were noted and removed. To avoid this 
scenario, other studies have compared MLS data with TLS data (Bauwens, et al., 2016; Cabo, Del 
Pozo, et al., 2018; Ryding, et al., 2015).  
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5.3. HEIGHT 

Levels of precision and correlation between both the Hovermap (R² = 0.22/ RMSE = 7.19 m /28.57%) 
and the MiniVUX (R² = 0.24/ RMSE of 7.9 m/28.6%) with field data were relatively low. When 
compared to the literature, this is unusually weak with previous studies on TLS reporting an RMSE 
of between 0.54 m and 6 m (Cabo, Ordóñez, et al., 2018; Fleck, et al., 2011; Huang, et al., 2011; 
Liang, et al., 2013; Maas, et al., 2008; Moskal, et al., 2012) and R² values ranging from 0.57 to 0.95 
(Fleck, et al., 2011; Huang, et al., 2011; Moskal, et al., 2012). Results in the literature for ULS also 
show a much higher level of correlation with R² values ranging from 0.76 to 0.97 (Camarretta, et al., 
2020; Corte, et al., 2020; Jaakkola, et al., 2017; Puliti, et al., 2020; Sankey, et al., 2017) and precision 
with RMSE 0.72% to 7.91% (Corte, et al., 2020; Hyyppä, et al., 2020; Jaakkola, et al., 2017; Liang, 
et al., 2019; Puliti, et al., 2020). These poor results can largely be attributed to the over-estimation 
of height for suppressed trees within the stand. Figure 12 shows an example of two suppressed 
trees which were overestimated by ~15 m by both scanners.  
 

 
Figure 12. Nadir view of two suppressed tree in the CHM, and inset as a transect, highlighting the issue of using peak-
detection for suppressed trees. 

When the suppressed and broken trees were removed from the results of this study, significant 
improvements in agreement (R² = 0.42 and 0.41) and precision (RMSE 2.85 m/10.14% and 2.78 
m/9.9%) were observed for the MiniVUX and Hovermap scanners respectively. This is consistent 
with findings of a previous study, which found a much higher level of precision with unbroken trees 
(RMSE 6.8%) compared with broken trees (RMSE = 56%), the inclusion of which significantly 
affected overall precision (RMSE = 15%) (Dash, et al., 2019).  
 
The negative effect of suppressed trees on the results implies that the peak detection methodology 
is not appropriate for single tree-level height measurement in mature stands. This is a common 
finding in the literature, and alternate methods for tree height detection have been proposed to 
compensate for this (Ayrey, et al., 2017). Future studies should look to apply these algorithms to 
MLS and ULS at an individual tree level to assess their efficacy.  
 
The potential impact of the time lag between data captures must also be considered. Comparisons 
with a prior MiniVUX data capture of the site reveal an average 1.45 m increase in peak height from 
May 2020 to May 2021. Due to delays in the project cause by COVID-19, the MiniVUX and Hovermap 
data sets were captured 9 months and 11 months respectively after the field data.  
 
Additionally, tree height is notoriously difficult to capture in the field and even an experienced 
mensuration forester can have trouble accurately attaining height due to occlusion, tree lean or inter-
twined tree tops (Wang, et al., 2019). To remove this potential source of error, the field heights were 
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replaced with MiniVUX heights based on findings from a previous study showing that the MiniVUX 
is capable of measuring tree heights with a high level of precision and accuracy (R² = 0.99, RMSE 
= 5.91%) (Hartley, et al., 2020). The results were extremely encouraging, demonstrating a strong 
correlation (R² = 0.94) and a low level of error, with an RMSE of 0.87 m. Interestingly, the MBE of 
11 cm between the two scanners indicated that the estimates from the Hovermap were slightly higher 
than the MiniVUX. This would also suggest that the Hovermap may be capable of more accurate 
measurements of mature trees from the ground than the MiniVUX can obtain from the air, as previous 
studies have found the MiniVUX to have a slight negative bias (MBE = 0.05m) (Hartley, et al., 2020). 
This is a significant finding, as previous research has indicated that TLS and MLS are both prone to 
underprediction of tree height due to the low range of the scanners, and the occlusion caused by 
branching (Cabo, Del Pozo, et al., 2018). 

5.4. STEM VOLUME 

Results from stem volume assessments found that the Hovermap estimates were very strongly 
correlated with field measurements (R² = 0.99). Estimates demonstrated a moderately high level of 
precision (RMSE = 0.21 m³/10.16%) and a tendency to underestimate volumes (MBE = 0.16 m³). 
These findings fit well with existing studies that have shown underestimation of between 6.8% and 
15% of total stem volume (Dassot, et al., 2012; Hyyppä, et al., 2020; Murphy, 2008; Saarinen, et al., 
2017). Of these studies, the closest methodology to that used in this study reported a general 
underestimation of stem volume of up to 10% when comparing TLS to destructive sampling methods 
(Dassot, et al., 2012).  
 
There was a slight inversely proportionate decrease in accuracy with an increase of total stem 
volume (Figure 10). As expected, the volume per tree is firmly related to the height up the stem up 
to which the algorithm was able to derive volume (Table 5). One possible reason for this increase in 
volumetric error could be associated with an increase in the diametric error of the point cloud higher 
up the stem. This would manifest itself as greater error in tree volumes that include a greater 
proportion of stem length. This is not an uncommon phenomenon, and has been observed in other 
studies using TLS and ULS (Brede, et al., 2019; Bruggisser, et al., 2020; Maas, et al., 2008; Wang, 
et al., 2016).  
 
On average, the volumetric algorithms deployed in this study were able to calculate volumes up to 
~14 m, with a minimum and maximum height of 9.1 m and 18.9 m. In their study, Bruggisser, et al. 
(2020), calculated that 71.9% of total stem volume could be found within the first 10 m of the stem. 
Using this logic, measurements from the Hovermap should be able to account for a minimum of two 
thirds of the tree's volume with an accuracy of ~90%. Future research should be focused on better 
understanding the interaction between stem curve and diametric error for the Hovermap. A better 
understanding of this relationship, along with the development of methods to derive volume from 
areas of the stem point cloud with lower pulse density, could aid in the development of usable models 
for deriving stem volume from Hovermap point clouds. 

5.5. WHORL DETECTION 

All three configurations of the whorl detection algorithm showed high levels of precision (Figure 11) 
and correlation (Table 6) with field measurements for whorl height when manually aligned. The whorl 
detection algorithm also outperformed the volume calculation algorithm in terms of proportion of the 
stem covered (Table 6), with the best configuration (20 cm) detecting whorls up to a max height of 
19.35 m and a mean height of 17.55 m. This is likely because the cylinder fitting algorithm struggled 
to fit cylinders to sections of the stem higher up the tree (see Figure 7). 
 
The whorl detection accuracy was somewhat lower than the whorl height accuracy. The highest and 
lowest accuracy was achieved by the 10 cm (42.41%) and 5 cm (40.25%) configurations, with false 
positive rates of ~24% and ~52% respectively. The 5 cm configuration was able to correctly identify 
the most whorls (~70%); however, it also generated nearly fivefold more false positives than the best 
configuration. Similar work by Pyörälä, et al. (2018) used clusters of detected branches to identify 
whorl locations on the stem. Their algorithm correctly detected only slightly more whorls than the 
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algorithm in this study, at 71.1%; however, the low number of false positives (1.9%) increased the 
overall detection accuracy to 69.9% (compared with 40-42% in this study). This is approximately 
thirteen times less false positives than the best results of this study. Possible reasons for this large 
difference in detection could be due to their use of TLS, which is known to create less noisy point 
clouds than the MLS system used in this study (Tang, et al., 2015). Their reported mean lowest whorl 
height was also above 7 m high, with a maximum lowest whorl height of 13.5 m, due to self-pruning 
of the studies species. This would indicate that the stems had fewer branches than the radiata in our 
study which were pruned up to ~2 m. This would generate more noise in the Hovermap point clouds. 
The whorl detection method also focused on branch detection and conglomeration, rather than 
identification of stem swelling. Future study should be focused on methods for reducing the number 
of false positives identified, possibly by integrating branch and stem swelling detection to improve 
overall accuracy. 

6. CONCLUSIONS 

This study has shown that accurate phenotypic measurements can be derived from mature stands 
of P. radiata using Mobile Laser Scanning (MLS) units, such as the Hovermap. From MLS point 
clouds, a range of measurements, including stem volume and diameter at breast height (DBH) can 
be extracted with a high level of precision and accuracy. This technology also shows very real 
potential for reducing field capture times when compared with traditional inventory methods. Once 
algorithms for deriving metrics are fine-tuned, standardised and more widely available, there is a 
very real potential for high-throughput phenotyping or inventory capture at scale. The Hovermap is 
a relatively affordable solution, when compared to a high-end scanner such as the MiniVUX and 
provides a range of different use configurations suited to different forest conditions and tasks.  
 
A key finding of this study has been that, from the ground, the Hovermap is able to derive canopy 
heights with a level of precision and accuracy comparable to the MiniVUX from the air. This finding 
has significant implications for forestry as it has previously been necessary to use laser scanners 
both above and below the forest canopy to estimate tree height and characterise stems from the 
same point cloud. 
 
Despite increasing the pulse density to an order of magnitude larger than a standard ULS capture, 
our findings indicate that ULS is less useful for phenotyping. We were only able to derive heights 
from the data, which did not perform well in a mature forest canopy. DL shows some promise for 
efficiency gains for the delineation of tree stems, and with more work could increase the usability of 
ULS through derivation of further crucial metrics such as DBH and volume.  
 
There is more work required in fine-tuning algorithms and, in particular, methods for improved tree 
height extraction from point clouds captured from mature stands. Additionally, fine-tuning of the 
methodology for whorl detection and building on this to be able to characterise branch size should 
also be an area for future focus. Testing of this equipment in more diverse forest environments, with 
varied ages, stand densities or levels of undergrowth would also be highly beneficial. Overall, this 
technology holds significant potential as a means of advancing forest mensuration and phenotyping 
towards a digital future. 
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GLOSSARY 

Above Ground Level (AGL) – Measurement of altitude used in aviation for the distance between an 
aircraft and the ground (as opposed to distance between the ground and mean sea level). 
 
Autonomy Level 1 (AL1) – Term assigned to the first level of autonomous flight control in the 
Hovermap unit. This mode allows for the pilot to fly the craft manually but with the Hovermap acting 
as an industrial-grade object avoidance unit, minimising the risk of collision, and allowing for flight 
stabilisation without the need for GNSS (see below). 
 
Autonomy Level 1 (AL2) – Term assigned to the second level of autonomous flight control in the 
Hovermap unit. This mode allows for fully autonomous flight, in which the pilot can assign a flight 
route to the craft utilising waypoints, and the Hovermap will act as the craft’s with navigation aid, 
replacing GNSS, maintaining altitude and minimising the risk of collision. 
 
Airborne Laser Scanning (ALS) – A method of aerial survey utilising lidar (see LiDAR below) to create 
a three-dimensional model of a real work environment, known as a point cloud (see below). This 
term is almost exclusively applied to the airborne collection of lidar data from a manned aircraft, as 
opposed to a UAV (see below), but can be used interchangeably. 
 
Deep Learning (DL) – A method of machine learning that utilises artificial neural networks to mimic 
the structure and function of the human brain allowing computer algorithms to perform both feature 
extraction and classification. 
 
Global Navigation Satellite System (GNSS) – A Navigation methodology relying on triangulation of 
position through the use of satellite constellations. Many constellations are currently operational, 
including GPS (US), BEIDOU (China), GLONASS (Russia) and GALILEO (EU). 
 
Ground Control Point (GCP) – A physical marker applied to an area of interest prior to remote 
sensing survey that is clearly visible in the remotely sensed imagery. These points are surveyed 
using GNSS to give that point high accuracy, so that this information can then be utilised to enhance 
the spatial accuracy of the geospatial model produced. 
 
Inertial Motion Unit (IMU) – A device that measures orientation, angle and acceleration of a machine 
or craft. Generally used in combination with a GNSS (see above) to locate a machine or craft in the 
real world and aid in navigation. 
 
Light Detection and Ranging (LiDAR) – A remote sensing method that utilises light-based range 
finding to calculate distances between the scanner and its environment. Analogous with term “laser 
scanning”. 
 
Mobile Laser Scanning (MLS) – A laser scanning methodology that incorporates a laser scanner 
with a mobile platform in order to build point clouds whilst moving. This term can apply to vehicle-
mounted, backpack-mounted or handheld configurations of laser scanner. 
 
Point Cloud – A three-dimensional model of spatial points usually collected through laser scanning 
or photogrammetric methodologies which represents a real-world environment or object. 
 
Post-processed Kinematic (PPK) – A methodology for correcting GNSS (see above) data from a 
roving antenna to centimetre or decimetre level precision by utilising highly accurate positional data 
from a base antenna. This correction is applied after the data has been collected. 
 
Pulses per square meter (ppm²) – Unit of measurement for the density of points in a point cloud. 
 
Simultaneous Localisation and Mapping (SLAM) – A methodology for the sensing and mapping of 
an environment generally used in robotics or automation to enable an autonomous machine to locate 
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itself in a real-world environment, whilst building a map of the environment it moves through. This 
technique often utilises laser scanning as the primary method for sensing. 
  
Terrestrial Laser Scanning (TLS) – Methodologies for laser scanning of environments or objects from 
the ground. This term is often used to refer to static, or tripod-mounted laser scanners, but can also 
be used as a more general term encompassing mobile laser scanners (MLS – see above). 
 
Unmanned Aerial Vehicle (UAV) – An airborne robot that is controlled by a pilot on the ground. 
Predominantly used for aerial survey, but increasingly being used for multiple additional applications, 
including agricultural chemical application or sample collection. 
 
UAV Laser Scanning (ULS) – A method of airborne laser scanning (see above) that utilises UAVs 
(see above) as the platform for carrying the scanner, rather than a manned aircraft (ALS – see 
above). 
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